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Abstract

The Maximum Parsimony problem aims at reconstructing aqgeyietic tree from DNA,
RNA or protein sequences while minimizing the number of etiohary changes. Much
work has been devoted by the Computer Science communitywe gos NP-complete prob-
lem and many techniques have been used or designed in ordecitease the computation
time necessary to obtain an acceptable solution. In thigmpap report on three new im-
provements (implemented in the software Hydra) that cad teashorten the time to solve
the MP problem and get a solution of better quality. Thosén&pies can be integrated
without too much effort to existing softwares.



1 Introduction

Phylogenetics, also kown as Phylogenetic Systematicieigarmal name for the field within Biology
that reconstructs evolutionary history of species andistuttie patterns of relationships among organisms.
Phylogenetics studies the connections between groupgoiesp(as understood by an ancestor / descendant
relationships) which are represented by a phylogeneti¢ Wvhose leaves represent contemporary or extinct
species and internal nodes correspond to hypotheticattmse

Recent advances in genomics, including whole-genome seimgehave mainly influenced phyloge-
netics. In the past, morphological characters (like sisarcnumber of legs, etc...) were used for inferring
phylogenies. With today’s data obtained from the sequengiograms, we can compare organisms from
the information extracted from their genetic material (DNENA) or their proteome (protein sequences).
This is particularly useful when dealing with prokaryotganisms like bacteria or viruses for which mor-
phological characters are difficult to define or identifolecular phylogenetics has then become an im-
portant field in Bioinformatics and finds many application®iology and medicine like genetic evolution,
taxonomy and classification, or virus detection and mutgtl®).

Much work has been devoted to the problem of phylogeny renactfon since the 1960s. The general
principle behind phylogenetic methods is to find a tree thafmizes sequence changes or mutations. We
can bring three different approaches to light:

e Distance methodsnspired by the clustering work of Sokal and Sneath [24}oiduced in 1967 by
[3] or by [7] rely on a matrix of distances observed betweestigs. The most well-known algorithm
of this class of methods is tideighbor-Joiningrom [22], improved by [9]. Those methods are very
efficient for they rely on an algorithm of polynomial compitgpbut they sometimes lack robustness.

e Probabilistic methodsire based on a model of evolution of characters. The Maximikelihood
(ML), introduced by [5] in 1981 provides a general framewthiat consists in inferring the most
probable phylogeny that maximizes the likelihood of obedrsequences. Although ML is popular
for phylogenetic inference because it is considered as astahethod, it is more computationally
expensive than other methods.

o Cladistic methodsire based on a matrix of given characters. The most well-krmoethod of this
class relies on the Maximum Parsimony (MP) criterion [4]tds Quite simple to apprehend. Such
a method aims at building a binary tree that minimizes thelmemof changes without resorting to a
particular model of evolution. The cost of a tree can be caegbin polynomial time [6]. However
the search for an optimal tree is NP-complete as shown byri8heory, this problem can be solved
by enumerating all possible topologies of a binary tree ataiming the topologies which have the
smallest cost. As there is an exponential number of topefguch an exhaustive search is only
viable for very small instances. This is why heuristics méthhave been applied to this problem in
order to obtain a near optimal tree with reasonable comiputtitne [13, 19].

In this article we present three new improvements to tackigqgeny reconstruction with Maximum
Parsimony (MP) under Fitch’s criterion. The first improverhis based on the VNS (Variable Neighbor-
hood Search) principle and aims at reducing the numberratitas to quickly attain goodsolution when
using Local Search algorithms. On real instances this igalerieads to interesting results compared to
TNT [12], the most efficient software to solve the MP problem.

The second improvement concerns the definition of a new aves®perator for a Genetic Algorithm
designed to solve the MP problem. This crossover called Bidr Distance-Based Information Preser-
vation) aims to preserve representative properties ofrpaia terms oftopological distancdetween se-
quences. It can be considered as an alternative to traglitiansformation of trees.

The third improvement takes into account the ability of mode86 processors (Intel, AMD) to vector-
ize treatments in order to efficiently compute Fitch’s scamd the hypothetical sequence of each internal
node. This technique which to our knowledge has never bescrided, helps decrease the computation
time by 80 % on all x86 modern processors.

The rest of the paper is organized as follows. In the nexiseate formally introduce the MP problem.
We then describe each of the three techniques previouslyionex. An experimental section is devoted
to the verification of the influence of those techniques imm@ated in the software Hydra compared to the



software TNT. We finally conclude that those techniques are@fficient and could improve the efficiency
of MP softwares.

2 Phylogeny reconstruction and Maximum Parsimony

Phylogeny generally takes as input a multiple alignmentcvis a matrix of characters composedrof
lines (related to a sef of species, whergS| = n) andk columns which represent the characters of the
sequences. Each sequence is also called a taxon (or taxooaiiplural taxa). Each character of the
matrix belongs to an alphabEt The aim of the Maximum Parsimony problem is to find a phylagien
tree (i.e. generally a binary tree, rooted or unrooted)thiaimizes the number of changes (or mutations)
between sequences. Each leaf of the tree is associated tuf tmen species and the cost (or number of
mutations) of the overall tree can be estimated by buildipygpttheticalsequences of parsimoifipm the
leaves toward the root of the tree. More precisely we can @itaite the following definitions:

Definition 1 ( Sequence of parsimony - see [6]}5iven two sequences, and .S, of lengthk characters
such thatS; = @1 ---ag, S2 = y1---yx With Vi € {1..k}, z;,y; belong to the power s (X), the
sequence of parsimony §f and Sz, notedF'(Sy, Se) = 21 - - - 2, is obtained by :

z; Uy, if 2, Ny =0

1,1 <1<k, 2z = i
Vi, 1<i<k, z {xiﬂyi, otherwise

The cost (or number of mutations) of a sequence of parsinsodgfined by:

k
P(F(S1,52)) = Z ¢; where ¢; = { 0, otherwise

i=1

Definition 2 (Rooted Binary Tree of Parsimony) Let.S be a set of aligned sequences of lengtiwhere
each character of the sequence is expressed over a giveal®ph. LetT = (V, E) be a binary tree,
whereV = {vy,...,v.} is the set of nodes anBl C {(u,v)/u,v € V} is the set of edged is called a
binary tree of parsimony of if :

e there exist- = 2 x n — 1 nodes partitioned in two subsets:

— I: asetofinternal nodes composedof- 1 nodes each having 2 descendants,
— L : aset of leaves composedohodes with no descendant.

o there exists a bijection from the set of sequerésthe set of leaves,

e each internal nodev of I is assigned to a (hypothetical) sequence of parsimny= F'(S,, Sy).

Definition 3 (Cost of a Tree of Parsimony) LetT" be a binary tree of parsimony of a set of sequerntes
The cost (or score) df, ¢(T') is equal toy  ¢(S, ), Vw € I.

Definition 4 (Maximum Parsimony Problem) Given a setS of n sequences of leng#h expressed over
an alphabet, find the most parsimonious tréeof S such that the score of parsimonyBfis minimum.

For a set ofS of sequences, there aﬂaﬁg(% — 3)) possible parsimony trees. The MP problem is thus
a highly combinatorial search problem.
3 New techniques

In this section we describe three techniques that helpethpeove the efficiency of the resolution of the
Maximum Parsimony problem under Fitch’s parsimony. Theshniques have been implemented in the
software Hydré (see section Availability).

for HYbrid Descent Recombination Algorithm



3.1 Intelligent variable neighborhood search

The most powerful softwares based on Maximum Parsimonyacseg $earch algorithms [12]. Local Search
(LS) is a class of metaheuristics for solving computatityntard optimization problems [17].

The principle of LS, applied to phylogenetic reconstructits to start from an initial tree, randomly
generated or built with a greedy algorithm, that is theratigely improved. The LS algorithm used in Hydra
is afirst improvementlescent which can be stated as follows: while there is attrieethe neighborhood
of t whose score is better or equal than the scoretioén replace by ¢’ and continue the iteration process
during a given number a iterations.

This process can be used with one of the three well-knownhbeidioods traditionally used by MP
softwares: NNINearest Neighbor Interchand@6], SPRSubtree Pruning Regraftinf25], TBR Tree-
Bisection-Reconnectid@5].

NNI consists in swapping two adjacent branches of the tree c#h say that NNI is amall size
neighborhood for which a tree ofleaves hag2n — 6) neighbors [21].

SPR is a strategy which cuts a branch and reinserts it elsewfibere ar@(n — 3)(2n — 7) possible
SPR rearrangements [1] for each tree which makesniediunsize neighborhood.

TBR is an extension of SPR and consists in breaking the tredisubtrees which will be reconnected
from one of their branches. Given a tree, thrge TBR neighborhood induces at mq&n — 3)(n — 3)?2
neighbors [1].

Finally the following property can be verified [18]: NNI SPRC TBR.

An interesting improvement consists in succesively usisgtaf neighborhood relations. For example
{NNI, STEP, SPR or {SPR, 2-SPR, ...I-SPR, wherel-SPR is the neighborhood relation definediby
SPR moves and STEP is a modified version of SPR for which oaleleare pruned. This can be considered
as an application of the VNS (Variable Neighborhood Seanuétaheuristic, proposed by [14] to the MP
problem. In [2, 20] authors reported very good solutionsfeet of benchmarks.

In [11], we have introduced a hew neighborhood calteagressive Neighborhod@N). The advantage
of PN is that it minimizes the number of iterations used to finlee of minimum score. Similar to the
VNS heuristic, PN modifies the size of the neighborhood dyitie search. But, contrary to VNS, we start
from a medium (or large) size neighborhood like SPR and msgively reduce it to the small size NNI
neighborhood using a parametric neighborhood relationdtialves during the search. In order for the
neighborhood to evolve, we have defined in [10] a topologitstance on trees that enables us to build a
distance matrix for a set of taxa given a tree topology anal @#trol the size of the search space.

Definition 5 (Topological distance) Let: andj be two taxa of a tred". We definé (i, j) as the topolog-
ical distance betweehandj as the number of edges of the path between pareritard j, minus 1 if the
path contains the root of the tree.

TMOOW

Figure 1: Example of topological distanée

For example, on figure 14 and B have the same parelfit sodér (4, B) = 0, anddér(4,D) = 3
because the number of edges betwgeandg is 4 (f — kK — j — h — g), and as we pass through the
root nodek, we decrease the value of one unit. Note that for the topokdgiistance, we consider trees as
unrooted, this is why we remove one unit when passing throlghoot node.

The reduction scheme used in Hydra takes into account a pteafd which corresponds to a maxi-
mum number of LS iterations. Another parameteontrols the size of the neighborhood and is defined as
the distance between a pruned edge and the edge where itsented (i.e. distancebetween their two
descendant nodes). We use a linear reduction scherad 1ai.
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Experiments carried out proved the efficiency of this teghaicompared to other neighborhoods like
NNI, SPR and TBR. In particular, we showed that importan¢ transformations must be performed at
early stages of the search using a medium or large size razigbdd like SPR or TBR and that only minor
refinements are necessary at the end of the LS process wheighdarhood like NNI is sufficent.

3.2 Acrossover operator based on distances

Genetic Algorithms (GA) mimic the process of evolution oésjes [16]. They are time consuming but can
lead to results of better quality than other metaheuristiethods. Traditionally, GA work with a constant
number of individuals (population); at each step of the athm two individuals are selected and are bred
using a crossover operator to obtain a set of one or two (Sor@gtmuch more) new individuals (children).
Then, some slight modifications on the children are evelytyedrformed (mutations) and the selection
process keeps or rejects them (for example we can keep tldeerhthat are better than their parents).

The software Hydra is an hybrid algorithm based on a GA andetseral scheme is given on Algo-
rithm 1. The functionChooseParentsperates with a tournament selection strategy. Two grotip8%
of the individuals are constituted. Two individuals thgimesent the best individuals of each group are se-
lected. TheeS+PNfunctionis a LS Descent using a Progressive Neighborhowad designed to improve
a child and is part of the mutation process. Replacgunction, which replaces one individual by the child
treeT obtained from the crossover operator DiBIP, the replaceiisezffective if " is not already present
in the populationP. The individual that will be removed frorf? can be the oldest or the closestiio

Algorithm 1 Hybrid Genetic and Local Search algorithm (Hydra) for the ptBblem

input: A : an alignment of taxaV : the size of the GA populationy/ number of LS iterations
output: The most parsimonious tree found

P =GeneratePopulatiod,N)

for a given number of crossoveds
(T1,T) < ChooseParentsf)
T «— DIiBIP(Ty,T>) // generate new tree
T — LS+PN(",M) // mutation process
P — ReplaceP,T) // replacement

end for

return the best tree found

In the case of phylogeny reconstruction the individualsteges and breeding them can sometimes
become a complex operation. Traditionally, topologicalksiovers on trees follow tteibtree cutting and
regrafting strategy which consists in removing a subtigefrom a parenft’; and reinsert it in the second
parentl;,. Duplicated sequences (leaves) are removed ffom

This process suffers a major drawback. The topologicarin&ion of trees, which are responsible of
their parsimony score, is not entirely used to improve tkee.trin that sense we can consider that those
crossovers perform blind search because they are based on partial information aitchaytchoices. It
would then be necessary to be able to pass in review millidrisees per second to keep up with the
efficiency.

On the contrary, we propose to use meaningful topologidakination and pass it to the offspring.
The aim is to avoid useless computing and bring the searclotenpally interesting areas. We use the
topological distancé (see Definition 5) between leaves of the trees which enalslés build a distance
matrix of sequences given a tree topology.

The crossover operator DiBIP [10] takes into account twedr@nd computes their topological distance
matricesM; and M, (see Figure 1). We then combine the two matrices by calaqulti = aM; + M-
wherea, 5 € [0,1] anda + 8 = 1. Generally we will takex = 8 = 0.5. From M3, using the same
principle as the UPGMA method [23], we build a new tree. Thg ikiea is the preservation of semantic
information shared by the parents: if two sequences arddgpally close (or far) in both parent trees, then
this property should be conserved for the child. Moreovas, trossover enables to diversify the search:
the child is fully rebuilt from these information.

We have performed some tests in [10] on real and randomlyrgetkinstances and have confronted our
algorithm to the GRASP+VND [20] method which is an evoluioy algorithm which can be considered



close to Hydra. On random instances from [2, 20], we coulgediorm the results of 19 instances out of
20 compared to GRASP+VND.

3.3 Software improvement using SSE2 instructions

Version 1.1 of Hydra was improved compared to version 1.guSSE?2 (Streaming SIMD Extensions)
instructions of modern x86 processors (Intel, AMD). SSE&rimctions help vectorize the code, i.e. apply
the same instruction on multiple data at the same time caesely reducing the overall execution time.
The main function that benefits from the use of vectorizaisaime computation of a parsimony sequence
(see definition 1) which is implemented figure 2 (in C) and $a&e input two taxél andt2 . The output

is the hypothetical taxot8 and the number of changes returned by the function.

int fitch(char t1[], char t2[], char t3[]) {
int changes=0;
for (int i=0;i<length;++i) {
t3[i]= t1[i] & t2[i];
if (t3[i]==0) {
++changes;
t3[i]= t1[i] | t2[i];

}

return changes;

}

Figure 2: Parsimony function traduction of Definition 1

The vectorization of the function is not straightforward gives a 90% improvement on Intel Core 2
Duo processors, while other architectures (pentiumi#f]lbentium-M, Athlon 64, Sempron) provide a 70
to 80 % improvement. This improvement enabled us to divide lfigctor of 4 the computation time of
Hydra 1.0. This function was written in assembler using soffrtbe 8 XMM registers of the SSE units in
order to treat 16 bytes at a time. The source file was compsgedjuhe assemblerasmunder Linux. The
alphabet of the DNA sequences is generally composed of érdift symbols —, A, C, G, T, ?. Where—
represents a gap arftdan undefined character. In order to efficiently perform thiem@and intersection of
definition 1, each character is represented by a power obt 2 = 1 (—) to 2* = 16 (T"), except for?
which can represent any other character and is then coddwehyatue3l = 1+ 2 + --- 4+ 16. Union can
be performed by the binary-OR Y and intersection by the binary-ANIZ). Thus in the case of DNA (or
RNA), the characters can be represented using one byte a8# aegister (of size 128 bits) can hold and
apply operations on 16 bytes at a time. We can then decompeobkekel/ M register as 16 different cells
from X M M|0] to X M M[15].

The principle of the calculation is the following : we firstald into registersY M/ M0 and X M M 1
the first 16 bytes of each taxofil( andt2 ). In XM M2 and X M M3, we respectively compute the
binary-AND and the binary-OR oK M M0 and X M M1 using instructions PAND and POR (for parallel
AND and parallel OR). Then, we compakelM M 2 with a vector of zero using the instruction PCMPEQB
(which performs a parallel comparison of each byte of two XMdisters) in order to determine which
bytes of X M M 3 will replace the zero values of M M2. The result is stored in registé M M5. The
result of PCMPEQB is thak M M 5[i] = 0, if originally X M M2[i] = 0 otherwiseX M M5[i] = 255. As
a consequence, we can ukel/ M5 and combine it withX M M2 and X M M 3 to get the final result of
taxont3 by calculating :(XMM5 & XMM3)|(NOT (XMM5) & XMM2). This process is repeated every
16 bytes until we reach the last bytes of the taxa. When tredizhe taxa is not a multiple of 16, the
last part of the taxom3 is computed using a traditional implementation which seaie byte at a time.
The number of changes is evaluated using an efficient veddithre function POPCOUNT (for POPulation
COUNT) which counts the number of bits set to 1 in a genergbpse register. We refer the reader to the
source code for more details (see section Availability)teNbat the POPCOUNT function is not natively
implemented on processors but is part of the new SSE4.2ioi&ins set of the next generation of Intel
Core 2 processors (the Nehalem family of processors whiolildtbe available in 2008). We expect to



obtain a 5 % improvement by replacing the current POPCOUNMiCtfan by its native SSE4.1 version. An
overview of the assembler code is given figure 3, wherd M 7 is a vector of zero.

movdga xmmo,[esi] ; load t1 into xmmO
movdga xmml,[edi] ; load t2 into xmm1

movdga xmm2,xmmO0 ; xmm2 <- xmmO0 & xmml
pand xmm2,xmm1l

movdga xmm3,xmm0 ; xmm3 <- xmmO0 | xmm1l
por xmma3,xmm1l

movdga xmm5,xmm2 ; compare xmm2 to O
pcmpeq xmm5,xmm7 ; and store in xmm5

movdga xmmd4,xmm5 ; compute “xmm5
pxor xmm4,xmm7 ; in xmm4

pand xmm3,xmm4 ; xmm3 <- xmm3 & “xmm5
pand Xxmm2,xmm5 ; xmm2 <- xmm2 & Xxmmb5
por xmm2,xmm3 ; xmm2 <- xmm2 | xmm3

movdga [ebx],xmm2 ; store result in t3

Figure 3: Traduction of the parsimony function in x86 asskembising SSE instructions.

4 Benchmarks and results

Hydra was compared to the most powerful software for phyletje reconstruction called TNT [12] (Tree
analysis using New Technology) which is based on LS and imeigs a set of efficient techniques such as
tree drifting, parsimony ratchet and sectorial search. TWd$ used with default parameters specified in the
documentation.

We have chosen a set of real instances from the TreeBasevsite.{feebase.org). TreeBase is a rela-
tional database of phylogenetic information which storegl@genetic trees and the data matrices used to
generate them from published research papers. Only iregahat had more than 100 taxa were chosen and
their characteristics (number of taxa, length of taxa) aported table 1. Results are reported table 2 where
# iter represents the number of LS iterations performed (in nmfjoandscorestands for Fitch’s score. A
lower score means a better score.

problem| #taxa| length || problem| # taxa| length
mO0808 | 178 | 3453 || m2123 | 198 | 1426
m0972 | 155 355 m2725 | 210 | 8245
m1038 | 297 | 2021 | m2780 | 119 | 2020
m1902 | 209 977 m3275 | 117 | 5098
m1987 | 134 618 m3452 | 116 | 1157
m2055 | 299 | 2064 || m3453 | 137 995

Table 1: Characteristics of benchmarks from TreeBase.

The results show that Hydra obtains results of equal or bqttality than TNT with less iterations
except for problem m2725. For example, for the probta808 we could find a solution of value 23,777
in 18 x 10¢ iterations while TNT obtains a solution of value 23,782inx 106 iterations. Fom278Q we
could get a better cost of 11,488 but using more iterations.



Hydra TNT
problem|| #iter | score || #iter | score
m0808 18 | 23,777 || 40 23,782
m0972 | 4.5 1,529 14 1,532
m1038 | 4.5 | 12,369 || 99 12,376
m1902 | 4.5 6,125 44 6,131
m1987 18 2,073 30 2,073
m2055 18 2,597 47 2,598
m2123 || 4.5 1,925 46 1,925
m2725 28 | 157,477| 63 | 157,093
m2780 18 11,488 11 11,490
m3275 9 21,935 9 21,935
m3452 || 4.5 3,602 23 3,602
m3453 | 4.5 3,904 24 3,904

Table 2: Comparison between Hydra and TNT.

The number of iterations was fixed according to the numbeaxd and the length of taxa for each
problem. All problems used a constant population of 40 iidigls and)M, the number of LS iterations
was set ta200,000. For problemm0808 we perform 50 crossovers and each LS process perfdfms
iterations. The total number of iterations is thef + 50) x 200,000 = 18 x 10°. Indeed, the initial trees,
once generated are improved using LS+PN.

As mentioned previously, only problem2725could not efficiently be solved by Hydra. We are cur-
rently investigating and we have written a tree viewer anitbedh Java to find out why there is such a
difference between TNT and Hydra. This difference can bda@x@d by different tree topologies, but until
now we couldn’t figure out why the topologies are so distar2725is probably what we could call a hard
instance as TNT uses many TBR searches and get stuck at tleehM&l,113 during 42 millions iterations,
that is 2/3 of the total number of iterations.

Finally, note that the computation time of TNT is less impottthan Hydra because TNT is a LS
algorithm and implements optimization techniques in ord®rto recompute the overall tree when looking
for a neighbor of lower cost. Such technique is not yet imgetad in Hydra and will be introduced in its
next release.

5 Conclusion

In this article we have introduced three new techniquesftoi@ftly solve the Maximum Parsimony prob-
lem. The first one aims to decrease the number of local set@rehions in order to reduce the computation
time of the search process. The second, introduces a nesoweroperator for trees which is designed to
take into account topological properties of trees and idl bigea Genetic Algorithm. The crossover DiBIP
has the ability to diversify the search. The last one, is guié@mentation improvement which relies on the
capabilities of modern processors to vectorize data trewatsn All those technigues are implemented in the
software Hydra and have proven to provide good quality tesudmpared to the state of the art program
TNT. We think that it would be worth to implement those teajugs into existing MP softwares. The
next step in improving Hydra will be to implement optimizatitechniques for the LS mutation process as
implemented in TNT in order to significantly decrease the potation time.

6 Availability:

HYDRA is distributed with C++ source code, benchmarks andudeentation and is freely available at
the following URL : http://www.info.univ-angers.fr/puti¢her/rec.php. It should run under all Unix/Linux
platforms. There is also a binary for Windows platforms.
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