
Voisinage d’Arbre Evolutif Appliqu é au Probl ème Maximum
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Abstract: Le probl̀eme Maximum Parcimonie visèa reconstruire un arbre phyloǵeńetique à partir de
séquences ADN de manièreà ce que le nombre de mutations géńetiques survenues au cours de l’évolution
soit minimal. Pour ŕesoudre ce problème NP-complet, de nombreuses méthodes heuristiques ontét́e d́evelopṕees,
pour la plupart baśees sur la recherche locale. Ici, nous nous intéressons̀a l’influence de la relation de
voisinage utiliśee. Apr̀es avoir identifíe les limites des voisinages couramment utilisés, nous introduisons
le concept de voisinagéevolutif. Nous montrons empiriquement qu’appliqué au probl̀eme Maximum Parci-
monie, ce voisinagéevolutif s’av̀ere plus puissant et robuste que les voisinages classiques puisqu’il permet
de trouver de meilleurs résultatsà partir de n’importe quelle solution en moins de temps.
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1 Introduction

La phyloǵenie peut̂etre d́efinie comme la reconstruction de l’évolution d’un ensemble d’espèces (ou taxons)
assocíesà une śequence d’acides nucléiques (ADN) ou d’acides aminés (AA). Ces relations sont représent́ees
par un arbre dit phyloǵeńetique. Hillis [17] ŕepertorie de nombreuses applications de la phylogénie :évolution
géńetique, classification et taxonomie, subdivisions des populations, variations géographiques, tests de pater-
nité, parent́es, hybridations, mise eńevidence de nouvelles espèces, analyse des comportements reproducteurs,
recherche virale...

Il faut remarquer que les hypothèses prises en compte dans la recherche d’un arbre d’évolution optimal ne
peuvent se v́erifier syst́ematiquement lors de toute observation du monde du vivant. Par exemple on part de
l’hypothèse que l’arbre le plus probable, ou le meilleur arbre, est celui qui minimise les mutations, alors qu’il
est fort possible que ce ne soit pas exactement le cas dans la réalit́e. Il est ńeanmoins fortement intéressant
d’obtenir une version mathématique d’un processus naturel, ce qui permet de fournir des informations que l’on
n’avait pu inf́erer au pŕealable, et mettre en avant des caractéristiques originales que l’on peut confronterà
l’observation.

Il existe actuellement plusieurs manières de reconstruire des arbres phylogéńetiques :

Inspiŕees des ḿethodes de clustering de Sokal et Sneath [28], lesméthodes de distancesintroduites en 1967
par Cavalli-Sforza et Edwards [4] et par Fitch et Margoliash [10] sont basées sur une matrice des distances
observ́ees entre les espèces deux̀a deux, ou bien calculée en fonction de séquences de caractères et d’un
mod̀ele de l’́evolution. L’algorithme le plus connu reste le Neighbor-Joining de Saitou et Nei [25], amélioré par
Gascuel [13].

Lesméthodes probabilistesont elles aussi recours̀a un mod̀ele de l’́evolution. Cependant, elles se basent
sur l’analyse individuelle des caractères. La ḿethode du Maximum de Vraisemblance, introduite en 1981 par



Felsenstein [8], consistèa inférer la phyloǵenie la plus vraisemblable, c’est-à-dire maximisant la probabilité
que les donńees se v́erifient à partir de cette phyloǵenie et du mod̀ele de l’́evolution consid́eŕe. Bien que cette
méthode connaisse de nombreux adeptes, reconnaissants de la fiabilité des arbres ainsi inféŕes, elle est celle qui
requiert le plus d’effort calculatoire donc devient limitée pour un nombre important de taxons.

Enfin, lesméthodes cladistessontégalement basées sur une matrice de caractères donńee. La plus utiliśee
est celle du Maximum de Parcimonie, dont les premières ŕeflexions sont̀a mettre au cŕedit de Edwards et
Cavalli-Sforza [6]. Elle visèa retrouver la phyloǵenie qui minimise le nombre d’évènementśevolutifs (score),
sans recourir̀a un mod̀ele de l’́evolution. En outre, cette ḿethode permet d’attribuer̀a chaque anĉetre hy-
poth́etique (noeud interne de l’arbre), lesétats possibles pris pour chaque caractère.

Le probl̀eme Maximum Parcimonie (MP) estéquivalent au problème de l’arbre de Steiner dans un hy-
percube. MP est NP-complet, comme l’ont montré Foulds et Graham en 1982 [11]. L’approche utilisée pour
l’approximation du probl̀eme consistèa utiliser des algorithmes heuristiques dans le but de trouver le plus
rapidement possible un arbre d’un score très proche de celui d’une solution optimale. De nombreux travaux
de qualit́e traitent du probl̀eme MP, notamment ceux de Goloboff [15] ou Nixon [21]. Mais comme on peut le
remarquer avec Roshanet al. [24], les logiciels actuels ne sont pas encore suffisamment performants et rapides
dès lors que les instancesà traiter contiennent des milliers d’espèces.

Consid́erant les tr̀es larges espaces de recherche, il se vérifie empiriquement que des heuristiques de recherche
locale stochastique sont particulièrement adaptées au problème MP,à la condition d’utiliser un voisinage ap-
propríe [12].

Il existe majoritairement dans la littérature trois voisinages d’arbres : NNI, SPR et TBR. Chaque recherche
locale associée gagne en efficacité ou en rapidit́e suivant le voisinage utilisé. Notre d́emarche consistèa com-
biner les propríet́es de ces voisinages intéressants afin d’obtenir une recherche localeà la fois rapide, efficace et
robuste. Nous introduisons ici le concept de voisinageévolutif en tant que nouvelle approche pour la résolution
du probl̀eme MP. Tous les tests effectués montrent le ŕeel gain apport́e par cette technique d’un point de vue ef-
ficacit́e et temps de calcul, et surtout sa capacité à converger tr̀es vite vers une solution de confiance, enévitant
les pìeges des optima locaux.

Après avoir rappelé brìevement le problème MP, nous présentons dans la section 3 les voisinages d’arbres
connus puis les ḿethodes de recherche locale qui leur sont souvent associées. Nous discutons ensuite des
limites de ces voisinages et proposons une alternative pour y remédier. Ce voisinagéevolutif est introduit puis
décrit plus formellement dans la section 4. Des résultats exṕerimentaux sont ensuite présent́es afin de comparer
la performance et le comportement de ce voisinage par rapport aux deux voisinages classiques NNI et SPR.

2 Le problème Maximum Parcimonie

Commeévoqúe dans l’introduction, le problème MP consistèa partir d’un ensemble de séquences,̀a retrouver
la phyloǵenie optimale au sens du critère de parcimonie, c’est-à-dire un arbre dont les feuilles sont associées
aux śequences et qui minimise le nombre de mutations.

Afin de fixer plus pŕeciśement les id́ees, rappelons quelques définitions.

Definition 1. Ladistance de HammingH(x, y) entre deux śequencesx = (x1, x2, . . . , xk) ety = (y1, y2, . . . , yk)
estégaleà |{i : xi 6= yi}|.

Definition 2. Le score de parcimonied’un arbre T = (V, E) dont chaque noeudv est étiquet́e par une
séquencesv de longueurk sur un alphabetΣ est la somme des distances de Hamming des séquenceśetiquetant
chaque couple de noeuds sépaŕes par une ar̂ete dansT .



Etant donńe un arbreT dont les feuilles sont bijectivementétiquet́ees par les śequences deS, Fitch a
formaliśe un algorithme polynomial [9] qui calcule des séquences hypothétiques (assigńees aux noeuds internes
de l’arbre) et le score de parcimonie de telle sorte que celui-ci soit minimal.

Le but du probl̀eme MP est de trouver un arbre dont le score de parcimonie est le plus faible parmi tous
les arbres phyloǵeńetiques possibles pour un ensembleS de śequences. MP peut alorsêtre formuĺe comme un
probl̀eme combinatoire de minimisation(T , f) tel que :

1. l’espace de rechercheT est d́efini par l’ensemble de toutes les configurations possibles (|T | = ∏|S|
i=3(2i−

3) [26])
2. la fonction de côut f : T → IN est telle que∀T ∈ T , f(T ) =

∑
(x,y)∈E H(x, y), i.e. le score de

parcimonie deT .

3 Recherche locale et voisinages

3.1 La descente

La méthode de descente consisteà ǵeńerer une première phyloǵenie, puis̀a rechercher une phylogénie voisine
(au sens d’une relation de voisinage) dont le score est inférieur, et ainsi de suite jusqu’à ce que la phyloǵenie
courante n’ait aucun voisin dont le score soit strictement inférieur. La solution finale est alors un optimum
local, qui n’est pas ńecessairement un optimum global.

Cette approche de descente, qui est la méthode de recherche locale la plus simple, dépend essentiellement
de la relation de voisinagèa laquelle elle est associée. M̂eme s’il existe de nombreuses techniques pour tenter
d’améliorer la qualit́e des solutions fournies par les algorithmes de descente, ces derniers sontà la base de
toutes les meilleures ḿethodes de ŕesolution actuelles.

3.2 Voisinages NNI, SPR et TBR

Une relation de voisinage structure l’espace de recherche sur lequel une méthode de recherche locale (par
exemple descente) est appliquée. Les trois relations de voisinage d’arbres que l’on retrouve systématiquement
dans la litt́erature sont NNI, SPR et TBR.

NNI (Nearest Neighbor Interchange) [30] consistèa échanger deux branches adjacentes de l’arbre. C’est
un voisinage restreint de taille linéaire par rapport̀a la taille de l’arbre, car un arbreàN feuilles compte2N−6
voisins [23].

SPR (Subtree Pruning Regrafting) [29] est une stratégie qui coupe une branche et la réins̀ereà un autre
endroit de l’arbre. A partir d’un arbre, il existe2(N − 3)(2N − 7) réarrangements SPR possibles [2], c’est un
voisinage de taille quadratique.

Enfin, TBR (Tree-Bisection-Reconnection) [29] est un voisinage plus large qui casse l’arbre en deux sous-
arbres qui seront reconnectésà partir d’une de leurs arêtes. Ici, le nombre de voisins dépend de la topologie de
l’arbre, mais il est d’au moins(2N − 3)(N − 3)2 [2].

On peut remarquer queNNI ⊆ SPR ⊆ TBR [20].



3.3 Propriétés et limites des voisinages existants

Une relation de voisinage réduite comme NNI possède l’avantage de favoriser la rechercheà grandéechelle
en ne permettant que des modifications très locales sur l’arbre. Calculer la variation de coût engendŕee par une
transformation NNI est d’autant plus rapide que l’arbre résultant est tr̀es proche, et parcourir l’ensemble des
voisins d’une configuration estégalement plus rapide qu’avec un voisinage plus large, car le nombre de voisins
à explorer est plus petit.

En revanche, une recherche locale sur un tel espace de recherche aura une faible capacité à aḿeliorer
sensiblement le côut d’une solution sur quelques pas. De plus,étant donńe le faible nombre de voisins, les
optima locaux seront plus fréquents sur des solutions pas nécessairement proches de l’optimum en terme de
coût.

A l’opposé, une relation de voisinage large comme TBR sera très côuteuse d’un point de vue calcula-
toire. Explorer tout le voisinage d’une configuration prend beaucoup de temps, et les arbres voisins subissent
d’importantes modifications topologiques. Ainsi, moins d’information peutêtre conserv́ee pour le recalcul du
score de parcimonie, m̂eme si Goloboff [14] propose une méthode qui visèa ŕeduire la complexit́e du recalcul
du score.

3.4 Espace de recherche variable

Pour sortir des optima locaux, les méthodes actuelles proposent des alternatives, mais sans remettre en question
les voisinages susmentionnés.

Ainsi, la méthode de Nixon [21], maintenant utilisée dans beaucoup de logiciels de MP, modifie la fonction
d’évaluation par bruitage de la matrice de caractères lorsque la recherche locale s’enlise, afin de perturber la
solution courante tout en continuantà se d́eplacer dans un espace de recherche possédant exactement la m̂eme
structure (seul le poids des arêtes a chanǵe, si l’on consid̀ere l’espace de recherche comme un grapheétiquet́e
par les variations de coût entre les arbres).

Une autre ḿethode utiliśee par Ribeiroet al. [1], [22] consisteà consid́erer un ensemble de relations de
voisinage imbriqúees (par exemple{NNI, SPR} ou bien{SPR, 2 − SPR}, k − SPR étant la relation de
voisinage induite park pas de SPR), et̀a les utiliser successivement. Il s’agit d’une application au problème de
la métaheuristique VNS (Variable Neighborhood Search), proposée par Hansen et Mladenovic [16].

L’efficacité d’une ḿethode de type VNS semble toutefois limitée. Si l’on part du principe que la solution
initiale est suffisammentéloigńee de l’optimum, la première recherche locale (avec le voisinage le plus restreint
de l’ensemble) rencontrera un optimum local plus rapidement. Même si prendre un voisinageétendu pour la
suite de la recherche va permettre une amélioration de la solution, il est́egalement probable qu’une grande
partie de l’effort calculatoire vâetre perdu en envisageant plus de choix qui se révèleront inutiles (i.e. proposer
des recombinaisons de plus en pluséloigńees de la topologie courante et donc perdre une plus grosse partie de
l’information acquise durant la première phase de la recherche locale).

4 Voisinageévolutif

4.1 Principe ǵenéral

Afin de combiner les propriét́es int́eressantes des voisinages larges et faibles, nous proposons d’effectuer une
recherche locale sur un espace de recherche qui s’élargit ou se ŕetracte en fonction de l’avancée de la recherche,
et de la fŕequence d’apparition de voisins pertinents.



Contrairement̀a la ḿethode VNS, partir du voisinage le plus large peut s’avérer pertinent, en construisant
les bases de la topologie de la future solution. Evaluer plus de voisins (avec des modifications plus sensibles)
en d́ebut de recherche va permettre d’améliorer grandement le coût des solutions d̀es les premiers pas de la
recherche locale, grâceà une recherche plus intensive. En fin de recherche, on peut imaginer n’intervenir que
très localement sur la topologie de l’arbre. On peut obtenir ce schéma en ŕeduisant petit̀a petit l’étendue du
voisinage exploŕe au fil de la recherche.

L’id ée est donc de définir une relation de voisinage paramétrique quiévolue dans le temps, soit de manière
préd́efinie, soit de manière ŕeactive en prenant en compte les informations sur la qualité de l’ensemble des
voisins visit́es. Nous allons maintenant définir un sch́ema simple qui utilise ce concept pour le problème MP.

4.2 Un exemple de voisinagéevolutif

Utilisation de la propri été NNI ⊆ SPR A titre d’exemple, nous prenons deux voisinagesN 1 etN 2

tels queN 2 ⊆ N 1, de sorte que nous puissions définir plus simplement un voisinage paramétriqueNd qui
géńeraliseN 1 etN 2.

PrenonsN 1 = N SPR etN 2 = NNNI . Avec SPR, on d́egrafe une branche de l’arbre et on la reconnecte
ailleurs, sans contrainte particulière si ce n’est d’obtenir un arbre valide et distinct. On peut voir NNI comme un
SPR particulier, òu une branche doit̂etre inśeŕee sur une arête voisine d’òu elle provient dans l’arbre courant.

Par extension, nous imaginons alors un voisinage de type SPR où la distance entre l’arête suppriḿee et
l’arête inśeŕee soit contrainte. Si cette distance est maximale, alors il s’agit du SPR, sans contrainte. Si celle-ci
elle minimale, alors nous nous retrouvons dans le cas NNI.

Un voisinage paraḿetrique Soit fSPR : (T , V, V ) → T la transformation telle quefSPR(T, vi, vj) soit
l’arbre obtenu en d́egrafant dansT = (V,E) le sous-arbre de racinevi et en l’inśerant entrevj et son ascendant
direct. AlorsN SPR(T ) = {T ′ ∈ T |∃(vi, vj) ∈ V 2, fSPR(T, vi, vj) = T ′}.

Pour contraindre SPR, nous introduisons un paramètre d, tel queN SPR
d (T ) repŕesente l’ensemble des

arbres obtenus par transformationfSPR(T, vi, vj) et dontvi etvj sontdistantsded au maximum.

On noteδ(vi, vj) la distanceentrevi etvj , comméetantégaleà la longueur du chemińelémentaire entre les
ascendants respectifs devi et vj , −1 si le chemin contient la racine (si l’on travaille sur des arbres enracinés).
Ainsi, deux noeuds fr̀eres sont distants de 0, et la distance reste la même dans le cas d’arbres non enracinés.

Puisque l’on souhaite maı̂triser la taille du voisinage durant la recherche, on définit le voisinageN SPR
d (T )

commeétant l’ensemble des voisinsNSPR(T ) tels que la distance entre l’arête suppriḿee et l’ar̂ete inśeŕee
(qui estégaleà la distanceδ entre leurs deux noeuds fils) n’excède pas le param̀etred. En d’autres termes,
N SPR

d (T ) = {T ′ ∈ T |∃(vi, vj) ∈ V 2, fSPR(T, vi, vj) = T ′ ∧ δ(vi, vj) ≤ d}.

4.3 Sch́ema simple de voisinagéevolutif

Réduired durant la recherche permet de débuter avec un voisinage quadratique (SPR) et de terminer avec le
voisinage NNI, lińeaire par rapport au nombre de noeuds. On calcule ainsi les valeurs initiales et finales ded :




N SPR

dinit
≡ N SPR

NSPR
dfinal

≡ NNNI
⇒

(
dinit

dfinal

)
=

(
maxV 2 δ(vi, vj)

1

)



dinit correspond au plus petit majorant des distances entre noeuds, qui estégaleà la plus grande distance
entre les feuilles de l’arbre deuxà deux.

Si l’on réduitd de manìere lińeaire, et siM est le nombre d’it́erations de recherche locale prévus, alors le
param̀etred du voisinageN SPR

d à lai-ème it́eration de recherche locale estégalà bdinit

(
1− i

M

)c.
A chaque it́eration de recherche locale, le choix d’un voisinfSPR(T, vi, vj) (avecδ(vi, vj) ≤ d) se fait

aléatoirement mais selon une distribution non uniforme. Pour des temps de calcul plus faibles et une meilleure
efficacit́e, on choisit tout d’abord aléatoirement une distanced′ (comprise entre 1 etd) et un noeudvi. On
recherche ensuite un noeudvj en parcourant un chemińelémentaire aĺeatoire de longueurd′ + 2. Si durant le
parcours on est bloqué sur une feuille de l’arbre,vj prend la valeur de cette feuille même siδ(vi, vj) ≤ d′.
Ainsi les feuilles de l’arbre ont une probabilité plus importante d’être śelectionńees, qui est fonction de leur
distance avec la racine du sous-arbreà d́egrafer.

Dans la section suivante, nousévaluons l’influence du voisinagéevolutifN SPR
d par rapport̀a leurs voisi-

nages fixes associésN SPR etNNNI .

5 Premières exṕerimentations

5.1 Benchmarks

Pour ŕealiser nos tests, nous avons utilisé des benchmarks aléatoires, maiśegalement des instances issues de
donńees ŕeelles.

Les instances aléatoires ont́et́e ǵeńeŕees avecdnatree[19] utilisant le mod̀ele de Kimuraà 2 param̀etres
[18]. 300 instances, toutes géńeŕees suivant des paramètres diff́erents, ont́et́e utilisées durant les tests. Nous
avons observ́e que la tendance des résultats variait tr̀es peu d’une instancèa l’autre. Parmi elles et pour des
raisons de lisibilit́e, nous en avons ici choisi 6 de tailles diverses, afin d’exhiber unéchantillon repŕesentatif.
Elles comportent 100, 300 ou 500 séquences ADN, courtes (100 acides nucléiques) ou plus longues (1000). Le
taux de transition-transversion est fixé à 2 et la probabilit́e de mutation par unité de temps̀a 5%. Leurs noms
dans les tableaux de résultats sont composés du nombre de séquences et de leur longueur (100-100, 300-100,
500-100, 100-1000, 300-1000, 500-1000).

Dans le cadre d’unéetude sur la diversité ǵeńetique d’une bactérie phytopathog̀ene [7], le laboratoire de
Pathologie V́eǵetale de l’INRA d’Angers nous a fourni plusieurs jeux correspondantà des alignements de
séquences courtes sur différents g̀enes de bactéries. L’instance reportée ici est le ŕesultat de la concaténation
des śequences de tous les gènes. Au final, il s’agit d’un ensemble de 44 séquences composées de 453 nucléotides
(nomḿephytodans le tableau 5).

Enfin, nous avons testé notre voisinage sur l’instancezilla [5] majoritairement utiliśee dans la litt́erature et
réput́ee tr̀es difficile, compośee de 500 śequences de 759 caractères.

5.2 Conditions d’exṕerimentation

Nous utilisons un algorithme de descente stricte sur lequel nous testons les trois voisinages :N SPR, NNNI

etN SPR
d pour le Voisinage Evolutif tel qu’il est d́ecrit dans la section 4. L’id́ee intuitive du voisinagéevolutif

N SPR
d est de combiner l’efficacité deN SPR et la rapidit́e deNNNI . Nous voulons v́erifier ces points sur les

jeux de tests utiliśes. PuisqueNNNI ⊆ N SPR
d ⊆ N SPR, la descente classique (qui retourne obligatoirement

un optimum local) utilisantN SPR retournera majoritairement des solutions de coût meilleur ouégal, car un



optimum local au sens d’un voisinage l’estégalement pour tous ses voisinages inclus, alors que la réciproque
est fausse. Mais déterminer un optimum local nécessite en particulier d’avoir calculé tous ses voisins.

Le tableau 1 nous indique le nombre de voisins|N (T )| d’un arbreT en fonction du nombre de séquences
N (voir section 3.2), pour les deux voisinagesà taille fixe utiliśes.

N |NNNI(T )| |NSP R(T )| |T |
44 82 6642 4, 6.1080

100 194 37 442 3, 3.10184

300 594 352 242 3, 4.10700

500 994 987 042 1, 0.101280

Table 1.Taille des voisinages et de l’espace de recherche en fonction du nombre de séquences

On remarque clairement que l’effort calculatoireà fournir pour trouver un optimum local n’est pas le même.

Pour mesurer efficacement l’influence du voisinage sur la qualité de la solution retourńee pour un effort
calculatoireéquivalent (et donc des temps de calcul plus raisonnables), nous fixons un nombre maximalM
d’it érations de recherche locale. Dans nos expérimentations et pour les instances aléatoires moyennes (100 ou
300 śequences), on fixeM à 50 000, c’est-̀a-dire que 50 000 arbres au maximum serontévalúes. Pour l’instance
réelle, plus petite, un maximum de 10 000 itérations est utiliśe pour mesurer l’efficacité des voisinages. Pour
les instances larges (500 espèces), nous ferons varier le paramètreM .

Le pseudo-code suivant (Algorithme 1) montre la procédure utiliśee pour nos tests. Il s’agit d’un algorithme
classique de descente avec la méthodeFirst Improve, où l’on parcourt le voisinage d’une solution courante (dans
un ordre aĺeatoire) jusqu’̀a ce que l’on trouve un voisin qui l’aḿeliore.

Algorithm 1 Algorithme de descente avec nombre d’itérations fix́e
Entr ée: N séquences aligńees d́efinissant un problème de minimisation(T , f)
Sortie: Le meilleur arbre trouv́e

Géńerer un arbre initialT ∈ T , aléatoirement (A) ou selon une ḿethode des distances (D)
nbIter = 1
Tant que le nombre d’it́erations maximal n’est pas atteint (nbIter≤ M ) et queT n’est pas de manière certaine un optimum local (tous les voisins deT
n’ont pas d́ejà ét́e évalúes)faire

1. Géńerer un voisinT ′ ∈ N (T ) de l’arbre courantT selon la relation de voisinageN
2. Calculer le score deT ′ selon la fonction de côut f (score de parcimonie)
3. T = T ′ si f(T ′) < f(T )
4. nbIter = nbIter + 1

Un voisin qui a d́ejà ét́e évalúe depuis la dernière aḿelioration ne peut paŝetre propośe à nouveau. Ainsi, il
est possible que plus aucun voisin ne puisseêtreévalúe avant lesM itérations. Dans ce cas, la solution courante
est un optimum local et nous la retournons.

Pour chaque instance courte ou moyenne, nous avons lancé 10 fois les descentes associéesà toutes les
combinaisonsConstruction+Voisinage. La méthode de constructionA géǹere aĺeatoirement un arbre initial,
tandis queD construit un premier arbre selon une méthode de clustering basée sur les distances de hamming
entre śequences initiales (inspirée de UPGMA [27]), mais stochastique. Cette méthode construit des arbres de
score bien meilleur qu’en prenant un arbre aléatoire, et ainsi on pourra observer le comportement de la descente
avecN SPR, NNNI ouN SPR

d en fonction de la qualité de la solution initiale. Les 6 combinaisons reportées
sont alorsA+N SPR,A+NNNI ,A+N SPR

d ,D+N SPR,D+NNNI etD+N SPR
d .



Pour les instances larges, nous avons lancé 20 fois chaque descente,à partir d’un arbre aléatoire pour les
instances aléatoires (afin de mesurer la capacité des ḿethodes̀a converger vers des solutions proches depuis
n’importe quel point de d́epart sur l’espace de recherche), età partir d’un arbre construit selon une méthode
de distances pour l’instancezilla (sur cette instance très difficile, il est ńecessaire de débuter la recherche du
meilleur arbre d̀es la construction de la solution initiale).

5.3 Résultats

Les tableaux de résultats contiennent, pour chaque instance et chaque méthode, le score minimumfb, le score
moyenfm et sonécart-typeσ sur l’ensemble des essais, ainsi que letempsd’exécution moyen en secondes.
Nous pŕecisonśegalement le score moyen des arbres initiauxfinit suivant la ḿethode de constructionA ouD.

finit fb fm σ temps

10
0-

10
0

A+NSP R

1 567

536 538,7 2,1 68
A+NNNI 544 568,8 21,6 8
A+NSP R

d 534 534,0 0 39
D+NSP R

557

534 534,6 0,5 60
D+NNNI 534 536,1 1,4 3
D+NSP R

d 534 534,0 0 10

10
0-

10
00

A+NSP R

12 939

4 080 4 106,8 18,1 671
A+NNNI 4 080 4 178,8 197,1 109
A+NSP R

d 4 080 4 080,0 0 147
D+NSP R

4 108

4 080 4 081,8 2,0 539
D+NNNI 4 080 4 080,0 0 20
D+NSP R

d 4 080 4 080,0 0 52

Table 2.Comparaison entre SPR, NNI et le Voisinage Evolutif pourN = 100

Jeux aĺeatoires Sur les 2 instances composées de 100 śequences (tableau 2), on remarque queN SPR
d retourne

syst́ematiquement une solution de score minimum (par rapportà l’ensemble des ḿethodes), quelle que soit
la taille des śequences et la solution initiale de la recherche. Comme on pouvait s’y attendre,NNNI est la
méthode la plus rapide mais n’est pas du tout fiable lorsque la solution initiale est construite aléatoirement, et
obtient de meilleurs ŕesultats pour de longues séquences. Tous les voisinages semblent performants et fiables
à partir d’un arbre construit selon une méthode de distances, mais cela est surtout dû à la relative facilit́e de
cette instance (seulement 100 séquences), et donc̀a la bonne qualit́e de la solution initiale (pour 100-1000, la
recherche locale ne permet qu’une amélioration de la solution construite de−0, 7%, contre−68, 5% depuis un
arbre aĺeatoire).

Lorsque le nombre de séquences est plus important, comme pour l’instance reportée dans le tableau 3, le
voisinageN SPR n’est plus approprié, puisqu’il retourne dans tous les cas des solutions de score trèséloigńe
de ceux des solutions trouvées parN SPR

d . La qualit́e de la solution retourńee avecNNNI est fortement
dépendante de l’arbre initial et peut converger très rapidement vers un optimum local, ce qui montre l’instabilité
de la ḿethode en fonction des facteurs stochastiques. Ces résultats confirment queNNNI n’est vraiment ef-
ficace (en terme de performance, robustesse et temps de calcul) que lorsque les séquences sont longues età
condition de d́ebuter la recherche avec unebonnesolution (ici construite suivant une méthode baśee sur les
distances). Notre voisinagéevolutif N SPR

d obtient de bons résultats depuis toute solution initiale, malgré le
nombre ŕeduit d’itérations comparé à la taille du probl̀eme.
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finit fb fm σ temps

30
0-

10
0

A+NSP R

5 860

1 579 1 647,9 32,3 115
A+NNNI 1 746 1 921,9 92,2 53
A+NSP R

d 1 304 1 310,8 7,0 51
D+NSP R

1 375

1 336 1 342,4 4,1 77
D+NNNI 1 303 1 305,6 3,7 54
D+NSP R

d 1 302 1 303,4 1,5 53

30
0-

10
00

A+NSP R

51 391

17 043 17 305,0211,3 1 128
A+NNNI 14 209 14 426,0279,8 467
A+NSP R

d 14 209 14 209,0 0 479
D+NSP R

14 294

14 266 14 270,8 3,7 697
D+NNNI 14 209 14 209,0 0 82
D+NSP R

d 14 209 14 209,0 0 364

Table 3.Comparaison entre les voisinages pourN = 300 et Recherche Localèa partir d’un arbre aléatoire

La figure associée montre le score de l’arbre courant en fonction de l’avancée de la recherche, pour
l’instance 300-100 et en partant d’un arbre aléatoire (la recherche reportée est celle retournant l’arbre de score
médian). La recherche localeà voisinagéevolutif (VE) domine clairement SPR et NNI.

finit M fb fm σ temps

50
0-

10
0

A+NSP R

9 165

5
.1

0
4 3 548 3 610,5 48,7 4’

A+NNNI 3 937 4 318,1 210,6 2’
A+NSP R

d 2 305 2 435,1 121,6 1’40
A+NSP R

1
0
5

2 940 3 049,4 47,8 8’
A+NNNI 2 808 3 042,1 199,6 4’
A+NSP R

d 2 243 2 251,7 10,2 3’
A+NSP R

1
,
5
.1

0
5 2 753 2 795,5 28,1 11’

A+NNNI 2 389 2 559,1 192,8 6’
A+NSP R

d 2 243 2 244,7 1,4 4’

50
0-

10
00

A+NSP R

100 434

5
.1

0
4 36 505 37 595,6 595,1 39’

A+NNNI 28 478 30 072,01 374,8 20’
A+NSP R

d 24 337 24 491,7 184,7 16’
A+NSP R

1
0
5

31 615 32 029,7 319,4 75’
A+NNNI 24 319 24 460,3 188,9 29’
A+NSP R

d 24 319 24 319 0 33’
A+NSP R

1
,
5
.1

0
5 28 961 29 490,7 407,6 116’

A+NNNI 24 319 24 460,3 188,9 29’
A+NSP R

d 24 319 24 319 0 44’

Table 4.Comparaison entre les voisinages pourN = 500 à partir d’une solution initiale aléatoire

Pour une instance très large (tableau 4), il se confirme queN SPR donne dans tous les cas de mauvais
résultats. Les scores retournés parNNNI sont tr̀es inconstants, avec desécarts-types toujours très importants.
Si un allongement du temps de recherche provoque une amélioration des performances deN SPR, ce n’est
rapidement plus le cas pourNNNI , qui retourne tr̀es t̂ot un optimum local.

On remarque particulièrement l’efficacit́e du voisinagéevolutif N SPR
d dans le cas de larges instances,

comme 500-1000 qui est constituée au total de 500 000 caractères. En 100 000 itérations, il parvient̀a retourner
syst́ematiquement (sur les 20 tests), une solution de scoreégal au meilleur score trouvé pour cette instance (24
319). Sur les 20 tests,NNNI n’a trouv́e qu’une seule fois un tel score.

Dans le tableau 4, les temps d’exécution sont donńes en minutes.



finit fb fm σ temps

p
h

yt
o

A+NSP R

602

226 229,0 7,0 44
A+NNNI 226 291,3 59,1 9
A+NSP R

d 226 226,0 0 9
D+NSP R

231

226 226,6 0,7 44
D+NNNI 226 226,9 0,7 5
D+NSP R

d 226 226,0 0 10

Table 5.Performance des voisinages sur un problème ŕeel

Jeux réelsSi l’on ajoute aux pŕećedents ŕesultats ceux obtenus avec l’instance réelle (tableau 5), de constitution
diff érente des instances aléatoires, il apparait que le voisinageévolutif permet d’obtenir des solutions de score
minimal avec une confiance maximale et avec de meilleurs temps de calcul qu’en utilisant le classiqueN SPR.

On peut consid́erer que les instances préćedentes ne comportent pas de difficulté particulìere, puisqu’̀a partir
d’un certain nombre de lancers, un score minimum est ressorti des expérimentations. Avec l’instancezilla bien
connue, trouver le score minimum calculé à ce jour (16 218 [21]) en un faible nombre d’itérations et avec un
unique arbre de d́epart (uneréplication) est peu probable. Ce test sera alors une bonne manière de valider nos
résultats, et surtout de comparer les performances de notre voisinageévolutif avecNNNI dans le cas d’un
démarragèa partir d’une solution construite (D). C’est en effet la seule de ces méthodes qui offre sur les jeux
utilisés pŕećedemment d’aussi bons résultats que le voisinagéevolutif (NNNI est plus rapide, mais le résultat
est moins fiable car il d́epend toujours de la solution initiale et reste sujet aux aléas stochastiques).

Nous testons les trois voisinages pour différents nombres maximaux d’itérationsM : 105, 2.105 et 3.105.
Les temps d’ex́ecution sont ici donńes en minutes.

finit M fb fm σ temps

zi
lla

D+NSP R

18 353

1
0
5

17 089 17 116,8 24,8 145’
D+NNNI 16 556 16 778,9119,2 19’
D+NSP R

d 16 306 16 356,5 47,8 27’
D+NSP R

2
.1

0
5 16 785 16 816,8 36,6 278’

D+NNNI 16 556 16 778,9119,2 19’
D+NSP R

d 16 282 16 297,9 9,8 57’
D+NSP R

3
.1

0
5 16 590 16 645,3 57,5 395’

D+NNNI 16 556 16 778,9119,2 19’
D+NSP R

d 16 277 16 296,3 18,0 77’

Table 6.Descentes sur l’instancezilla à partir d’une solution construite

PourN SPR etNNNI , nous avons lanće 20 fois chaque ḿethode mais uniquement sur3.105 itérations. Les
valeurs pour105 et2.105 itérations sont donńees par les ŕesultats interḿediaires des recherches locales.NNNI

retourne syst́ematiquement un optimum local en moins de 100 000 itérations (50 000 en moyenne), c’est pour
cette raison que les résultats sont identiques pour unM suṕerieur. Sur cette instance difficile, on remarque
immédiatement la puissance du voisinageévolutif. En 200 000 ou 300 000 itérations, l’́ecart entre les arbres
retourńes et le meilleur arbre connùa ce jour varie entre0, 36% et 0, 69%, (0, 49% en moyenne), tandis qu’il
varie entre2, 08% et4, 33% (3, 31% en moyenne, soit près de 7 fois plus) pour les voisinages connus.

La figure 1 montre le comportement des trois recherches ayant retourné le score ḿedian pour les trois
méthodes appliqúeesà l’instancezilla sur respectivement 100 000 et 300 000 itérations. Nous rappelons que
l’arbre initial est construit̀a partir de la ḿethode baśee sur les distances.



On remarque clairement la supériorité du voisinagéevolutifN SPR
d , not́e VE sur les figures, par rapportà

SPR et NNI.
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Figure 1. Score de la solution courante sur resp.105 et3.105 itérations (instancezilla)

6 Conclusion et perspectives

Pour ŕesoudre le problème MP en reconstruction phylogéńetique, les heuristiques de recherche locale SPR et
NNI sont parmi les ḿethodes les plus populaires. Bien qu’elles soient très performantes et rapides pour des
petites instances (comportant moins de 100 espèces), elles apparaissent peu fiables lorsqu’on les appliqueà des
instances plus grandes. Dans le cas de voisinages restreints comme NNI, il faut effectuer plusieurs recherches
à partir d’arbres distincts (réplications), ou bien d́et́eriorer par moment la solution courante pour explorer
plusieurs zones de l’espace de recherche et ainsiéviter les pìeges des optima locaux. Dans le cas de voisinages
larges comme SPR ou TBR, il est nécessaire de les combinerà d’autres ḿethodes (algorithmes géńetiques [15],
superarbres [3], . . . ) car ils ne sont pas suffisamment efficaces utilisés seuls pour de larges instances.

L’objectif ici était de comprendre l’influence du voisinage utilisé en fonction des instances et de l’avancée
de la recherche locale, et de proposer une alternative qui combine les propriét́es int́eressantes des voisinages
SPR et NNI. Nous avons alors introduit la notion de voisinageévolutif, et effectúe une śerie d’exṕerimentations
montrant un gain d’efficacité sensible par rapportà SPR et NNI, notamment sur des instances difficiles. De plus,
sa robustesse entraı̂ne un gain de temps, car elle permet de minimiser le nombre de réplications. En effet, l’arbre
initial influe très peu sur la qualité des solutions retournées par le voisinagéevolutif.

Afin d’améliorer encore les performances de notre voisinageévolutif, il est pŕevu d’́etudier plus pŕeciśement
les propríet́es du sous-voisinage améliorant et du sous-voisinage dét́eriorant d’un arbre courant. Le but de cette
recherche localéevolutive sera d’utiliser un voisinage qui se construità partir des propriét́es des configurations
déjà exploŕees.
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