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Abstract: Le probEme Maximum Parcimonie visereconstruire un arbre phyldmétiquea partir de
séquences ADN de maie a ce que le nombre de mutationsrgtiques survenues au cours devblution

soit minimal. Pour ésoudre ce prokime NP-complet, de nombreusesinodes heuristiques oa€ cdevelopjees,
pour la plupart bages sur la recherche locale. Ici, nous nougmessons l'influence de la relation de
voisinage utili€e. Apes avoir identi® les limites des voisinages couramment @#isnous introduisons

le concept de voisinagevolutif. Nous montrons empiriquement qu’appécau probéme Maximum Parci-
monie, ce voisinagevolutif s’aere plus puissant et robuste que les voisinages classiques puisqu'il permet
de trouver de meilleursasultatsa partir de n’importe quelle solution en moins de temps.
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1 Introduction

La phylogenie peuttre cefinie comme la reconstruction dé&Volution d'un ensemble d’egpes (ou taxons)
assodesa une gquence d’'acides nubues (ADN) ou d’acides amiis (AA). Ces relations sont régsenges

par un arbre dit phylagrétique. Hillis [17] €pertorie de nombreuses applications de la plgrdy: évolution
gérétique, classification et taxonomie, subdivisions des populations, variagagsaphiques, tests de pater-
nité, parerés, hybridations, mise é@vidence de nouvelles esges, analyse des comportements reproducteurs,
recherche virale...

Il faut remarquer que les hypathkes prises en compte dans la recherche d’'un arbweldtion optimal ne
peuvent se @rifier sysematiquement lors de toute observation du monde du vivant. Par exemple on part de
I'nypothése que I'arbre le plus probable, ou le meilleur arbre, est celui qui minimise les mutations, alors qu'il
est fort possible que ce ne soit pas exactement le cas dagalita.rll est reanmoins fortement igtessant
d’obtenir une version ma#imatique d’'un processus naturel, ce qui permet de fournir des informations que 'on
N'avait pu infrer au pealable, et mettre en avant des cagdstiques originales que I'on peut confronger
I'observation.

Il existe actuellement plusieurs mangés de reconstruire des arbres phglgiques :

Inspirées des iethodes de clustering de Sokal et Sneath [28]riethodes de distancégroduites en 1967
par Cavalli-Sforza et Edwards [4] et par Fitch et Margoliash [10] sonédmsur une matrice des distances
obsengees entre les espes dewa deux, ou bien calcak en fonction deésjuences de caraces et d'un
mockle de levolution. L'algorithme le plus connu reste le Neighbor-Joining de Saitou et Nei [28]i@&par
Gascuel [13].

Les méthodes probabilistesnt elles aussi recougsun moeéle de Iévolution. Cependant, elles se basent
sur 'analyse individuelle des caraces. La rdthode du Maximum de Vraisemblance, introduite en 1981 par



Felsenstein [8], consiste inferer la phylognie la plus vraisemblable, c’eatdire maximisant la probabiit
que les donees se é&rifienta partir de cette phyldmie et du moédle de Ievolution consiéré. Bien que cette
méthode connaisse de nombreux adeptes, reconnaissants de |& fildsiliéirbres ainsi iafes, elle est celle qui
requiert le plus d’effort calculatoire donc devient liggtpour un nombre important de taxons.

Enfin, lesméthodes cladistesontégalement ba&es sur une matrice de carets donae. La plus utiliee
est celle du Maximum de Parcimonie, dont les pees éflexions sonfa mettre au @dit de Edwards et
Cavalli-Sforza [6]. Elle visé retrouver la phylognie qui minimise le nombre &&nementgvolutifs (score),
sans recouria un moele de Iévolution. En outre, cette @thode permet d’attribuex chaque arétre hy-
pothétique (noeud interne de I'arbre), letats possibles pris pour chaque careet

Le probEme Maximum Parcimonie (MP) eéfjuivalent au proBime de I'arbre de Steiner dans un hy-
percube. MP est NP-complet, comme I'ont ménfioulds et Graham en 1982 [11]. L'approche u#ipour
'approximation du prol#me consista utiliser des algorithmes heuristiques dans le but de trouver le plus
rapidement possible un arbre d’un scorestproche de celui d’'une solution optimale. De nombreux travaux
de qualié traitent du proldme MP, notamment ceux de Goloboff [15] ou Nixon [21]. Mais comme on peut le
remarquer avec Roshanal.[24], les logiciels actuels ne sont pas encore suffisamment performants et rapides
des lors que les instancadraiter contiennent des milliers d’esges.

Consicerant les tiés larges espaces de recherche, iEs#ie empiriguement que des heuristiques de recherche
locale stochastique sont particriément adapes au proldme MP,a la condition d’utiliser un voisinage ap-
proprié [12].

Il existe majoritairement dans la Ettature trois voisinages d’arbres : NNI, SPR et TBR. Chaque recherche
locale assoée gagne en efficaéitou en rapidé suivant le voisinage utiks Notre @marche consist& com-
biner les propgtes de ces voisinages @émessants afin d’obtenir une recherche loadefois rapide, efficace et
robuste. Nous introduisons ici le concept de voisinagmutif en tant que nouvelle approche pourdaalution
du probEme MP. Tous les tests effeéaimontrent le&el gain appo# par cette technique d’un point de vue ef-
ficacite et temps de calcul, et surtout sa caggeitonverger s vite vers une solution de confiance gsitant
les pieges des optima locaux.

Apres avoir rappé brievement le prol@me MP, nous @sentons dans la section 3 les voisinages d’arbres
connus puis les Bthodes de recherche locale qui leur sont souvent @&sdNous discutons ensuite des
limites de ces voisinages et proposons une alternative pourgdiemCe voisinagévolutif est introduit puis
décrit plus formellement dans la section 4. Desultats ex@rimentaux sont ensuitegsenés afin de comparer
la performance et le comportement de ce voisinage par rapport aux deux voisinages classiques NNI et SPR.

2 Le probleme Maximum Parcimonie

Commeévoqte dans l'introduction, le proBme MP consista partir d’'un ensemble dé&gquencesa retrouver
la phylogenie optimale au sens du énie de parcimonie, c’est-dire un arbre dont les feuilles sont asgesi
aux £quences et qui minimise le nombre de mutations.

Afin de fixer plus pecigement les iédes, rappelons quelquesfihitions.

Definition 1. Ladistance de Hamming (x, y) entre deux&quences = (z1, z2, ..., zk) €ty = (y1, Y2, ..., Yk)
estégalea |{i : x; # v;}|-

Definition 2. Le score de parcimonid’un arbre T = (V, E) dont chague noeud estétiqueé par une
séquence” de longueulk sur un alphabef’ est la somme des distances de Hamming égsencesgtiquetant
chaque couple de noeudspaies par une aéte dansl'.



Etant doni un arbrel” dont les feuilles sont bijectivemegtiquetes par lesé&quences de&, Fitch a
formalise un algorithme polynomial [9] qui calcule de&sggiences hypo#tiques (assigies aux noeuds internes
de l'arbre) et le score de parcimonie de telle sorte que celui-ci soit minimal.

Le but du probkdme MP est de trouver un arbre dont le score de parcimonie est le plus faible parmi tous
les arbres phylogrétiques possibles pour un ensemblde £quences. MP peut alogsre formué comme un
probleme combinatoire de minimisatidd, f) tel que :

1. I'espace de recherchig est fini par I'ensemble de toutes les configurations possitifels=£ Hﬁ‘g(% —

3) [26])
2. la fonction de cat f : 7 — IN esttelle quevT € 7, f(T) = Z(x_’y)eE H(x,y), i.e. le score de
parcimonie del".

3 Recherche locale et voisinages

3.1 Ladescente

La méthode de descente consiatgerérer une prengire phylo@nie, puisa rechercher une phylégie voisine
(au sens d'une relation de voisinage) dont le score estiewr, et ainsi de suite jusqute que la phylognie
courante n’ait aucun voisin dont le score soit strictemerériafir. La solution finale est alors un optimum
local, qui n’est pas @cessairement un optimum global.

Cette approche de descente, qui est &hnde de recherche locale la plus simpkpehd essentiellement
de la relation de voisinagi laquelle elle est asséa. Meme s'il existe de nombreuses techniques pour tenter
d’améliorer la qualié des solutions fournies par les algorithmes de descente, ces dernietsladrdase de
toutes les meilleures @thodes de&solution actuelles.

3.2 \oisinages NNI, SPR et TBR

Une relation de voisinage structure I'espace de recherche sur lequel &theda de recherche locale (par
exemple descente) est applkgu Les trois relations de voisinage d'arbres que I'on retrouvémsyiquement
dans la literature sont NNI, SPR et TBR.

NNI (Nearest Neighbor Interchanp30] consistea échanger deux branches adjacentes de I'arbre. C'est
un voisinage restreint de taille Baire par rappo#d la taille de I'arbre, car un arbgeN feuilles compt@N — 6
voisins [23].

SPR Subtree Pruning Regrafting29] est une stragie qui coupe une branche et En®rea un autre
endroit de I'arbre. A partir d'un arbre, il exisl N — 3)(2N — 7) réarrangements SPR possibles [2], c’est un
voisinage de taille quadratique.

Enfin, TBR (Tree-Bisection-Reconnectipf29] est un voisinage plus large qui casse I'arbre en deux sous-
arbres qui seront reconnést partir d'une de leurs ates. Ici, le nombre de voisingdend de la topologie de
I'arbre, mais il est d’au moin@N — 3)(N — 3)2 [2].

On peut remarquer qu§ N1 C SPR C TBR[20].



3.3 Propriétés et limites des voisinages existants

Une relation de voisinageé&duite comme NNI pogsle I'avantage de favoriser la recheréhgrandeschelle

en ne permettant que des modificatiostiocales sur I'arbre. Calculer la variation déitengendee par une
transformation NNI est d’autant plus rapide que I'arbEeultant est &s proche, et parcourir 'ensemble des
voisins d'une configuration eégalement plus rapide qu’avec un voisinage plus large, car le nombre de voisins
a explorer est plus petit.

En revanche, une recherche locale sur un tel espace de recherche aura une faible xapdtiorer
sensiblement le ¢d d'une solution sur quelques pas. De plagnt don#é le faible nombre de voisins, les
optima locaux seront pluséguents sur des solutions pa&cassairement proches de I'optimum en terme de
colt.

A l'opposg, une relation de voisinage large comme TBR se¥a tditeuse d’'un point de vue calcula-
toire. Explorer tout le voisinage d’'une configuration prend beaucoup de temps, et les arbres voisins subissent
d’importantes modifications topologiques. Ainsi, moins d’information e conser@e pour le recalcul du
score de parcimonie, @me si Goloboff [14] propose uneéthode qui visé réduire la complexé du recalcul
du score.

3.4 Espace de recherche variable

Pour sortir des optima locaux, lethodes actuelles proposent des alternatives, mais sans remettre en question
les voisinages susmentices

Ainsi, la méthode de Nixon [21], maintenant utiie dans beaucoup de logiciels de MP, madifie la fonction
d’évaluation par bruitage de la matrice de carees lorsque la recherche locale s’enlise, afin de perturber la
solution courante tout en continuanse @placer dans un espace de rechercheguizss exactement laégme
structure (seul le poids desédes a charfgy si I'on consi@re I'espace de recherche comme un gragfpieé
par les variations de &b entre les arbres).

Une autre rathode utili€e par Ribeircet al. [1], [22] consistea consi@rer un ensemble de relations de
voisinage imbrigées (par exempléN NI, SPR} ou bien{SPR,2 — SPR}, k — SPR étant la relation de
voisinage induite pak pas de SPR), €t les utiliser successivement. Il s’agit d’une application au groklde
la métaheuristique VNS (Variable Neighborhood Search), prepgsr Hansen et Mladenovic [16].

Lefficacité d’'une neéthode de type VNS semble toutefois liget Si I'on part du principe que la solution
initiale est suffisammer@oigree de I'optimum, la premaie recherche locale (avec le voisinage le plus restreint
de I'ensemble) rencontrera un optimum local plus rapideme@mdisi prendre un voisinaggendu pour la
suite de la recherche va permettre unechonation de la solution, il estgalement probable qu’une grande
partie de I'effort calculatoire vatre perdu en envisageant plus de choix quéseleront inutiles (i.e. proposer
des recombinaisons de plus en phlsigrées de la topologie courante et donc perdre une plus grosse partie de
l'information acquise durant la pregrie phase de la recherche locale).

4 \oisinageévolutif

4.1 Principe ¢eréral

Afin de combiner les propgtés inEressantes des voisinages larges et faibles, nous proposons d’effectuer une
recherche locale sur un espace de recherche glarglt ou se&tracte en fonction de I'avaée de la recherche,
et de la féquence d’apparition de voisins pertinents.



Contrairement la méthode VNS, partir du voisinage le plus large peut &fav pertinent, en construisant
les bases de la topologie de la future solution. Evaluer plus de voisins (avec des modifications plus sensibles)
en cebut de recherche va permettre d&liorer grandement le € des solutions &k les premiers pas de la
recherche locale, §cea une recherche plus intensive. En fin de recherche, on peut imaginer n’intervenir que
tres localement sur la topologie de I'arbre. On peut obtenir ceérsahen eduisant petif petit I'etendue du
voisinage expld au fil de la recherche.

L'id ée est donc deddinir une relation de voisinage paréatrique quiévolue dans le temps, soit de mana
précefinie, soit de mamire Bactive en prenant en compte les informations sur la gudétI'ensemble des
voisins visies. Nous allons maintenantfihir un scl&@ma simple qui utilise ce concept pour le piabe MP.

4.2 Un exemple de voisinagévolutif

Utilisation de la propriéte NNI C SPR A titre d’exemple, nous prenons deux voisinagés et A/
tels queN? C N, de sorte que nous puission&fitir plus simplement un voisinage parétmique N, qui
gereraliseN'! et V2.

PrenonsV'! = N*SPR et N2 = N'VNI | Avec SPR, on égrafe une branche de 'arbre et on la reconnecte
ailleurs, sans contrainte partiaglle si ce n’est d’obtenir un arbre valide et distinct. On peut voir NNI comme un
SPR patrticulier, 0 une branche do#tre in€rée sur une &te voisine d'a elle provient dans I'arbre courant.

Par extension, nous imaginons alors un voisinage de type SRR distance entre I'éte supprirée et
I'aréte in®rée soit contrainte. Si cette distance est maximale, alors il s’agit du SPR, sans contrainte. Si celle-ci
elle minimale, alors nous nous retrouvons dans le cas NNI.

Un voisinage parangtrique Soit f57% : (T,V,V) — T la transformation telle qu¢ "% (T, v;,v;) soit
I'arbre obtenu enégrafant dang’ = (V, E) le sous-arbre de racing et en I'in€rant entre; et son ascendant
direct. AlorsNSPR(T) = {T" € T|3(v;,v;) € V2, fSPR(T,v;,v5) = T'}.

Pour contraindre SPR, nous introduisons un pateen, tel que V771 (T) repéesente 'ensemble des
arbres obtenus par transformatigit” ? (T, v;, v;) et dontv; etv; sontdistantsded au maximum.

On noted(v;, v;) ladistanceentrev; etv;, commeétantégalea la longueur du chemiglémentaire entre les
ascendants respectifs deetv;, —1 si le chemin contient la racine (si I'on travaille sur des arbres ergagin
Ainsi, deux noeuds &res sont distants de 0, et la distance resteflmendans le cas d’arbres non enrasin

Puisque I'on souhaite ritaiser la taille du voisinage durant la recherche, éfirdt le voisinage\;; £ % (T')
commeétant 'ensemble des voising>”?(T) tels que la distance entre l&te supprirge et 'aéte ingree
(qui estégalea la distance) entre leurs deux noeuds fils) n'é&de pas le paragtre d. En d’autres termes,
NZPR(T) = {T" € T|3(vs,v;) € V2, fSPR(T,v5,v;) = T' A 6(v,v;) < d}.

4.3 Sclema simple de voisinag@&volutif

Réduired durant la recherche permet détiter avec un voisinage quadratique (SPR) et de terminer avec le
voisinage NNI, lireaire par rapport au nombre de noeuds. On calcule ainsi les valeurs initiales et finales de

SPR — NSPR

Ndm“ = ( dinit > - (InaXVQ 5(’[]7;,’Uj))
NSPR — \/NNT dfinal 1

dfinal



d;ni: correspond au plus petit majorant des distances entre noeuds, §gaési la plus grande distance
entre les feuilles de I'arbre dedxdeux.

Sil'on réduitd de manere lingaire, et sil/ est le nombre d'#rations de recherche localeepus, alors le
paranetred du voisinageV;; ”** & lai-eéme iération de recherche locale ésfala [d;ni: (1 — 75 ) ]

A chaque iération de recherche locale, le choix d’un voigit" 2 (T, v;, v;) (avecd(v;,v;) < d) se fait
aleéatoirement mais selon une distribution non uniforme. Pour des temps de calcul plus faibles et une meilleure
efficaci®, on choisit tout d’abord ahtoirement une distane® (comprise entre 1 ef) et un noeudy;. On
recherche ensuite un noeugen parcourant un cheméiémentaire @atoire de longueut’ + 2. Si durant le
parcours on est blogusur une feuille de I'arbrey; prend la valeur de cette feuilledme sid(v;,v;) < d'.

Ainsi les feuilles de I'arbre ont une probab#iplus importante @&tre €lectionrées, qui est fonction de leur
distance avec la racine du sous-ardigrafer.

Dans la section suivante, noésaluons l'influence du voisinagsvolutif J\/’fPR par rappor@ leurs voisi-
nages fixes ass@s N P et VNI,

5 Premieres exg@rimentations

5.1 Benchmarks

Pour €aliser nos tests, nous avons uéilides benchmarksé&itoires, maig€galement des instances issues de
donrees eelles.

Les instances ahtoires onete gererées aveanatree[19] utilisant le moele de Kimuraa 2 pararatres
[18]. 300 instances, toute®rerees suivant des paratnes diferents, onéte utilisees durant les tests. Nous
avons obse® que la tendance degsultats variait s peu d’'une instanc I'autre. Parmi elles et pour des
raisons de lisibilié, nous en avons ici choisi 6 de tailles diverses, afin d’exhibegamantillon repgsentatif.
Elles comportent 100, 300 ou 508iences ADN, courtes (100 acides @imlies) ou plus longues (1000). Le
taux de transition-transversion estéix 2 et la probabilé de mutation par urétde temps 5%. Leurs noms
dans les tableaux désultats sont compés du nombre detgjuences et de leur longueur (100-100, 300-100,
500-100, 100-1000, 300-1000, 500-1000).

Dans le cadre d'unétude sur la divergit gerétique d’'une baétrie phytopathogne [7], le laboratoire de
Pathologie \égetale de I'INRA d’Angers nous a fourni plusieurs jeux correspon@ades alignements de
séquences courtes sur @ifents @nes de baéties. L'instance repdge ici est le @sultat de la concanation
des €quences de tous lesmes. Au final, il s’agit d’'un ensemble de &hsiences compéss de 453 nuebtides
(nomne phytodans le tableau 5).

Enfin, nous avons tesinotre voisinage sur l'instanadla [5] majoritairement utili€e dans la litrature et
répute tes difficile, compose de 500&quences de 759 carapts.

5.2 Conditions d’experimentation

Nous utilisons un algorithme de descente stricte sur lequel nous testons les trois voisiNages, N VN1

et V7P pour le Voisinage Evolutif tel qu'il esté&trit dans la section 4. L&k intuitive du voisinagévolutif

N TE est de combiner I'efficadtde NS et la rapidieé de N VN1, Nous voulons @rifier ces points sur les
jeux de tests utiligs. Puisquev VN1 C NPPE C NFSPE a descente classique (qui retourne obligatoirement
un optimum local) utilisantV"SP# retournera majoritairement des solutions détameilleur ouégal, car un



optimum local au sens d’'un voisinage I'é&galement pour tous ses voisinages inclus, alors gqueciproque
est fausse. Mais&lerminer un optimum localatessite en particulier d’avoir caléuous ses voisins.

Le tableau 1 nous indique le nombre de voigik§T")| d’un arbreT” en fonction du nombre deeguences
N (voir section 3.2), pour les deux voisinagetaille fixe utili€s.

N [INYYI)[INSPR(T)] 7]

44 82 6642 4,6.10%°

100| 194 37442 |3,3.10'84
300 594 352242 |3,4.107°°
500 994 987042 |1,0.1028°

Table 1. Taille des voisinages et de I'espace de recherche en fonction du nomtaguimses

On remarque clairement que I'effort calculatair@urnir pour trouver un optimum local n’est pas [eémme.

Pour mesurer efficacement I'influence du voisinage sur la @udéitla solution retouée pour un effort
calculatoireéquivalent (et donc des temps de calcul plus raisonnables), nous fixons un nombre nddximal
d’itérations de recherche locale. Dans noseexpentations et pour les instancesatbires moyennes (100 ou
300 £quences), on fix& a 50 000, c’esk-dire que 50 000 arbres au maximum seéyalLes. Pour I'instance
réelle, plus petite, un maximum de 10 0O&rétions est utilis pour mesurer I'efficaditdes voisinages. Pour
les instances larges (500 @sgs), nous ferons varier le pareme M .

Le pseudo-code suivant (Algorithme 1) montre la j@ahare utili€e pour nos tests. Il s’agit d'un algorithme
classique de descente avec lathodeFirst Improve ou I'on parcourt le voisinage d’une solution courante (dans
un ordre adatoire) jusqud ce que I'on trouve un voisin qui I'a@tiore.

Algorithm 1 Algorithme de descente avec nombre&f'étions fixe

Entrée N séquences aligres @finissant un proime de minimisatio7", f)
Sortie: Le meilleur arbre trou&

Gérérer un arbre initial” € 7, aleatoirement.4) ou selon une iethode des distance®f
nblter=1
Tant que le nombre d'iErations maximal n'est pas atteimbiter < M) et queT n’est pas de maare certaine un optimum local (tous les voisinside
n'ont pas @&jaéte évalles)faire
1. Gererer un voisiiT’ € N (T') de I'arbre courant” selon la relation de voisinag¥”
2. Calculer le score d&" selon la fonction de di f (score de parcimonie)
3. T=Tsif(T") < f(T)
4. nblter=nblter+ 1

Un voisin qui a @ja éte évalle depuis la dergire anglioration ne peut paitre propoé a nouveau. Ainsi, il
est possible que plus aucun voisin ne pugsseévalle avant lesV/ itérations. Dans ce cas, la solution courante
est un optimum local et nous la retournons.

Pour chaque instance courte ou moyenne, nous avons [Ehéois les descentes as$msa toutes les
combinaisonConstructior+Voisinage La méthode de constructiod gérere aéatoirement un arbre initial,
tandis queD construit un premier arbre selon unétiode de clustering bas sur les distances de hamming
entre ¢€quences initiales (insjgie de UPGMA [27]), mais stochastique. Cettethode construit des arbres de
score bien meilleur qu’en prenant un arbreadbire, et ainsi on pourra observer le comportement de la descente
avec N SPE NNNI oy NZPE en fonction de la quakit de la solution initiale. Les 6 combinaisons repegt
sont alorsA+ N SR A+ N NN A+ NFPR D NSPR DNNNT et D+NF PR,



Pour les instances larges, nous avonséz21e fois chaque descentepartir d’'un arbre @atoire pour les
instances &atoires (afin de mesurer la capéadies néthodesa converger vers des solutions proches depuis
n'importe quel point de &part sur I'espace de recherche)agiartir d’'un arbre construit selon uneethode
de distances pour l'instan@@la (sur cette instanceés difficile, il est cessaire de&buter la recherche du
meilleur arbre és la construction de la solution initiale).

5.3 Resultats

Les tableaux deésultats contiennent, pour chaque instance et chatieoate, le score minimurfy, le score
moyen f,,, et sonécart-types sur 'ensemble des essais, ainsi quéei®psd’exécution moyen en secondes.
Nous pEcisonsgalement le score moyen des arbres initigiy suivant la néthode de constructiod ouD.

.f?'nit fb .fnL g tempﬁ
A+NEPE 536 | 538,7] 2,1 | 68
S|A+NINT| - ey | 544 568,8|21,6| 8
S| A+NFPR 534 |534,0| 0 | 39
S|D+N PR 534 [ 534,6| 0,5 | 60
D+NNNI 557 534 |536,1| 1,4 | 3
D+NJPE 534 |534,0| 0 | 10
ol AV PR 40804 106,94 18,1| 671
SIA+NNNI| 5 gag [408014 178,§197,1 109
T A+NF PR 408040800 0 | 147
§ D+NSPE 408040814 2,0 | 539
D+NVNT 0 408040804 O | 20
D+NFPR 40804080, 0 | 52

Table 2. Comparaison entre SPR, NNI et le Voisinage Evolutif pdure= 100

Jeux akatoires Sur les 2 instances compes de 100&qjuences (tableau 2), on remarque §{j&”* retourne
sysématiquement une solution de score minimum (par rappdensemble des &thodes), quelle que soit

la taille des &quences et la solution initiale de la recherche. Comme on pouvait s’y attéidré! est la
méthode la plus rapide mais n’est pas du tout fiable lorsque la solution initiale est consé&aitérament, et
obtient de meilleursésultats pour de longuegguences. Tous les voisinages semblent performants et fiables
a partir d'un arbre construit selon unetthode de distances, mais cela est surtéua th relative facilié de

cette instance (seulement 1(siences), et doricla bonne quak de la solution initiale (pour 100-1000, la
recherche locale ne permet qu'une&ioration de la solution construite de), 7%, contre—68, 5% depuis un
arbre akatoire).

Lorsque le nombre deeguences est plus important, comme pour I'instance repatans le tableau 3, le
voisinageN *"! n’est plus appropé, puisqu’il retourne dans tous les cas des solutions de sés@adigré
de ceux des solutions troées parV;PE. La qualig de la solution retouée avecNV VN1 est fortement
dépendante de I'arbre initial et peut convergestrapidement vers un optimum local, ce qui montre I'instahilit
de la néthode en fonction des facteurs stochastiques. @astats confirment qu&™ ™' n’est vraiment ef-
ficace (en terme de performance, robustesse et temps de calcul) que lorscpguarss sont longuesat
condition de @buter la recherche avec uhennesolution (ici construite suivant uneéthode base sur les
distances). Notre voisinagavolutif N7 7# obtient de bonsésultats depuis toute solution initiale, made
nombre éduit d’iterations compdra la taille du prok@me.
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finit fo fm o _|tempg 4
A+NSTE 1579] 1647,9] 32,3| 115
S|A+NNNI| ey [ 1746019219/ 922| 53 | 2 fY
S| AN PR 1304/1310,8] 7,0 | 51 | oo}
Q|D+NOTE 133613424 41| 77 | ¢ |
D+NNNI ) oo 11303 13056( 3,7 | 54 | ¢
D+NF PR 1302|1303,4| 15| 53 |§*°r
o| AN 1704317 305,0211,31 128) £ soeo
S|A+NNVNI| o) agq [1420914426,0279,8 467 | |
FA+NFPE 1420914209, 0 | 479
S| D+NIPE 1426614270, 3,7 | 697 | [
D+NNNTL ) oga [1420914209,0 O | 82 | s ]
D+N§PR 1420914 209,(: 0 364 0 so‘un mt‘)oo 15[;00 20(‘}0\1 z&(‘mo 30\‘100 352100 402100 45(‘100 50000

nombre diiterations

Table 3.Comparaison entre les voisinages pdir= 300 et Recherche Locak partir d’'un arbre &atoire

La figure asso&e montre le score de I'arbre courant en fonction de I'akande la recherche, pour
l'instance 300-100 et en partant d'un arbreatbire (la recherche repéd est celle retournant I'arbre de score
médian). La recherche locatevoisinageevolutif (VE) domine clairement SPR et NNI.

finit M fo Fm o |temps
A+NSFPE +[3548[36105[ 487 | 4
A+NNNT =| 3937| 4318,1| 210,6| 2’
A+NFPR ?| 2305| 2435,1| 121,6| 1'40
o ATNETE » |2940[3049,4] 478 | &
S| A+N NI S|2808|3042,1 1996| 4
3 A+NFPRI 9165 2243|2251,7| 102 | 3
B A+NTPE 2| 2753]2795,5] 281 | 1T’
A+NNNT ~=|2389|2559,1| 1928| 6
A+NFPE 12243/ 22447] 14 | &4
A+N PR + [36 50537595, 595,1| 39
A+NNNI = |28 47830 072,01 374,4 20’
A+NJPE %124 33724 491,7 184,7| 16’
o| AtNIFE , |3161532029,7 319,4| 75'
S| A+NNNI S (24 31924 460,3 188,9| 29’
S| A+NSPE| 100 434 24319 24319| 0 | 33
BlA+NEPR 2|28 96129 490,71 407,6 116’
A+NNNT =|2431924 4603 188,9| 29’
A+NFEPE ;124319 24319| 0 | 44

Table 4. Comparaison entre les voisinages pdir= 500 a partir d’'une solution initiale &atoire

Pour une instanceds large (tableau 4), il se confirme qi&°”? donne dans tous les cas de mauvais
résultats. Les scores retoéspar\'V V! sont tes inconstants, avec désarts-types toujoursés importants.
Si un allongement du temps de recherche provoque uridigmation des performances aé°"%, ce n'est
rapidement plus le cas poV V7, qui retourne s Bt un optimum local.

On remarque particilrement l'efficaci du voisinageevolutif J\/fPR dans le cas de larges instances,
comme 500-1000 qui est constiau total de 500 000 carants. En 100 000é&rations, il parviena retourner
syseématiquement (sur les 20 tests), une solution de segmkau meilleur score tro@pour cette instance (24
319). Sur les 20 testdy VN7 n’a trouve qu’une seule fois un tel score.

Dans le tableau 4, les temps démution sont dones en minutes.



finit | fo [ fm [ o [temps
A+NETR 226(229,0 7,0| 44
o ARNTNTL o 1226/291,359,1 9
S| AN PR 2262260 0 | 9
S D+N PR 226|226, 0,7| 44
D+NNNTI o) 122612269 0,7| 5
D+NJPE 226226, 0 | 10

Table 5. Performance des voisinages sur un peotd eel

Jeux réels Sil'on ajoute aux pecedentsésultats ceux obtenus avec l'instaneelte (tableau 5), de constitution
differente des instancesaloires, il apparait que le voisinageolutif permet d’obtenir des solutions de score
minimal avec une confiance maximale et avec de meilleurs temps de calcul qu’en utilisant le clag3idue

On peut consiérer que les instancesgaedentes ne comportent pas de diffiegtrticulere, puisqua partir
d’'un certain nombre de lancers, un score minimum est ressorti desmegntations. Avec l'instancalla bien
connue, trouver le score minimum caleal ce jour (16 218 [21]) en un faible nombre @tiations et avec un
unique arbre de&part (uneéplication) est peu probable. Ce test sera alors une bonneameade valider nos
résultats, et surtout de comparer les performances de notre voisivalysif avecA’V V! dans le cas d’un
demarragex partir d’'une solution construitd). C'est en effet la seule de cesthodes qui offre sur les jeux
utilisés pecedemment d’aussi bonésultats que le voisinagavolutif (VN V! est plus rapide, mais l&sultat
est moins fiable car il&pend toujours de la solution initiale et reste sujet a@asbktochastiques).

Nous testons les trois voisinages pour &iénts nombres maximaux dittionsM : 10°, 2.10° et 3.10°.
Les temps d’e&cution sont ici dones en minutes.

finit  [M]| fp fm o [temps

D+NSFF |17 08917 116,§ 24,8] 145
D+NNNT 5|16 55616 778,9119,2 19’
D+N PR 16 30616 356, 47,8| 27’
D+NIFR > |16 78516 816,84 36,6| 278’
DN VNI = |16 55616 778,9119,2 19
< - 9 f
=|D+NSPR| 18353 | '[1628216297,9 9,8 | 57’
N d 1 y
D+N PR = |16 59016 645,3 57 5| 395'
D+N VNI =16 55616 778,9119,2 19’
D+NFPR “|16 27716 296,3 18,0| 77’

Table 6. Descentes sur l'instanadlla a partir d’'une solution construite

PourNSPR et VNN nous avons laré20 fois chaque &thode mais uniquement st 0° itérations. Les
valeurs pour 0° et2.10° itérations sont dorées par lesasultats interradiaires des recherches localggY V!
retourne sy&matiquement un optimum local en moins de 100 O8ttons (50 000 en moyenne), c’est pour
cette raison que le€sultats sont identiques pour Ui sugerieur. Sur cette instance difficile, on remarque
immédiatement la puissance du voisinagg®lutif. En 200 000 ou 300 000&tations, lecart entre les arbres
retourrés et le meilleur arbre conrauce jour varie entr@, 36% et0, 69%, (0,49% en moyenne), tandis qu'il
varie entre2, 08% et4, 33% (3, 31% en moyenne, soit ps de 7 fois plus) pour les voisinages connus.

La figure 1 montre le comportement des trois recherches ayant rét@score nédian pour les trois
méthodes appligeesa I'instancezilla sur respectivement 100 000 et 300 OGations. Nous rappelons que
I'arbre initial est construid partir de la rathode base sur les distances.



On remarque clairement la senporite du voisinageévolutif A7 ©7, no VE sur les figures, par rappart
SPR et NNLI.

18500 T T T T T T T T T 18500

18000 1} 18000 | ",

ws00 Y 17500 [

score de I'arbre courant
score de I'arbre courant

17000 - 17000 .,

16500 16500

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 50000 100000 150000 200000 250000 300000
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Figure 1. Score de la solution courante sur resp° et 3.10° itérations (instanceilla)

6 Conclusion et perspectives

Pour Esoudre le proime MP en reconstruction phykegetique, les heuristiques de recherche locale SPR et

NNI sont parmi les rathodes les plus populaires. Bien gu’elles soies frerformantes et rapides pour des
petites instances (comportant moins de 10@esp), elles apparaissent peu fiables lorsqu’on les apides
instances plus grandes. Dans le cas de voisinages restreints comme NNI, il faut effectuer plusieurs recherches
a partir d’arbres distincts &plications), ou bien &ériorer par moment la solution courante pour explorer
plusieurs zones de I'espace de recherche et auitgr les peges des optima locaux. Dans le cas de voisinages
larges comme SPR ou TBR, il estaessaire de les combiried’autres rdthodes (algorithmesgétiques [15],
superarbres [3], ...) car ils ne sont pas suffisamment efficacegsitii@ils pour de larges instances.

L'objectif ici était de comprendre l'influence du voisinage uéilen fonction des instances et de I'avaac
de la recherche locale, et de proposer une alternative qui combine lesfg®méressantes des voisinages
SPR et NNI. Nous avons alors introduit la notion de voisinagmutif, et effect@ une grie d’exgerimentations
montrant un gain d’efficaditsensible par rappatSPR et NNI, notamment sur des instances difficiles. De plus,
sa robustesse entrn& un gain de temps, car elle permet de minimiser le nombregdieations. En effet, I'arbre
initial influe tres peu sur la quaétdes solutions retou@es par le voisinagevolutif.

Afin d’'améliorer encore les performances de notre voisireagéutif, il est pevu detudier plus pecisement
les propréetes du sous-voisinage @hiorant et du sous-voisinag@é#riorant d’'un arbre courant. Le but de cette
recherche localévolutive sera d’utiliser un voisinage qui se constayiartir des propétés des configurations
déja exploées.
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