

A New Dynamic Programming Algorithm for Multiple Sequence Alignment

Jean-Michel Richer, Vincent Derrien, Jin-Kao Hao

jean-michel.richer@univ-angers.fr

<http://www.info.univ-angers.fr/pub/richer>

University of Angers
LERIA - Laboratoire d'Etudes et de Recherche
en Informatique d'Angers, France

COCOA'07
Xi'an, China, August 12-15, 2007

Introduction

Aim of this work

Express alignment of two alignments with linear or affine gap model penalty using the Dynamic Programming (DP) framework : **aligning alignments**.

Expression of DP

- pairwise sequence alignment
 - linear gap penalty : yes
 - affine gap penalty : yes
- multiple sequence alignment
 - linear gap penalty : yes (3 sequences)
 - affine gap penalty : ?
- alignment of alignments
 - linear gap penalty : probably (**our contribution**)
 - affine gap penalty : no (**our contribution**)

Outline

1 Previous work

- biological context
- basic concepts of alignments

2 Our contribution

- the problem and the formulae
- experimentations

3 Conclusion

└ Previous work

└ biological context

A word on proteins

Biological framework

- our genes contain the code of proteins
- proteins are the basic elements of living cells
- they have a 3D structure that gives them their function
- but most of the time we only have their primary structure

Similarity → function

Thanks to sequence similarity we can infer proteins functions

└ Previous work

 └ basic concepts of alignments

What is an alignment ?

Aligning

Given a set of (Nucleic or Amino Acid) sequences, find the best way to display relevant information about conserved regions of the sequences.

└ Previous work

└ basic concepts of alignments

Example

Example

1aab_ref1 from BaliBASE

hmgl_trybr	KKDSNAPKRAMTSFMFFSS	...
hmgt_mouse	KPKRPRSAVINIYVSESFQE	...
hmgb_chite	ADKPKRPLSAYMLWLNSAR	...
hmgl_wheat	DPNKPKRAPSAAFFVFMGEF	...

Table: Set of unaligned sequences

Sequences are expressed over an alphabet

$$\Sigma = \{A, C, D, E, \dots\}.$$

└ Previous work

└ basic concepts of alignments

Example

Example

hmgl_trybr	-KKDSNAPKR	AMTSFMFFSS	...
hmgt_mouse	-----KPKR	PRSAYNIYVS	...
hmgb_chite	-----ADKPKR	PLSAYMLWLN	...
hmgl_wheat	---DPNPKKR	APSAFFVFMG	...

Table: Set of aligned sequences

- we use the gap symbol – to align sequences.
- we define $\Sigma' = \Sigma \cup \{-\}$.
- edit operations : match, substitution, insertion/deletion

Formal definition

Definition (Alignment)

- let $S = \{S_1, \dots, S_k\}$ be a set of sequences defined over an alphabet Σ ,
- $\forall u \in \{1, \dots, k\}, S_u = \langle x_1^u, \dots, x_{|S_u|}^u \rangle$ where $|S_u|$ is the length of S_u .

An alignment A^S is a matrix:

$$A^S = \begin{bmatrix} a_1^1 & \dots & a_q^1 \\ \vdots & & \vdots \\ a_1^k & & q_q^k \end{bmatrix}$$

Formal definition

Definition (Alignment)

such that :

- 1 $a_j^i \in \Sigma'$
- 2 alignment length (number of columns) is coherent with sequences lengths : $\max(|S_u|) \leq q \leq \sum_{u=1, \dots, k} |S_u|$
- 3 there is no column composed only with gaps
- 4 removing gaps from $\langle a_1^i, \dots, a_q^i \rangle$ gives S_i

└ Previous work

 └ basic concepts of alignments

What type of alignment method do we use ?

- heuristic / approximated method : Blast
- exact method : Dynamic Programming

What do we need to align sequences exactly ?

- a substitution matrix $w : \Sigma' \times \Sigma' \rightarrow \mathbb{R}$, to score matches and substitutions (PAM, BLOSUM, GONNET)
- a gap model $g : \mathbb{N} \rightarrow \mathbb{R}$, to score gaps (linear, affine, others)

Gap model

Definition (gap model)

A gap model is an application $g : \mathbb{N} \rightarrow \mathbb{R}$ which assigns a score, also called a penalty, to a set of n consecutive gaps.

Definition (linear gap model)

$g(n) = n \times g_o$ where $g_o < 0$ is the opening penalty.

Definition (affine gap model)

$$g(n) = \begin{cases} 0 & \text{if } n = 0 \\ g_o + (n - 1) \times g_e & \text{if } n \geq 1 \end{cases}$$

└ Previous work

└ basic concepts of alignments

How can we score and obtain an alignment ?

Definition (Sum-of-pairs)

Let A^S be an alignment of a set of sequences $S = \{S_1, \dots, S_k\}$.
 The sum-of-pairs is given by the following formula:

$$sop(A^S) = \sum_{c=1}^q sop^c(A_c^S)$$

where $sop^c(A_c^S)$ is the score of the c column of the alignment given by:

$$sop^c(A_c^S) = \sum_{i=1}^{k-1} \sum_{j=i+1}^k w(a_c^i, a_c^j) - \#gaps$$

Pairwise Sequence Alignment

Definition (Needleman-Wunsch-Sellers, 1970)

Given two sequences :

- $x = \langle x_1, \dots, x_m \rangle$
- $y = \langle y_1, \dots, y_n \rangle$

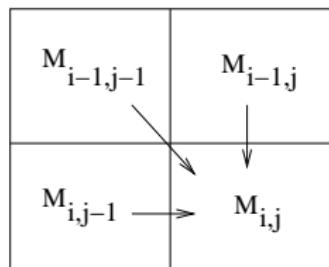
we can compute an alignment of x and y using a matrix $M[(n + 1) \times (m + 1)]$:

$$M_{i,j} = \max \begin{cases} M_{i-1,j-1} + w(x_j, y_i) \\ M_{i-1,j} + g_o \\ M_{i,j-1} + g_o \end{cases}$$

└ Previous work

└ basic concepts of alignments

Pairwise Sequence Alignment with Linear Gap


	x_1	x_2	x_m		
0	$-g$	$-2g$			$-mg$
y_1	$-g$				
				
y_n	$-ng$				

Given to sequences :

- $x = \langle x_1, \dots, x_m \rangle$
- $y = \langle y_1, \dots, y_n \rangle$

we can compute an alignment of x and y using a matrix $M[(n + 1) \times (m + 1)]$

Pairwise Sequence Alignment with Linear Gap

$$M_{i,j} = \max \begin{cases} M_{i-1,j-1} + w(x_j, y_i) \\ M_{i-1,j} + g_o \\ M_{i,j-1} + g_o \end{cases}$$

with $g_o < 0$

Pairwise Sequence Alignment with Affine Gap

We need to use 3 matrices to make a distinction between :

- an opening penalty
- or an extension of an existing penalty

Pairwise Sequence Alignment with Affine Gap

$$M_{i,j} = \max \left\{ \begin{array}{l} D_{i,j} = \max \left\{ \begin{array}{l} H_{i-1,j-1} + w(x_j, y_i) \\ D_{i-1,j-1} + w(x_j, y_i) \\ V_{i-1,j-1} + w(x_j, y_i) \end{array} \right\} \\ H_{i,j} = \max \left\{ \begin{array}{l} H_{i,j-1} + g_e \\ D_{i,j-1} + g_o \\ V_{i,j-1} + g_o \end{array} \right\} \\ V_{i,j} = \max \left\{ \begin{array}{l} H_{i-1,j} + g_o \\ D_{i-1,j} + g_o \\ V_{i-1,j} + g_e \end{array} \right\} \end{array} \right\}$$

└ Our contribution

 └ the problem and the formulae

Our contribution

Our contribution...

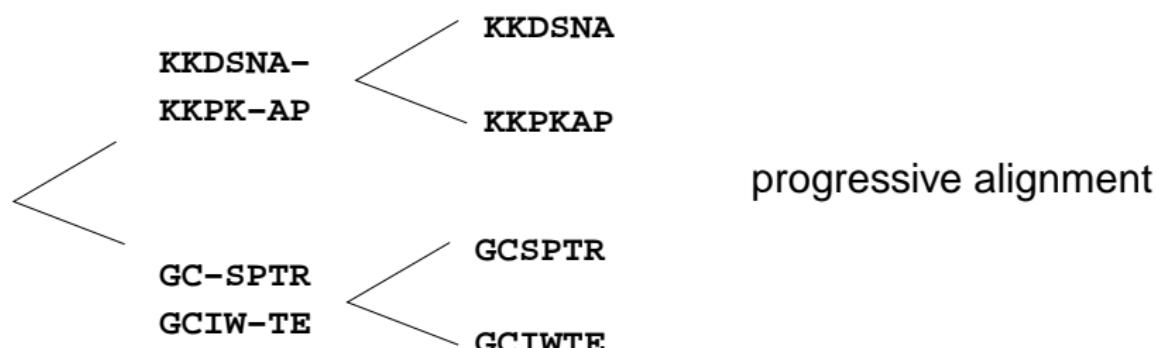
└ Our contribution

└ the problem and the formulae

Aligning alignments

Aligning alignments

Given two multiple alignments A_v and A_h , find an optimal alignment of A_v and A_h for the sum-of-pairs objective function for a given substitution matrix w and gap model $g(n)$ (John Kececioglu 1998).


Kececioglu 2004

Kececioglu in [KeSt, 2004] used shapes (ordered partition of the $k + l$ sequences that represents the final gap-configuration of a multiple alignment), provided some formulae but still it is difficult to implement.

↳ Our contribution

↳ the problem and the formulae

Why do we need to align alignments ?

└ Our contribution

└ the problem and the formulae

The problem

	x_1^1	x_2^1		x_m^1	
	\vdots			\vdots	
	$x_1^{k_h}$	$x_2^{k_h}$		$x_m^{k_h}$	
y_1^1	...	$y_1^{k_v}$			
	0	$-g$	$-2g$		$-mg$
y_1^2					
				
y_n^1	...	$y_n^{k_v}$			
	$-ng$				

↳ Our contribution

↳ the problem and the formulae

introducing the λ function

To simplify the expression of formulae

we introduce the function λ which is an application $\Sigma^4 \rightarrow \mathbb{R}$, induced by the gap model :

$$\lambda \begin{pmatrix} a_{c-1}^r & a_c^r \\ a_{c-1}^s & a_c^s \end{pmatrix} = \begin{cases} 0 & \text{if } c-1 = 0 \\ 1 & \text{if } a_c^r \neq - \text{ and } a_c^s \neq - \\ g_{op} & \text{if } a_c^r = - \text{ or } a_c^s = - \end{cases}$$

for a linear gap model

└ Our contribution

└ the problem and the formulae

λ for affine gap model

For affine gap model

For the affine gap model, the previous edit operation and especially insertions will influence the cost of the penalty.

$\forall c \in \{1, \dots, q\}$:

$$\lambda \begin{pmatrix} a_{c-1}^r & a_c^r \\ a_{c-1}^s & a_c^s \end{pmatrix} = \begin{cases} 0 & \text{if } c-1 = 0 \\ 1 & \text{if } a_c^r \neq - \text{ and } a_c^s \neq - \\ g_{op} & \text{if } (a_c^r = - \text{ and } a_{c-1}^r \neq -) \\ & \text{or if } (a_c^s = - \text{ et } a_{c-1}^s \neq -) \\ g_{ext} & \text{if } (a_c^r = - \text{ and } a_{c-1}^r = -) \\ & \text{or if } (a_c^s = - \text{ et } a_{c-1}^s = -) \end{cases}$$

└ Our contribution

└ the problem and the formulae

Sum of pairs

expression of sop

$$sop^c(A_c^S) = \sum_{r=1}^{k-1} \sum_{s=r+1}^k \delta_{r,s} \times w(a_c^r, a_c^s) \times \lambda \begin{pmatrix} a_{c-1}^r & a_c^r \\ a_{c-1}^s & a_c^s \end{pmatrix}$$

└ Our contribution

└ the problem and the formulae

DP for alignments

Please refer to article in LNCS book

└ Our contribution

└ the problem and the formulae

General form

A formula is composed of 4 factors :

- α : former edit operation $D_{i-1,j-1}$
- β : sum-of-pairs score of column j of A_h

$$\sum_{r=1}^{k_h-1} \sum_{s=r+1}^{k_h} w(x_j^r, x_j^s) \times \lambda \begin{pmatrix} x_{j-1}^r & x_j^r \\ x_{j-1}^s & x_j^s \end{pmatrix}$$

- γ : sum-of-pairs score of the column i of A_v

$$\sum_{r=1}^{k_v-1} \sum_{s=r+1}^{k_v} w(y_i^r, y_i^s) \times \lambda \begin{pmatrix} y_{i-1}^r & y_i^r \\ y_{i-1}^s & y_i^s \end{pmatrix}$$

- δ : interaction of column j of A_h with column i of A_v

↳ Our contribution

↳ the problem and the formulae

Complexity

Kececioglu 2004

Given two alignments of k sequences of length n , the complexity of [KeSt, 2004] is $\mathcal{O}((3 + \sqrt{2})^k(n - k)^2 k^{3/2})$.

Richer, Derrien, Hao 2007

Given two alignments of k sequences of length n the complexity of our algorithm is $\mathcal{O}(n^2 k^2)$ (exactly : $18n^2 k^2$).

comparison

with $k = 10$ and $n = 100$, Kececioglu's algorithm requires 7.2×10^{11} computations while we only need 1.8×10^7 .

↳ Our contribution

↳ Experimentations

Experimentations and results

Softwares used

- Clustal 1.83
- Mafft 5.86
- Muscle 3.6
- Probcons 1.11
- TCoffee 4.96
- Malinba 1.0 (Multiple Affine or LINear Block Alignment)

Benchmark

we used BaliBase and reported the SPS (sum-of-pairs) and CS (column score) of the alignments obtained by each software.

└ Our contribution

└ experimentations

Results

rank

we can rank the softwares as follows using the average SPS and CS scores :

*CLUSTAL < MALINBA, T – COFFEE
< MUSCLE < MAFFT < PROBCONS*

Conclusion

- aligning alignment expressed within Dynamic Programming framework
- easy to implement
- first results are good but require more efforts to get an improved quality (post-optimization treatments, secondary structure information)

Bibliography

Needleman S.B., Wunsch C.D..

A general method applicable to the search for similarities in the amino acid sequence of two proteins.

Journal of Molecular Biology, 3(48):334–453, 1970.

John Kececioglu and Dean Starrett

Aligning alignments exactly

Proceedings of RECOMB 04, March 27-31, San Diego, CA, USA, 2004