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Abstract. Multiple sequence alignment (MSA) is one of the most basit@n-
tral tasks for many studies in modern biology. In this paperpresent a new pro-
gressive alignment algorithm for this very difficult probieGiven two groups A
and B of aligned sequences, this algorithm uses Dynamicr&myging and the
sum-of-pairs objective function to determine an optiméjrahent C of A and
B. The proposed algorithm has a much lower time complexitpmgared with
a previously published algorithm for the same task [11] pksformance is ex-
tensively assessed on the well-known BAliBase benchmaréiscampared with
several state-of-the-art MSA tools.
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1 Introduction

In biology, theMultiple Sequence Alignmeaof nucleic acids or proteins is one of the
most basic and central tasks which is a prior to phylogengnisttuction, protein struc-
ture modeling or gene annotation. The goal of the alignmeetation is to identify
similarities at the primary sequence level which usuallplies structural and func-
tional similarity.

A multiple alignment of a set of sequences helps visualizeseosed regions of
residues by organizing them into a matrix where similarchess ideally appear in the
same column. In order to obtain this matrix it is necessansgedit operationsvhich
consist of a match, a substitution or an insertion. A matcs puo equal residues in
the same column while a substitution uses two differentitess. An insertion consists
in inserting a special character, called a gap, wheneveactes of a sequence have to
be shifted from one column to be aligned with similar resgloother sequences.

To align two sequences, a simple polynomial algorithm basedlynamic program-
ming (DP) has been designed with linear gap penalty [14]s @lgorithm is based on
a scoring scheme of edit operations and is influenced by twampeters: a substitution
matrix and a model of gaps. A substitution matrix (PAM [1], BEUM [9]) assigns a
score to a match or a substitution and the gap model helps #o®insertions.

Obtaining an accurate alignment is a difficult task whichuiegp to design scoring
schemes which are biologically sound. In practice, the sfupairs [10] is the most
widely used for its simplicity although some other modelghlbeen developed [18,15].



We can compute the optimal alignment of a sekafequences of length by ex-
tending [14] to a-dimension DP algorithm [13], but its complexity @#(n*2¥) is too
time consuming to tackle the alignments problems that lgiste encounter everyday.
In fact, the problem of aligning > 2 sequences is known to be NP-hard [24]. For
this reason various heuristic methods have been designgttease the complexity of
the standard algorithm and obtain sub-optimal alignmdiitese heuristic methods fall
into two categories.

Progressive methods (PM) [5] are the most widely used opétign techniques.
They consist in iteratively aligning the most closely rethtsequences or groups of
sequences until all sequences are aligned. The most fammogeepsive methods are
CLUSTALW21] andT-Coffeg17], MUSCLE [4] and MAFFT [12]. The PM approach
has the advantage to be simple, efficient and provides gaudtse Nevertheless this
approach suffers from its greedy nature: mistakes madeeiralignment of previous
sequences can not be corrected as more sequences are aueledddr in which the
sequences are aligned is determined by an efficient clagterethod such as neighbor-
joining [19]. Progressive Methods therefore automatyoadinstruct a phylogenetic tree
as well as an alignment.

The iterative methods (IM) start from an initial alignmeat @ set of initial align-
ments) and iteratively improve it following some objectfuaction (SAGA [16], Prob-
Cons [3], DiAlign-T [20], PRRN/PRRP [8]). Many of these metts in fact combine
iterative and progressive optimization and can lead to ignaent of better quality but
generally require more computational effort [4,12].

The group-to-group (also called alignment of alignmentgpathm represents a
natural simplification of thé-dimension DP algorithm and is the core of progressive
and iterative methods [26]. Aligning alignments (AA) is theblem of finding an op-
timal alignment of two alignments under the sum-of-pairgotive function. An ap-
proximate version of AA widely used is based on profiles. Afigds a table that lists
the frequencies of each amino acid for each column of an mkgn. To improve the
quality of the overall alignment it is interesting to com@tihe exact SP score of two
alignments.

Recently Kececioglu and Starrett [11] gave the outline oflgorithm to exactly
align two alignments with affine gap cost using shapes. We\eethat this algorithm
requires more computational effort than needed and can s&&itled in a more ele-
gant manner. We have designed a generic framework which énarglization of the
algorithm of Gotoh [6] that can be instanciated in order tdfqgren an exact pairwise
alignment or to align two alignments using linear or affin@ ganalties. The method
has been implemented in the software MALINBA and we give Iserae of the results
obtained on the BAIIBASE benchmarks.

The rest of the paper is organized as follows. In the neximeete will give a for-
mal description of some important notions used for the atignt of sequences. Section
3 presents the generic framework that we have defined to alignments. The next
section provides some results from the BAliBase databaséiggfments compared to
other MSA softwares.



2 Formal definition of the problem

Let us consider that an alphabet is a set of distinct lettarg/hich we identify a spe-
cial symbol called a gap generally represented by the ctearae’ . A sequence is
expressed over an alphabet and is a string of charactergwheh character stands for
aresidue, i.e. a nucleic acid (DNA) or an amino acid (prgteMigning two sequences
or two sets of sequences can be performed by using edit apesand the result in a
matrix called an alignment:

Definition 1. - Alignment - LetS = {51,..., Sk} be a set of sequences defined over
an alphabet” : Vu € {1,...,k}, Sy = (a2, ..., 2]g,|) where|S,| is the length of5,,.

An alignmentA?® is a matrix:

aj . a}z

AS _ . .
k k

ar Qq

suchthatvu € {1,...,k},Vo € {1,...,q}, a* € ¥. The matrixA® verifies the
following properties:

o Vue{l,....k}, max(|Su]) <q< 0Ty [Sul,

e Aje{l,...,q} suchthat Vue {1,...,k}, a%=—,

e Vu € {1,...,k}, there exists an isomorphisify, : {1,...,|S.|} — {1,...,q}
suchthatia} ),a% o), ,af;u(lsul)) =S,

Example 1.For example, the set of sequencesould be aligned as follows:

S an alignment of5
ACCT AC-CT
AC AC - -
ACT ACG-T
CAAT - CAAT
CT -C-T
CAT -CA-T

2.1 Sume-of-pairs

As previously mentioned, to establish the quality of anratignt we use an objective
function called the sum-of-pairs which depends on a sultigtit matrixw and a model
of gapg(n). In the reminder of this paper we will consider that the sitosbn matrix
corresponds to a measure of similarity which means thati@imésidues will be re-
warded by a positive score and dissimilar residues will gedgative score. There exist
two widely used models of gaps called linear and affine

! The linear gap model is sometimes refered ammstant modeand the affine gap model is
sometimes refered disear which is confusing.



Definition 2. - Gap model -A gap model is an applicatiogn : N — R which assigns
a score, also called a penalty, to a set of consecutive gdps. denalty is generally
negative.

Definition 3. - Linear gap model - For this model, the penalty is proportional to the
length of the gap and is given pyn) = n x g, whereg, < 0 is theopeningpenalty of
a gap andn the number of consecutive gaps.

Definition 4. - Affine gap model - For this model the insertion of a new gap has a
more important penalty than the extension of an existing g&p can be stated by the
following formula:

) = 0 if n=0
g(n) = Jgot+(n—1)xgeif n>1

whereg, < 0is thegap opening penaltgndg. < 0 gap extension penalgnd are
such thatge| < |gol-

Definition 5. - Sum-of-pairs of an alignment -Let A° be an alignment of a set of
sequence$ = {51, ..., Sk }. The sum-of-pairs is given by the following formula:

sop(A%) = Z sop®(AY)

c=1

wheresop®(A?) is the score of the column of the alignment given by:

: k-1 k o ar

C T S —_

sop®(A2) = g g drs X w(al,al) x A a; X a;
r=1s=r+1 €= ¢

with:

-0 < 4,5 < 1is a weighting coefficient that allows to remedy problemsiag
from biased sequences, in order for example to avoid oymesented sequences
to dominate the alignment. For simplicity’s sake we will 886, = 1 in the
remainder of this paper . Whef ; # 1 the sum-of-pairs is called the weighted
sum-of-pairs [7].

— we introduce here\ which is the key feature of our work and is an application
>4 — R, induced by the gap model.takes into account the previous edit opera-
tion used to obtain the current column of the alignment.

Definition 6. - A for a linear gap model - For a linear gap model, a gap has always
the same cost wherever it is placed in the alignmeént {1,...,¢}:

. 0 if c—1=0
A(aglaC)_ 1 if ai#— and o #—

a a? .
c—1 “%¢ ro__ s __
Gopif al=— or al=-—



Definition 7. - X for an affine gap model - For the affine gap model, the previous
edit operation and especially insertions will influence tteest of the penaltye €

{1,...,¢}:

0 ifec—1=0
\ a,_, al, _ 1 ?fa’c”;é—and as # — .
as_, at gop if (@l = —andal_; # —)orif (a3 = —etas_, # —)
Gext if (. = —anda’_; = —) orif (a3 = —eta®_; = —)

3 A generic framework for aligning alignments

The problem of aligning alignments can be stated as follows :

Definition 8. - Aligning alignment - Given two multiple alignmentd,, and A4;,, find
an optimal alignment ofi,, and A;, for the sum-of-pairs objective function for a given
substitution matrixv and gap modeg(n).

The framework that we now define is a generalization of therétlgm of [6] based
on a measure of similarity. We refer the reader to [25] for #dv@inderstanding of the
computation process which is based on two steps. The figstisthe initialization of
the first row and first column of the matrix and the second ste¢pe recursive relation
used to compute each remaining cell of the matrix. To deer#as complexity we
introduce three auxillary matrices calléy] V andH. D is used to record the cost of a
match or a substitutiorl/ and H are used to record the cost of an insertion respectively
in A, and Ay. Table 1 represents the possible moves in the dynamic progiag
matrix. For example, DH means a match or substituion betweeand A;, followed
by an insertion in4;,. The M matrix records the optimal cost of the global alignment.
To obtain the optimal alignment we use tinecebackechnique (see [25]). We consider
that A, andA;, are defined as follows :

o ah Y
Ap = |t Do Av= | :
Ekp ko v
xy" ...x’;: Y1 ...ygu
Nl N DD DH VD VH
NG| DH D VH V
Nl HD HV
- - HH H

Table 1. possible moves for the dynamic programming algorithm



1. initialization,Vi € {1,...,k,},Vj € {1,..., kp}:

Moo = Do,o = Hopo=Voo=0

Do = H;p=—0o0

DO gJ = VOJ = —00

Hy; = Hy ;- 1+50p3(Ah)+2612f yw(@!, =) x (g(j) — 9(i — 1))
Vio =Vicio+sop'(Ay) + 38 S0 w(- ,yl) x (g(i) —g(i—1)

2. recursive relatiori € {1,...,k, },Vj € {1,..., kp}:

Mi,j = mCLI{DZ‘J‘, Hi,j7 ‘/i,j}

with
ky  Ep f f
x® T
Piosor+ 33 wtelat (207 )
=1 f=1 Yi-1 Yi
ky—1 ky ” ” kp—1 kyp - ,
i — i r s Ti_1 T
Y3 el (%1%)@ > wtea A (1)
r=1 s= 7‘+1 Yi-1 Yi r=1 s=r+1 1in1 xj
ko kh :Z?f xf
Hirsma 303 wlafal) x A (71 01)
D;,; = max e=1f=1 v
,J ky—1 ko _yr kp—1 kp x
Y i <_yz)+z > wiegas) o (5 4)
r=1 s= 7‘+1 ° r=1 s=r+1 j—1%j
ky kp _ xf
Ve + S utelad) <A (. )
e=1 f=1 Yi—1 Yi
ky—1 ky kp—1 kp T
+Z Z yzvyl <yl 1yl) Z Z :cj,xj (—:Cg)
r=1 s=r+1 11/1 r=1 s=r+1 J

ky kn f :Ef :Ef
Disat 33 utef) ()

7

e=1 f=1
kop—1 kg _ kn—1 kn )
+X Y wexa (M D) XS wleha xa (504
r=1 s=r+1 Yi-1 — r=1 s=r+1 :CJ 1 :CJ
kv kn .
Hzgf1+ZZw(:cf7—) X )\<_ _J>
o =1f=1
Hi j = max ky—1 1:, kp—1 kp
DI IRTEESEPY Gl B S SR CROPPY (i)
r=1 s=r+1 r=1 s=r+1 J—1 %y
ko kn of
Vzgﬂ-i-ZZw(mf?—)x)\( ¢7J)
e=1f=1 v




ky  kp f
[ A
Rl i1 yp el o xi_q xl
+ Zl SZH (vl ) (yf;l yf) + ; S;le(wj,xj) XA <x§-71 xj)
ky  kp r
z 1J+ZZ 7y'L <ai7 yf_s)
Vig=mazq o, o N "
£33 w) (ZZ§)+Z > wemxa ()
r=1 s= 7‘+1 v r=1 s=r+1 J
ky kp
Vi + 303w A ()
e=1f=1 ¢
ko—1 ko kn—1 kp L
+30> wlylyl) (yl 1y1) Y w (__)
r=1 s=r+1 r=1 s=r+1

The score of each edit operation depends on 4 differentrattat we calky, 3, v
andJ. For example, to obtai® D; ;, we need to compute :

— thea factor which corresponds to the former edit operatign, ;_;
— theg factor is the sum-of-pairs score of columof A, :

k}h 1 ]i}h T
1
Z Z X/\< ?1:10]>

r=1 s=r+1

— the~ factor is the sum-of-pairs score of the coluinf A,

ky—1 ko T T
> 3w <A ()
r=1 s=r+1 =14

— the/ factor results from the interaction of columirof A;, with column: of A,

ko  En ol | af
J J
;g 7’y1 (y’L 1y1)

Proposition 1. - Complexity of aligning alignment - The complexity of the compu-
tation of the alignment of two alignments composed: afequences of length is

O(n?k?).

Proof : for eachl/; ;, we need to compute 9 values for which we need :

kvxkh—i—%x(kv—l)xkv—i—%x(kh—l)xkh
5

vy B



computations. If we consider that = k;, = k and thaty, = ¢, = n, we then have to
perform:(n+1) x (n+1) x9x (2k—1) x k =~ n? x 9 x 2k? computations. This value
is to be compared with the complexity of [11] which® (3 +v/2)* (n — k)?k3/2). For
example, to align 2 alignments of 10 sequences of 100 resjdLg&] would normally
have to perfornt.2 x 10'! computations while we would require only7 x 107.

3.1 |Instanciation of the framework

In the case of a pairwise alignment with a linear gap peniégy; and~ factors are not
involved because there is only one sequence in each aligniftem extension penalty
is equal to the opening penalty. The simplification of forasushow thati, j D; ; =
H; ; =V ;. Itis then not necessary to use thel” and H matrices and the simplified
formula is equal to the Needleman and Wunsch formMa; = maz{M;_1 ;1 +
w(xj, i), Mij—1 + gos Mi—1,5 + go}-

4 Experimentations

The generic framework presented so far has been impleméntbe software MA-
LINBA (Multiple Affine or LINear Block Alignment) which is a radified version of
PLASMA [2] written in C++. Compared to PLASMA, MALINBA usesneexactver-
sion of the DP algorithm to align two columns of 2 alignmentsles PLASMA relies
on the insertion of columns of gaps in one of the two subaligmis and local rear-
rangements of residues in blocks.

To evaluate the quality of the alignments obtained by MALIN8nd other MSA
programs we have performed some tests on the BAliBase 2abatse¢ of benchmarks.

4.1 BAliBase

BAliBase is designed for assessing MSA algorithms [22] andivided into five ref-
erence sets which were designed to test different aspeatgjafment softwares. Set 1
is composed of approximately equidistant sequences. Setrade of families whith
orphan sequences while Set 3 contains divergent families4 $ias sequences with
large N/C terminal insertions and sequences of Set 5 coladje internal insertions.
All reference alignments were refined manually by BAliBaathars.

To assess alignment accuracy we usebthilei _scor e program which helps com-
pute two scores : thBAliBase sum-of-pairs scof&PS) which in fact is a ratio between
the number of correctly aligned residue pairs found in tis¢ &ignment and the total
number of aligned residue pairs in core blocks of the refegeadignment [23]. We
also report the column score (CS) defined as the number cdattyraligned columns
found in the test alignment divided by the total number oticwhs in core blocks of the
reference alignment. The closer to 1.0 these scores arbetter the alignment is.

4.2 Results

We have compared our results obtained with MALINBA to five alidknown MSA
systems: (1) CLUSTALW 1.83, the most popular progressiignatent software; (2)



the nwnsi version of MAFFT 5.86 using iterative refinemenhig@ques; (3) MUSCLE
3.6; (4) PROBCONS 1.11; (5) T-COFFEE 4.96. All sotwares were using default
parameters on an Intel Core 2 Duo E6400 with 1 Gb of RAM. Far st MALINBA
used 7 specific sets of parameters and we kept the alignntfattprovided the best
SPS scores. Given the results of table 2 which reports thegee&PS end CS scores,
we can rank the softwares as follows using average SPS or @8sscCLUSTAL <
MALINBA, T-COFFEE < MUSCLE < MAFFT < PROBCONS.

Set 1l Set 2 Set 3 Set4 Set5 Time
SPS CS|SPS CS|SPS CS|SPS CS|SPS CS|(ins)
CLUSTAL 0.809 0.7070.932 0.5920.723 0.4810.834 0.6280.858 0.634 120
MAFFT 0.829 0.7360.931 0.5250.812 0.5950.947 0.8220.978 0.911f 98
MUSCLE 0.821 0.72%0.935 0.5930.784 0.5430.841 0.5980.972 0.901 75
PROBCONS [0.849 0.76%0.943 0.6230.817 0.6310.9390.828 0.974 0.892 711
TCOFFEE 0.814 0.7120.928 0.5240.739 0.4800.852 0.6440.943 0.8631653
MALINBA 0.811 0.70%0.911 0.5220.752 0.34q30.899 0.7340.942 0.842 343

Softwares

Table 2. Results of the SPS and CS score for MSA Softwares and oveeall&on time.

Better alignments have been obtained with MALINBA by fineitgnsome param-
eters. However these results are not reported here. Fitetllys say that despite its
complexity our method is quite fast (see the time column liet2).

5 Conclusion

We have designed a generic framework to align alignments thi¢ sum-of-pairs ob-
jective function. This framework is exact and can be usedigmdwo sequences or
two alignments using linear of affine gap penalties. Thisneavork was implemented
in MALINBA and tested on the BAliBase benchmark and provebeoefficient. Al-
though quite simple, we believe that many improvements @nodmsidered in order
to increase the quality of alignments obtained on the BAdiBdataset. For example,
local rearrangements on misaligned regions after eachggsiye step using secondary
structure information could probably help improve the cofuscore.
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