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Abstract. Multiple sequence alignment (MSA) is one of the most basic and cen-
tral tasks for many studies in modern biology. In this paper,we present a new pro-
gressive alignment algorithm for this very difficult problem. Given two groups A
and B of aligned sequences, this algorithm uses Dynamic Programming and the
sum-of-pairs objective function to determine an optimal alignment C of A and
B. The proposed algorithm has a much lower time complexity compared with
a previously published algorithm for the same task [11]. Itsperformance is ex-
tensively assessed on the well-known BAliBase benchmarks and compared with
several state-of-the-art MSA tools.
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1 Introduction

In biology, theMultiple Sequence Alignmentof nucleic acids or proteins is one of the
most basic and central tasks which is a prior to phylogeny reconstruction, protein struc-
ture modeling or gene annotation. The goal of the alignment operation is to identify
similarities at the primary sequence level which usually implies structural and func-
tional similarity.

A multiple alignment of a set of sequences helps visualize conserved regions of
residues by organizing them into a matrix where similar residues ideally appear in the
same column. In order to obtain this matrix it is necessary touseedit operationswhich
consist of a match, a substitution or an insertion. A match puts two equal residues in
the same column while a substitution uses two different residues. An insertion consists
in inserting a special character, called a gap, whenever characters of a sequence have to
be shifted from one column to be aligned with similar residues of other sequences.

To align two sequences, a simple polynomial algorithm basedon dynamic program-
ming (DP) has been designed with linear gap penalty [14]. This algorithm is based on
a scoring scheme of edit operations and is influenced by two parameters: a substitution
matrix and a model of gaps. A substitution matrix (PAM [1], BLOSUM [9]) assigns a
score to a match or a substitution and the gap model helps score the insertions.

Obtaining an accurate alignment is a difficult task which requires to design scoring
schemes which are biologically sound. In practice, the sum-of-pairs [10] is the most
widely used for its simplicity although some other models have been developed [18,15].



We can compute the optimal alignment of a set ofk sequences of lengthn by ex-
tending [14] to ak-dimension DP algorithm [13], but its complexity inO(nk2k) is too
time consuming to tackle the alignments problems that biologists encounter everyday.
In fact, the problem of aligningk > 2 sequences is known to be NP-hard [24]. For
this reason various heuristic methods have been designed todecrease the complexity of
the standard algorithm and obtain sub-optimal alignments.These heuristic methods fall
into two categories.

Progressive methods (PM) [5] are the most widely used optimization techniques.
They consist in iteratively aligning the most closely related sequences or groups of
sequences until all sequences are aligned. The most famous progressive methods are
CLUSTALW[21] andT-Coffee[17], MUSCLE [4] and MAFFT [12]. The PM approach
has the advantage to be simple, efficient and provides good results. Nevertheless this
approach suffers from its greedy nature: mistakes made in the alignment of previous
sequences can not be corrected as more sequences are added. The order in which the
sequences are aligned is determined by an efficient clustering method such as neighbor-
joining [19]. Progressive Methods therefore automatically construct a phylogenetic tree
as well as an alignment.

The iterative methods (IM) start from an initial alignment (or a set of initial align-
ments) and iteratively improve it following some objectivefunction (SAGA [16], Prob-
Cons [3], DiAlign-T [20], PRRN/PRRP [8]). Many of these methods in fact combine
iterative and progressive optimization and can lead to an alignment of better quality but
generally require more computational effort [4,12].

The group-to-group (also called alignment of alignments) algorithm represents a
natural simplification of thek-dimension DP algorithm and is the core of progressive
and iterative methods [26]. Aligning alignments (AA) is theproblem of finding an op-
timal alignment of two alignments under the sum-of-pairs objective function. An ap-
proximate version of AA widely used is based on profiles. A profile is a table that lists
the frequencies of each amino acid for each column of an alignment. To improve the
quality of the overall alignment it is interesting to compute the exact SP score of two
alignments.

Recently Kececioglu and Starrett [11] gave the outline of analgorithm to exactly
align two alignments with affine gap cost using shapes. We believe that this algorithm
requires more computational effort than needed and can be described in a more ele-
gant manner. We have designed a generic framework which is a generalization of the
algorithm of Gotoh [6] that can be instanciated in order to perform an exact pairwise
alignment or to align two alignments using linear or affine gap penalties. The method
has been implemented in the software MALINBA and we give heresome of the results
obtained on the BAliBASE benchmarks.

The rest of the paper is organized as follows. In the next section we will give a for-
mal description of some important notions used for the alignment of sequences. Section
3 presents the generic framework that we have defined to alignalignments. The next
section provides some results from the BAliBase database ofalignments compared to
other MSA softwares.



2 Formal definition of the problem

Let us consider that an alphabet is a set of distinct letters for which we identify a spe-
cial symbol called a gap generally represented by the character ’-’. A sequence is
expressed over an alphabet and is a string of characters where each character stands for
a residue, i.e. a nucleic acid (DNA) or an amino acid (protein). Aligning two sequences
or two sets of sequences can be performed by using edit operations and the result in a
matrix called an alignment:

Definition 1. - Alignment - Let S = {S1, . . . , Sk} be a set of sequences defined over
an alphabetΣ : ∀u ∈ {1, . . . , k}, Su = 〈xu

1 , . . . , xu
|Su|

〉 where|Su| is the length ofSu.

An alignmentAS is a matrix:

AS =






a1
1 . . . a1

q
...

...
ak
1 qk

q






such that∀u ∈ {1, . . . , k}, ∀v ∈ {1, . . . , q}, au
v ∈ Σ. The matrixAS verifies the

following properties:

• ∀u ∈ {1, . . . , k}, max(|Su|) ≤ q ≤ ∑u=k
u=1 |Su|,

• 6 ∃j ∈ {1, . . . , q} such that ∀u ∈ {1, . . . , k}, au
j = −,

• ∀u ∈ {1, . . . , k}, there exists an isomorphismfu : {1, . . . , |Su|} → {1, . . . , q}
such that〈au

fu(1), a
u
fu(2), . . . , a

u
fu(|Su|)

〉 = Su

Example 1.For example, the set of sequencesS could be aligned as follows:

S an alignment ofS
ACCT AC-CT
AC AC---
ACT AC--T
CAAT -CAAT
CT -C--T
CAT -CA-T

2.1 Sum-of-pairs

As previously mentioned, to establish the quality of an alignment we use an objective
function called the sum-of-pairs which depends on a substitution matrixw and a model
of gapg(n). In the reminder of this paper we will consider that the substitution matrix
corresponds to a measure of similarity which means that similar residues will be re-
warded by a positive score and dissimilar residues will get anegative score. There exist
two widely used models of gaps called linear and affine1.

1 The linear gap model is sometimes refered as aconstant modeland the affine gap model is
sometimes refered aslinear which is confusing.



Definition 2. - Gap model -A gap model is an applicationg : N → R which assigns
a score, also called a penalty, to a set of consecutive gaps. This penalty is generally
negative.

Definition 3. - Linear gap model - For this model, the penalty is proportional to the
length of the gap and is given byg(n) = n× go wherego < 0 is theopeningpenalty of
a gap andn the number of consecutive gaps.

Definition 4. - Affine gap model - For this model the insertion of a new gap has a
more important penalty than the extension of an existing gap, this can be stated by the
following formula:

g(n) =

{
0 if n = 0
go + (n − 1) × ge if n ≥ 1

wherego < 0 is thegap opening penaltyandge < 0 gap extension penaltyand are
such that|ge| < |go|.

Definition 5. - Sum-of-pairs of an alignment -Let AS be an alignment of a set of
sequencesS = {S1, . . . , Sk}. The sum-of-pairs is given by the following formula:

sop(AS) =

q
∑

c=1

sopc(AS
c )

wheresopc(AS
c ) is the score of thec column of the alignment given by:

sopc(AS
c ) =

k−1∑

r=1

k∑

s=r+1

δr,s × w(ar
c , a

s
c) × λ

(
ar

c−1 ar
c

as
c−1 as

c

)

with:

– 0 < δr,s ≤ 1 is a weighting coefficient that allows to remedy problems arising
from biased sequences, in order for example to avoid over-represented sequences
to dominate the alignment. For simplicity’s sake we will chose δr,s = 1 in the
remainder of this paper . Whenδr,s 6= 1 the sum-of-pairs is called the weighted
sum-of-pairs [7].

– we introduce hereλ which is the key feature of our work and is an application
Σ4 → R, induced by the gap model.λ takes into account the previous edit opera-
tion used to obtain the current column of the alignment.

Definition 6. - λ for a linear gap model - For a linear gap model, a gap has always
the same cost wherever it is placed in the alignment.∀c ∈ {1, . . . , q}:

λ

(
ar

c−1 ar
c

as
c−1 as

c

)

=







0 if c − 1 = 0
1 if ar

c 6= − and as
c 6= −

gop if ar
c = − or as

c = −



Definition 7. - λ for an affine gap model - For the affine gap model, the previous
edit operation and especially insertions will influence thecost of the penalty.∀c ∈
{1, . . . , q} :

λ

(
ar

c−1 ar
c

as
c−1 as

c

)

=







0 if c − 1 = 0
1 if ar

c 6= − and as
c 6= −

gop if (ar
c = − andar

c−1 6= −) or if (as
c = − etas

c−1 6= −)
gext if (ar

c = − andar
c−1 = −) or if (as

c = − etas
c−1 = −)

3 A generic framework for aligning alignments

The problem of aligning alignments can be stated as follows :

Definition 8. - Aligning alignment - Given two multiple alignmentsAv andAh, find
an optimal alignment ofAv andAh for the sum-of-pairs objective function for a given
substitution matrixw and gap modelg(n).

The framework that we now define is a generalization of the algorithm of [6] based
on a measure of similarity. We refer the reader to [25] for a better understanding of the
computation process which is based on two steps. The first step is the initialization of
the first row and first column of the matrix and the second step is the recursive relation
used to compute each remaining cell of the matrix. To decrease the complexity we
introduce three auxillary matrices calledD, V andH . D is used to record the cost of a
match or a substitution,V andH are used to record the cost of an insertion respectively
in Av and Ah. Table 1 represents the possible moves in the dynamic programming
matrix. For example, DH means a match or substituion betweenAv andAh followed
by an insertion inAh. TheM matrix records the optimal cost of the global alignment.
To obtain the optimal alignment we use thetracebacktechnique (see [25]). We consider
thatAv andAh are defined as follows :

Ah =






x1
1 . . . x1

qh

...
...

xkh

1 . . . xkh

qh




 Av =






y1
1 . . . y1

qv

...
...

ykv

1 . . . ykv

qv






ց ↓ ց ↓ DD DH VD VH
→ ց → ↓ DH D VH V
ց ↓ HD HV
→ → HH H

Table 1.possible moves for the dynamic programming algorithm



1. initialization,∀i ∈ {1, . . . , kv}, ∀j ∈ {1, . . . , kh}:

M0,0 = D0,0 = H0,0 = V0,0 = 0
Di,0 = Hi,0 = −∞
D0,j = V0,j = −∞
H0,j = H0,j−1 + sopj(Ah) +

∑kv

e=1

∑kh

f=1 w(xf
j ,−) × (g(j) − g(j − 1))

Vi,0 = Vi−1,0 + sopi(Av) +
∑kv

e=1

∑kh

f=1 w(−, ye
i ) × (g(i) − g(i − 1)

2. recursive relation,∀i ∈ {1, . . . , kv}, ∀j ∈ {1, . . . , kh}:

Mi,j = max{Di,j , Hi,j , Vi,j}
with

Di,j = max
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+
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Vi,j = max
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The score of each edit operation depends on 4 different factors that we callα, β, γ

andδ. For example, to obtainDDi,j , we need to compute :

– theα factor which corresponds to the former edit operationDi−1,j−1

– theβ factor is the sum-of-pairs score of columnj of Ah :

kh−1∑

r=1

kh∑

s=r+1

w(xr
j , x

s
j) × λ

(
xr

j−1 xr
j

xs
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j

)

– theγ factor is the sum-of-pairs score of the columni of Av :
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– theδ factor results from the interaction of columnj of Ah with columni of Av :
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Proposition 1. - Complexity of aligning alignment -The complexity of the compu-
tation of the alignment of two alignments composed ofk sequences of lengthn is
O(n2k2).

Proof : for eachMi,j, we need to compute 9 values for which we need :

kv × kh
︸ ︷︷ ︸

δ

+
1

2
× (kv − 1) × kv

︸ ︷︷ ︸

γ

+
1

2
× (kh − 1) × kh

︸ ︷︷ ︸

β



computations. If we consider thatkv = kh = k and thatqv = qh = n, we then have to
perform :(n+1)×(n+1)×9×(2k−1)×k ≈ n2×9×2k2 computations. This value
is to be compared with the complexity of [11] which isO((3+

√
2)k(n−k)2k3/2). For

example, to align 2 alignments of 10 sequences of 100 residues, [11] would normally
have to perform7.2 × 1011 computations while we would require only1.7 × 107.

3.1 Instanciation of the framework

In the case of a pairwise alignment with a linear gap penalty,theβ andγ factors are not
involved because there is only one sequence in each alignment. The extension penalty
is equal to the opening penalty. The simplification of formulas show that∀i, j Di,j =
Hi,j = Vi,j . It is then not necessary to use theD, V andH matrices and the simplified
formula is equal to the Needleman and Wunsch formula:Mi,j = max{Mi−1,j−1 +
w(xj , yi), Mi,j−1 + go, Mi−1,j + go}.

4 Experimentations

The generic framework presented so far has been implementedin the software MA-
LINBA (Multiple Affine or LINear Block Alignment) which is a modified version of
PLASMA [2] written in C++. Compared to PLASMA, MALINBA uses an exactver-
sion of the DP algorithm to align two columns of 2 alignments while PLASMA relies
on the insertion of columns of gaps in one of the two subalignments and local rear-
rangements of residues in blocks.

To evaluate the quality of the alignments obtained by MALINBA and other MSA
programs we have performed some tests on the BAliBase 2.0 database of benchmarks.

4.1 BAliBase

BAliBase is designed for assessing MSA algorithms [22] and is divided into five ref-
erence sets which were designed to test different aspects ofalignment softwares. Set 1
is composed of approximately equidistant sequences. Set 2 is made of families whith
orphan sequences while Set 3 contains divergent families. Set 4 has sequences with
large N/C terminal insertions and sequences of Set 5 containlarge internal insertions.
All reference alignments were refined manually by BAliBase authors.

To assess alignment accuracy we use thebali_score program which helps com-
pute two scores : theBAliBase sum-of-pairs score(SPS) which in fact is a ratio between
the number of correctly aligned residue pairs found in the test alignment and the total
number of aligned residue pairs in core blocks of the reference alignment [23]. We
also report the column score (CS) defined as the number of correctly aligned columns
found in the test alignment divided by the total number of columns in core blocks of the
reference alignment. The closer to 1.0 these scores are, thebetter the alignment is.

4.2 Results

We have compared our results obtained with MALINBA to five widely known MSA
systems: (1) CLUSTALW 1.83, the most popular progressive alignment software; (2)



the nwnsi version of MAFFT 5.86 using iterative refinement techniques; (3) MUSCLE
3.6; (4) PROBCONS 1.11; (5) T-COFFEE 4.96. All sotwares wererun using default
parameters on an Intel Core 2 Duo E6400 with 1 Gb of RAM. For this test MALINBA
used 7 specific sets of parameters and we kept the alignments that provided the best
SPS scores. Given the results of table 2 which reports the average SPS end CS scores,
we can rank the softwares as follows using average SPS or CS scores : CLUSTAL<

MALINBA, T-COFFEE < MUSCLE< MAFFT < PROBCONS.

Softwares
Set 1 Set 2 Set 3 Set 4 Set 5 Time

SPS CS SPS CS SPS CS SPS CS SPS CS (in s)
CLUSTAL 0.809 0.7070.932 0.5920.723 0.4810.834 0.6230.858 0.634 120
MAFFT 0.829 0.7360.931 0.5250.812 0.5950.947 0.8220.978 0.911 98
MUSCLE 0.821 0.7250.935 0.5930.784 0.5430.841 0.5930.972 0.901 75
PROBCONS 0.849 0.7650.943 0.6230.817 0.6310.939 0.828 0.974 0.892 711
TCOFFEE 0.814 0.7120.928 0.5240.739 0.4800.852 0.6440.943 0.8631653
MALINBA 0.811 0.7050.911 0.5220.752 0.3460.899 0.7340.942 0.842 343

Table 2.Results of the SPS and CS score for MSA Softwares and overall execution time.

Better alignments have been obtained with MALINBA by fine tuning some param-
eters. However these results are not reported here. Finally, let us say that despite its
complexity our method is quite fast (see the time column in table 2).

5 Conclusion

We have designed a generic framework to align alignments with the sum-of-pairs ob-
jective function. This framework is exact and can be used to align two sequences or
two alignments using linear of affine gap penalties. This framework was implemented
in MALINBA and tested on the BAliBase benchmark and proves tobe efficient. Al-
though quite simple, we believe that many improvements can be considered in order
to increase the quality of alignments obtained on the BAliBase dataset. For example,
local rearrangements on misaligned regions after each progressive step using secondary
structure information could probably help improve the column score.
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