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Abstract

The Maximum Parsimony problem aims at reconstructing a phylogenetic tree from DNA,
RNA or protein sequences while minimizing the number of evolutionary changes. Much
work has been devoted by the Computer Science community to solve this NP-complete prob-
lem and many techniques have been used or designed in order todecrease the computation
time necessary to obtain an acceptable solution. In this paper we report on three new im-
provements (implemented in the software Hydra) that can lead to shorten the time to solve
the MP problem and get a solution of better quality. Those techniques can be integrated
without too much effort to existing softwares.
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1 Introduction

Phylogenetics, also kown as Phylogenetic Systematics, is the formal name for the field within Biology
that reconstructs evolutionary history of species and studies the patterns of relationships among organisms.
Phylogenetics studies the connections between groups of species (as understood by an ancestor / descendant
relationships) which are represented by a phylogenetic tree, whose leaves represent contemporary or extinct
species and internal nodes correspond to hypothetical ancestors.

Recent advances in genomics, including whole-genome sequencing have mainly influenced phyloge-
netics. In the past, morphological characters (like size, color, number of legs, etc...) were used for inferring
phylogenies. With today’s data obtained from the sequencing programs, we can compare organisms from
the information extracted from their genetic material (DNA, RNA) or their proteome (protein sequences).
This is particularly useful when dealing with prokaryote organisms like bacteria or viruses for which mor-
phological characters are difficult to define or identify.Molecularphylogenetics has then become an im-
portant field in Bioinformatics and finds many applications in biology and medicine like genetic evolution,
taxonomy and classification, or virus detection and mutation [15].

Much work has been devoted to the problem of phylogeny reconstruction since the 1960s. The general
principle behind phylogenetic methods is to find a tree that minimizes sequence changes or mutations. We
can bring three different approaches to light:

• Distance methods, inspired by the clustering work of Sokal and Sneath [24], introduced in 1967 by
[3] or by [7] rely on a matrix of distances observed between species. The most well-known algorithm
of this class of methods is theNeighbor-Joiningfrom [22], improved by [9]. Those methods are very
efficient for they rely on an algorithm of polynomial complexity but they sometimes lack robustness.

• Probabilistic methodsare based on a model of evolution of characters. The Maximum Likelihood
(ML), introduced by [5] in 1981 provides a general frameworkthat consists in inferring the most
probable phylogeny that maximizes the likelihood of observed sequences. Although ML is popular
for phylogenetic inference because it is considered as a robust method, it is more computationally
expensive than other methods.

• Cladistic methodsare based on a matrix of given characters. The most well-known method of this
class relies on the Maximum Parsimony (MP) criterion [4] as it is quite simple to apprehend. Such
a method aims at building a binary tree that minimizes the number of changes without resorting to a
particular model of evolution. The cost of a tree can be computed in polynomial time [6]. However
the search for an optimal tree is NP-complete as shown by [8].In theory, this problem can be solved
by enumerating all possible topologies of a binary tree and retaining the topologies which have the
smallest cost. As there is an exponential number of topologies, such an exhaustive search is only
viable for very small instances. This is why heuristics methods have been applied to this problem in
order to obtain a near optimal tree with reasonable computation time [13, 19].

In this article we present three new improvements to tackle phylogeny reconstruction with Maximum
Parsimony (MP) under Fitch’s criterion. The first improvement is based on the VNS (Variable Neighbor-
hood Search) principle and aims at reducing the number of iterations to quickly attain agoodsolution when
using Local Search algorithms. On real instances this technique leads to interesting results compared to
TNT [12], the most efficient software to solve the MP problem.

The second improvement concerns the definition of a new crossover operator for a Genetic Algorithm
designed to solve the MP problem. This crossover called DiBIP (for Distance-Based Information Preser-
vation) aims to preserve representative properties of parents in terms oftopological distancebetween se-
quences. It can be considered as an alternative to traditional transformation of trees.

The third improvement takes into account the ability of modern x86 processors (Intel, AMD) to vector-
ize treatments in order to efficiently compute Fitch’s scoreand the hypothetical sequence of each internal
node. This technique which to our knowledge has never been described, helps decrease the computation
time by 80 % on all x86 modern processors.

The rest of the paper is organized as follows. In the next section we formally introduce the MP problem.
We then describe each of the three techniques previously mentioned. An experimental section is devoted
to the verification of the influence of those techniques implemented in the software Hydra compared to the
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software TNT. We finally conclude that those techniques are quite efficient and could improve the efficiency
of MP softwares.

2 Phylogeny reconstruction and Maximum Parsimony

Phylogeny generally takes as input a multiple alignment which is a matrix of characters composed ofn
lines (related to a setS of species, where|S| = n) andk columns which represent the characters of the
sequences. Each sequence is also called a taxon (or taxonomic unit, plural taxa). Each character of the
matrix belongs to an alphabetΣ. The aim of the Maximum Parsimony problem is to find a phylogenetic
tree (i.e. generally a binary tree, rooted or unrooted) thatminimizes the number of changes (or mutations)
between sequences. Each leaf of the tree is associated to oneof then species and the cost (or number of
mutations) of the overall tree can be estimated by building hypotheticalsequences of parsimonyfrom the
leaves toward the root of the tree. More precisely we can formulate the following definitions:

Definition 1 ( Sequence of parsimony - see [6])Given two sequencesS1 andS2 of lengthk characters
such thatS1 = x1 · · ·xk, S2 = y1 · · · yk with ∀i ∈ {1..k}, xi, yi belong to the power setP(Σ), the
sequence of parsimony ofS1 andS2, notedF (S1, S2) = z1 · · · zk is obtained by :

∀i, 1 ≤ i ≤ k, zi =

{

xi ∪ yi, if xi ∩ yi = ∅
xi ∩ yi, otherwise

The cost (or number of mutations) of a sequence of parsimony is defined by:

φ(F (S1, S2)) =

k
∑

i=1

ci where ci =

{

1, if xi ∩ yi = ∅
0, otherwise

Definition 2 (Rooted Binary Tree of Parsimony) LetS be a set ofn aligned sequences of lengthk where
each character of the sequence is expressed over a given alphabetΣ. Let T = (V, E) be a binary tree,
whereV = {v1, . . . , vr} is the set of nodes andE ⊆ {(u, v)/u, v ∈ V } is the set of edges.T is called a
binary tree of parsimony ofS if :

• there existr = 2 × n − 1 nodes partitioned in two subsets:

– I : a set of internal nodes composed ofn − 1 nodes each having 2 descendants,

– L : a set of leaves composed ofn nodes with no descendant.

• there exists a bijection from the set of sequencesS to the set of leavesL,

• each internal nodew of I is assigned to a (hypothetical) sequence of parsimonySw = F (Su, Sv).

Definition 3 (Cost of a Tree of Parsimony) Let T be a binary tree of parsimony of a set of sequencesS.
The cost (or score) ofT , φ(T ) is equal to

∑

φ(Sw), ∀w ∈ I.

Definition 4 (Maximum Parsimony Problem) Given a setS of n sequences of lengthk, expressed over
an alphabetΣ, find the most parsimonious treeT of S such that the score of parsimony ofT is minimum.

For a set ofS of sequences, there are
∏|S|

i=3
(2i− 3)) possible parsimony trees. The MP problem is thus

a highly combinatorial search problem.

3 New techniques

In this section we describe three techniques that helped us improve the efficiency of the resolution of the
Maximum Parsimony problem under Fitch’s parsimony. Those techniques have been implemented in the
software Hydra1 (see section Availability).

1for HYbrid Descent Recombination Algorithm
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3.1 Intelligent variable neighborhood search

The most powerful softwares based on Maximum Parsimony use local search algorithms [12]. Local Search
(LS) is a class of metaheuristics for solving computationally hard optimization problems [17].

The principle of LS, applied to phylogenetic reconstruction, is to start from an initial tree, randomly
generated or built with a greedy algorithm, that is then iteratively improved. The LS algorithm used in Hydra
is afirst improvementdescent which can be stated as follows: while there is a treet′ in the neighborhood
of t whose score is better or equal than the score oft then replacet by t′ and continue the iteration process
during a given number a iterations.

This process can be used with one of the three well-known neighborhoods traditionally used by MP
softwares: NNINearest Neighbor Interchange[26], SPRSubtree Pruning Regrafting[25], TBR Tree-
Bisection-Reconnection[25].

NNI consists in swapping two adjacent branches of the tree. We can say that NNI is asmall size
neighborhood for which a tree ofn leaves has(2n − 6) neighbors [21].

SPR is a strategy which cuts a branch and reinserts it elsewhere. There are2(n − 3)(2n − 7) possible
SPR rearrangements [1] for each tree which makes it amediumsize neighborhood.

TBR is an extension of SPR and consists in breaking the tree intwo subtrees which will be reconnected
from one of their branches. Given a tree, thelarge TBR neighborhood induces at most(2n − 3)(n − 3)2

neighbors [1].
Finally the following property can be verified [18]: NNI⊆ SPR⊆ TBR.
An interesting improvement consists in succesively using aset of neighborhood relations. For example

{NNI, STEP, SPR} or {SPR, 2-SPR, . . . ,l-SPR}, wherel-SPR is the neighborhood relation defined byl
SPR moves and STEP is a modified version of SPR for which only leaves are pruned. This can be considered
as an application of the VNS (Variable Neighborhood Search)metaheuristic, proposed by [14] to the MP
problem. In [2, 20] authors reported very good solutions fora set of benchmarks.

In [11], we have introduced a new neighborhood calledProgressive Neighborhood(PN). The advantage
of PN is that it minimizes the number of iterations used to finda tree of minimum score. Similar to the
VNS heuristic, PN modifies the size of the neighborhood during the search. But, contrary to VNS, we start
from a medium (or large) size neighborhood like SPR and progressively reduce it to the small size NNI
neighborhood using a parametric neighborhood relation that evolves during the search. In order for the
neighborhood to evolve, we have defined in [10] a topologicaldistance on trees that enables us to build a
distance matrix for a set of taxa given a tree topology and also control the size of the search space.

Definition 5 (Topological distance) Let i andj be two taxa of a treeT . We defineδT (i, j) as the topolog-
ical distance betweeni andj as the number of edges of the path between parents ofi andj, minus 1 if the
path contains the root of the tree.
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Figure 1: Example of topological distanceδT

For example, on figure 1,A andB have the same parentf , so δT (A, B) = 0, andδT (A, D) = 3
because the number of edges betweenf andg is 4 (f → k → j → h → g), and as we pass through the
root nodek, we decrease the value of one unit. Note that for the topological distance, we consider trees as
unrooted, this is why we remove one unit when passing throughthe root node.

The reduction scheme used in Hydra takes into account a parameterM which corresponds to a maxi-
mum number of LS iterations. Another parameterd controls the size of the neighborhood and is defined as
the distance between a pruned edge and the edge where it is reinserted (i.e. distanceδ between their two
descendant nodes). We use a linear reduction scheme ford [11].
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Experiments carried out proved the efficiency of this technique compared to other neighborhoods like
NNI, SPR and TBR. In particular, we showed that important tree transformations must be performed at
early stages of the search using a medium or large size neighborhood like SPR or TBR and that only minor
refinements are necessary at the end of the LS process where a neighborhood like NNI is sufficent.

3.2 A crossover operator based on distances

Genetic Algorithms (GA) mimic the process of evolution of species [16]. They are time consuming but can
lead to results of better quality than other metaheuristicsmethods. Traditionally, GA work with a constant
number of individuals (population); at each step of the algorithm two individuals are selected and are bred
using a crossover operator to obtain a set of one or two (sometimes much more) new individuals (children).
Then, some slight modifications on the children are eventually performed (mutations) and the selection
process keeps or rejects them (for example we can keep the children that are better than their parents).

The software Hydra is an hybrid algorithm based on a GA and itsgeneral scheme is given on Algo-
rithm 1. The functionChooseParentsoperates with a tournament selection strategy. Two groups of 20%
of the individuals are constituted. Two individuals that represent the best individuals of each group are se-
lected. TheLS+PN function is a LS Descent using a Progressive Neighborhood, it was designed to improve
a child and is part of the mutation process. TheReplacefunction, which replaces one individual by the child
treeT obtained from the crossover operator DiBIP, the replacement is effective ifT is not already present
in the populationP . The individual that will be removed fromP can be the oldest or the closest toT .

Algorithm 1 Hybrid Genetic and Local Search algorithm (Hydra) for the MPproblem
input : A : an alignment of taxa,N : the size of the GA population,M number of LS iterations
output: The most parsimonious tree found

P =GeneratePopulation(A,N )
for a given number of crossoversdo

(T1, T2)← ChooseParents(P )
T ← DiBIP(T1, T2) // generate new tree
T ← LS+PN(T ,M ) // mutation process
P ← Replace(P ,T ) // replacement

end for
return the best tree found

In the case of phylogeny reconstruction the individuals aretrees and breeding them can sometimes
become a complex operation. Traditionally, topological crossovers on trees follow thesubtree cutting and
regraftingstrategy which consists in removing a subtreeT ∗

1
from a parentT1 and reinsert it in the second

parentT2. Duplicated sequences (leaves) are removed fromT2.
This process suffers a major drawback. The topological information of trees, which are responsible of

their parsimony score, is not entirely used to improve the tree. In that sense we can consider that those
crossovers perform ablind search because they are based on partial information and arbitrary choices. It
would then be necessary to be able to pass in review millions of trees per second to keep up with the
efficiency.

On the contrary, we propose to use meaningful topological information and pass it to the offspring.
The aim is to avoid useless computing and bring the search to potentially interesting areas. We use the
topological distanceδ (see Definition 5) between leaves of the trees which enables us to build a distance
matrix of sequences given a tree topology.

The crossover operator DiBIP [10] takes into account two trees and computes their topological distance
matricesM1 andM2 (see Figure 1). We then combine the two matrices by calculting M3 = αM1 + βM2

whereα, β ∈ [0, 1] andα + β = 1. Generally we will takeα = β = 0.5. FromM3, using the same
principle as the UPGMA method [23], we build a new tree. The key idea is the preservation of semantic
information shared by the parents: if two sequences are topologically close (or far) in both parent trees, then
this property should be conserved for the child. Moreover, this crossover enables to diversify the search:
the child is fully rebuilt from these information.

We have performed some tests in [10] on real and randomly generated instances and have confronted our
algorithm to the GRASP+VND [20] method which is an evolutionary algorithm which can be considered
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close to Hydra. On random instances from [2, 20], we could outperform the results of 19 instances out of
20 compared to GRASP+VND.

3.3 Software improvement using SSE2 instructions

Version 1.1 of Hydra was improved compared to version 1.0, using SSE2 (Streaming SIMD Extensions)
instructions of modern x86 processors (Intel, AMD). SSE2 instructions help vectorize the code, i.e. apply
the same instruction on multiple data at the same time consequently reducing the overall execution time.
The main function that benefits from the use of vectorizationis the computation of a parsimony sequence
(see definition 1) which is implemented figure 2 (in C) and takes as input two taxat1 andt2 . The output
is the hypothetical taxont3 and the number of changes returned by the function.

int fitch(char t1[], char t2[], char t3[]) {
int changes=0;
for (int i=0;i<length;++i) {

t3[i]= t1[i] & t2[i];
if (t3[i]==0) {

++changes;
t3[i]= t1[i] | t2[i];

}
}
return changes;

}

Figure 2: Parsimony function traduction of Definition 1

The vectorization of the function is not straightforward but gives a 90% improvement on Intel Core 2
Duo processors, while other architectures (pentiumII/III/4, pentium-M, Athlon 64, Sempron) provide a 70
to 80 % improvement. This improvement enabled us to divide bya factor of 4 the computation time of
Hydra 1.0. This function was written in assembler using someof the 8 XMM registers of the SSE units in
order to treat 16 bytes at a time. The source file was compiled using the assemblernasmunder Linux. The
alphabet of the DNA sequences is generally composed of 6 different symbols :−, A, C, G, T, ?. Where−
represents a gap and? an undefined character. In order to efficiently perform the union and intersection of
definition 1, each character is represented by a power of 2, from 20 = 1 (−) to 24 = 16 (T ), except for?
which can represent any other character and is then coded by the value31 = 1 + 2 + · · · + 16. Union can
be performed by the binary-OR (| ) and intersection by the binary-AND (&). Thus in the case of DNA (or
RNA), the characters can be represented using one byte and a SSE register (of size 128 bits) can hold and
apply operations on 16 bytes at a time. We can then decompose eachXMM register as 16 different cells
from XMM [0] to XMM [15].

The principle of the calculation is the following : we first load into registersXMM0 andXMM1
the first 16 bytes of each taxon (t1 and t2 ). In XMM2 and XMM3, we respectively compute the
binary-AND and the binary-OR ofXMM0 andXMM1 using instructions PAND and POR (for parallel
AND and parallel OR). Then, we compareXMM2 with a vector of zero using the instruction PCMPEQB
(which performs a parallel comparison of each byte of two XMMregisters) in order to determine which
bytes ofXMM3 will replace the zero values ofXMM2. The result is stored in registerXMM5. The
result of PCMPEQB is thatXMM5[i] = 0, if originally XMM2[i] = 0 otherwiseXMM5[i] = 255. As
a consequence, we can useXMM5 and combine it withXMM2 andXMM3 to get the final result of
taxont3 by calculating :(XMM5 & XMM3)|(NOT (XMM5)& XMM2). This process is repeated every
16 bytes until we reach the last bytes of the taxa. When the size of the taxa is not a multiple of 16, the
last part of the taxont3 is computed using a traditional implementation which treats one byte at a time.
The number of changes is evaluated using an efficient versionof the function POPCOUNT (for POPulation
COUNT) which counts the number of bits set to 1 in a general purpose register. We refer the reader to the
source code for more details (see section Availability). Note that the POPCOUNT function is not natively
implemented on processors but is part of the new SSE4.2 instructions set of the next generation of Intel
Core 2 processors (the Nehalem family of processors which should be available in 2008). We expect to
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obtain a 5 % improvement by replacing the current POPCOUNT function by its native SSE4.1 version. An
overview of the assembler code is given figure 3, whereXMM7 is a vector of zero.

movdqa xmm0,[esi] ; load t1 into xmm0
movdqa xmm1,[edi] ; load t2 into xmm1

movdqa xmm2,xmm0 ; xmm2 <- xmm0 & xmm1
pand xmm2,xmm1

movdqa xmm3,xmm0 ; xmm3 <- xmm0 | xmm1
por xmm3,xmm1

movdqa xmm5,xmm2 ; compare xmm2 to 0
pcmpeq xmm5,xmm7 ; and store in xmm5

movdqa xmm4,xmm5 ; compute ˜xmm5
pxor xmm4,xmm7 ; in xmm4

pand xmm3,xmm4 ; xmm3 <- xmm3 & ˜xmm5
pand xmm2,xmm5 ; xmm2 <- xmm2 & xmm5
por xmm2,xmm3 ; xmm2 <- xmm2 | xmm3

movdqa [ebx],xmm2 ; store result in t3

Figure 3: Traduction of the parsimony function in x86 assembler using SSE instructions.

4 Benchmarks and results

Hydra was compared to the most powerful software for phylogenetic reconstruction called TNT [12] (Tree
analysis using New Technology) which is based on LS and implements a set of efficient techniques such as
tree drifting, parsimony ratchet and sectorial search. TNTwas used with default parameters specified in the
documentation.

We have chosen a set of real instances from the TreeBase site (www.treebase.org). TreeBase is a rela-
tional database of phylogenetic information which stores phylogenetic trees and the data matrices used to
generate them from published research papers. Only instances that had more than 100 taxa were chosen and
their characteristics (number of taxa, length of taxa) are reported table 1. Results are reported table 2 where
# iter represents the number of LS iterations performed (in millions) andscorestands for Fitch’s score. A
lower score means a better score.

problem # taxa length problem # taxa length
m0808 178 3453 m2123 198 1426
m0972 155 355 m2725 210 8245
m1038 297 2021 m2780 119 2020
m1902 209 977 m3275 117 5098
m1987 134 618 m3452 116 1157
m2055 299 2064 m3453 137 995

Table 1: Characteristics of benchmarks from TreeBase.

The results show that Hydra obtains results of equal or better quality than TNT with less iterations
except for problem m2725. For example, for the problemm0808, we could find a solution of value 23,777
in 18 × 106 iterations while TNT obtains a solution of value 23,782 in40 × 106 iterations. Form2780, we
could get a better cost of 11,488 but using more iterations.
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Hydra TNT
problem # iter score # iter score
m0808 18 23,777 40 23,782
m0972 4.5 1,529 14 1,532
m1038 4.5 12,369 99 12,376
m1902 4.5 6,125 44 6,131
m1987 18 2,073 30 2,073
m2055 18 2,597 47 2,598
m2123 4.5 1,925 46 1,925
m2725 28 157,477 63 157,093
m2780 18 11,488 11 11,490
m3275 9 21,935 9 21,935
m3452 4.5 3,602 23 3,602
m3453 4.5 3,904 24 3,904

Table 2: Comparison between Hydra and TNT.

The number of iterations was fixed according to the number of taxa and the length of taxa for each
problem. All problems used a constant population of 40 individuals andM , the number of LS iterations
was set to200, 000. For problemm0808, we perform 50 crossovers and each LS process performsM
iterations. The total number of iterations is then(40 + 50)× 200, 000 = 18× 106. Indeed, the initial trees,
once generated are improved using LS+PN.

As mentioned previously, only problemm2725could not efficiently be solved by Hydra. We are cur-
rently investigating and we have written a tree viewer and editor in Java to find out why there is such a
difference between TNT and Hydra. This difference can be explained by different tree topologies, but until
now we couldn’t figure out why the topologies are so distant.m2725is probably what we could call a hard
instance as TNT uses many TBR searches and get stuck at the value 157,113 during 42 millions iterations,
that is 2/3 of the total number of iterations.

Finally, note that the computation time of TNT is less important than Hydra because TNT is a LS
algorithm and implements optimization techniques in ordernot to recompute the overall tree when looking
for a neighbor of lower cost. Such technique is not yet implemented in Hydra and will be introduced in its
next release.

5 Conclusion

In this article we have introduced three new techniques to efficiently solve the Maximum Parsimony prob-
lem. The first one aims to decrease the number of local search iterations in order to reduce the computation
time of the search process. The second, introduces a new crossover operator for trees which is designed to
take into account topological properties of trees and is used by a Genetic Algorithm. The crossover DiBIP
has the ability to diversify the search. The last one, is an implementation improvement which relies on the
capabilities of modern processors to vectorize data treatments. All those techniques are implemented in the
software Hydra and have proven to provide good quality results compared to the state of the art program
TNT. We think that it would be worth to implement those techniques into existing MP softwares. The
next step in improving Hydra will be to implement optimization techniques for the LS mutation process as
implemented in TNT in order to significantly decrease the computation time.

6 Availability:

HYDRA is distributed with C++ source code, benchmarks and documentation and is freely available at
the following URL : http://www.info.univ-angers.fr/pub/richer/rec.php. It should run under all Unix/Linux
platforms. There is also a binary for Windows platforms.
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[11] A. Goëffon, J.M. Richer, and J.K. Hao. Progressive tree neighborhood applied to the maximum
parsimony problem.IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007.

[12] P. A. Goloboff, J. S. Farris, and K. Nixon. Tnt : Tree analysis using new technology.
http://www.cladistics.com/aboutTNT.html, 2003.

[13] P.A. Goloboff. Character optimisation and calculation of tree lengths.Cladistics, 9:433–436, 1993.

[14] P. Hansen and N. Mladenovic.Metaheuristics, Advances and Trends in Local Search Paradigms
for Optimization, chapter An introduction to Variable neighborhood search,pages 433–458. Kluwer
Academic Publishers, Dordrecht, edited by s. voss et al. edition, 1999.

[15] D.M. Hillis, C. Moritz, and B.K. Mable.Molecular Systematics. Sinauer Associates, Inc., 1996.

[16] J.H. Holland.Adaptation in natural and artificial systems. The University of Michigan Press, 1975.
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