

Département informatique de l’université d’Angers

����

Amélioration d'un logiciel
d'émulation du fonctionnement

d'un microprocesseur x8 6

SCHAEFFER Florian
ROUSSEAUX Billy

L3 Informatique

Responsable du projet: M. Jean-Michel RICHER

2007-2008

�

U niversité d'Angers
D épartement Informatique

�

�

Table des matières

I – INTRODUCTION ... 3
II – ANALYSE DE L'EXISTANT... 4

1 - L'INTERFACE .. 4
2 - LES FONCTIONNALITES... 5

2.1 - les caractéristiques .. 5
2.2 - la structure d’un programme ... 5

3 - LE DIAGRAMME DE CLASSES ... 7
4 - EXPLICATION DU FONCTIONNEMENT .. 9

4.1 - les types .. 9
4.2 - Les flags ... 9
4.3 - La mémoire... 9
4.4 - Instructions et paramètres ... 10
4.5 - Programme... 10

III – LES MODIFICATIONS APPORTEES... 12
1 - INTERFACE ... 12
2 - GESTION DU 32 BITS ... 13

2.1 – Passage en 32 bits ... 13
2.2 – La gestion des parties hautes et basses des registres 13

3 - SSE.. 15
3.1 – Le SSE en quelques mots ... 15
3.2 – Notre représentation.. 15
3.3 - Les classes modélisant les données 128 bits.. 15
3.4 – Les instructions.. 16
3.5 – Exemple ... 17
3.6 - Conclusion de la partie SSE... 18

4 - GESTION DES ERREURS ... 18
5 – LE NOUVEAU DIAGRAMME DE CLASSES ... 19

IV – CONCLUSION ... 21
BIBLIOGRAPHIE / SITOGRAPHIE... 22

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 3 sur 22

I – Introduction

 Il est parfois difficile pour un étudiant qui doit étudier un nouveau langage de maîtriser
tous les outils à sa disposition : compilateurs, assembleurs, débuggeurs,… surtout s’ils sont
dépourvus d’interface graphique alors que le monde de Windows a incité nos esprits
d’informaticiens à oublier la ligne de commande.
C’est conscients de cette difficulté que nous avons travaillé sur ce projet d’émulateur de
fonctionnement d’un microprocesseur x86.

 Le projet avait été développé en java au cours de l’année 2001 par deux étudiants de
licence : Frédéric BEAULIEU et Yan LE CAM. Notre objectif était bien défini : reprendre le
code et y apporter des améliorations. D’une part des améliorations graphiques mais également
des améliorations au niveau du moteur de l’émulateur, pour prendre en compte les évolutions
technologiques des processeurs.

 Nous ne sommes pas habitués à travailler sur un logiciel développé par d’autres. Il
nous paraissait important de bien comprendre le programme que nous devions améliorer.
C’est pourquoi nous avons passé beaucoup de temps au début de notre projet à essayer
d’entrer dans la pensée des précédents développeurs, à comprendre l’organisation de leur
code. C’était une étape nécessaire pour ensuite aller plus loin dans les améliorations. C’est
cela que nous allons présenter dans une première partie intitulée « Analyse de l’existant » :
dans un premier temps, nous présenterons l’ancienne interface graphique et ensuite les
différentes fonctionnalités de la version de base.

 C’est une fois ce travail d’analyse en profondeur effectué que nous avons pu entrer
dans la phase plus intéressante des modifications et améliorations. L’amélioration la plus
visible est bien sûr celle de l’interface graphique. Nous allons donc vous présenter les
modifications que nous avons jugées utiles d’apporter pour que l’interface soit plus claire,
mieux organisée et plus pratique à utiliser.
Ensuite, nous exposerons les améliorations que nous avons implantées au niveau du cœur de
l’application. En effet, depuis que le projet initial a été développé, des améliorations
technologiques importantes ont été ajoutées aux microprocesseurs. D’une part, la taille des
registres est passée de 16 à 32 bits et d’autre part de nouvelles instructions agissant sur de
nouveaux registres fonctionnant différemment sont apparues : les instructions SSE. Nous
allons donc expliquer toutes ces améliorations qui ont nécessité des changements conséquents
dans le programme de base.

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 4 sur 22

II – Analyse de l'existant

1 - L'interface

 La première approche que nous avons eue avec l'application réalisée par Fréderic
Baulieu et Yan Le Cam est bien sûr l'interface graphique. Nous avons en effet pris un peu de
temps pour tester l'application avant de tenter de la modifier pour nous rendre compte par
nous-mêmes de son fonctionnement ainsi que des points que nous allions avoir à modifier.

 Au lancement de l'application, on observe sept fenêtres ayant chacune un contenu
précis. Ces fenêtres sont indépendantes en terme de position, elle sont bien réparties sur
l'écran au démarrage, avec la possibilité de choisir de n'afficher que certaines d'entre-elles,
grâce au menu affichage.

Vue écran du logiciel original

Le logiciel est donc composé à son lancement de 7 partie distinctes : en haut, la barre
de menu, à droite, la fenêtre contenant les variables normales, la fenêtre contenant les
tableaux et celle contenant les registres et les flags, au centre nous avons le code source et
enfin a droite, les entrées/sorties et la pile.
Les informations sont relativement bien réparties, nous allons tenter de garder une disposition
similaire. Mais nous allons devoir modifier cette interface et y ajouter certaines parties.

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 5 sur 22

2 - Les fonctionnalités

2.1 - les caractéristiques

 Avant de nous lancer dans la modification du projet effectué par nos prédécesseurs,
nous avons dû nous pencher sérieusement sur la compréhension du travail qui avait déjà été
effectué, sans quoi nous aurions perdu notre temps à modifier sans succès les fichiers qui le
constituent.

 Après le test du logiciel et la lecture du rapport de stage correspondant à ce projet,
nous avons pu déterminer précisément les caractéristiques générales de l’émulateur.
Premier point important, le programme gère uniquement une taille de seize bits, non signé.
C’est à dire que pour qu’un programme soit lisible pour l’émulateur, chaque variable ou
élément de tableau doit être déclarée comme étant un mot (DW) ce qui autorise des valeurs
allant de 0 à 65535. Nous voyons ici le premier point à améliorer.

 Pour ce qui est de l’émulation du matériel, le processeur possède 7 registres, 4
registres de données (AX,BX,CX,DX), 2 registres pointeurs de pile (BP et SP) et 1 pointeur
d’instruction (IP). Tous ces registres ont une taille de 16 bits et il est encore impossible de
manipuler séparément les parties hautes et basses des registres de données. Voilà un second
point sur lequel il a été nécessaire de nous pencher.

L’émulateur gère 4 flags :

- ZF : il est mis à 1 lorsque le résultat d’une opération vaut 0
- CF : il est mis à 1 lorsque le calcul comporte une retenue
- OF : il est mis à 1 s’il y a eu un débordement arithmétique (par exemple lors d’une

addition
- SF : il est mis à 1 lorsque le résultat d’une opération est négatif

 Il existe d’autres flags qui n’ont pas été implémenté initialement car ils n’intervenaient
pas dans les instructions supportées par l’émulateur. Nous ne modifierons donc pas cette
partie, les seules instructions que nous allons ajouter n’auront pas effet sur d’autres flags que
ceux implémentés ici.

 En ce qui concerne la mémoire, elle n’est pas gérée strictement comme le ferait un
processeur de type 8086. Emul8086 sert à comprendre et déboguer un programme écrit dans
un langage proche de l’assembleur, la gestion interne de la mémoire importe peu ici. Nous
allons être amenés à modifier les méthodes concernant cette partie de l’application pour notre
projet, nous garderons cependant le même principe de gestion.

2.2 - la structure d’un programme

 Comme indiqué dans le rapport de projet, les programmes chargés par l’émulateur
seront sous forme de fichiers texte, comportant deux section DATA et CODE, mots clé qui
devront être dans cet ordre.

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 6 sur 22

La partie DATA servira à déclarer les variables sous la forme suivante :

 « nom_variable DW valeur initiale » ou « nom_tableau DW[taille] »

le « DW » servant à indiquer le type de variable. Nous allons être amenés à étendre les types
acceptés par l’émulateur et donc permettre la gestion d'autres mots clé.

 La partie CODE contiendra les instructions à exécuter, à raison d’une instruction ou
étiquette par ligne.
 Chaque ligne aura donc la forme suivante :
 « Instruction param1 [param2] » ou « étiquette : » (param2 peut ne pas exister selon
l’instruction)

 Le programme peut également comporter des lignes vides ou des commentaires
commençant par un point-virgule.

 Le langage d’assemblage supporté par l’émulateur se trouve donc être très proche
syntaxiquement d’un langage d’assemblage réel comme celui que nous avons pu étudier au
premier semestre de la troisième année de licence.

 Le langage utilisé comporte cependant 2 instructions supplémentaires : LIRE et
ECRIRE qui permettent de simplifier le mécanisme d’entrées/sorties en laissant le traitement
de ces opérations à l’émulateur plutôt qu’au processeur.

 Voici à tire d’exemple un programme supporté par le logiciel original (calcul de la
moyenne de cinq nombres demandés à l’utilisateur) :

; exemple : calcul de moyenne
; déclaration des données
DATA
 Somme DW 0
 Moyenne DW 0
 Maximum DW 5
 Notes DW[5]

; instructions à exécuter
CODE
start:
 MOV AX, 0
 MOV BX, 0
loop:
 LIRE Notes[BX]
 ADD AX, Notes[BX]
 INC BX
 CMP BX, Maximum
 JNE loop

 MOV Somme, AX
 DIV BX
 MOV Moyenne, AX
 ECRIRE Moyenne

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 7 sur 22

3 - le diagramme de classes

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 8 sur 22

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 9 sur 22

4 - Explication du fonctionnement

4.1 - les types

 Tout d'abord, les variables et les registres sont représentés à
l'aide des classes Donnee, Etiquette et Variable. Ces classes liées par
une relation d'héritage contiennent respectivement la valeur le nom et
la sorte de variable correspondante. Les tableaux font l'objet d'une
classe particulière : ils contiennent un vecteur de variables.

4.2 - Les flags

 Les flags sont représentés par une classe composée seulement d'un booléen et de deux
accesseurs.

4.3 - La mémoire

 Une des parties les plus importantes du logiciel est la mémoire. Une instance de la
mémoire est créée par la machine et liée au processeur. Cette classe contient la liste des
variables utilisées et la liste des tableaux (déclarées dans la section DATA du programme)
ainsi que la liste des étiquettes (déclarées dans la section CODE) et un vecteur des différentes
lignes du programme dans son ensemble. Cette classe contient également les méthodes pour
remplir ces champs lors de la traduction du programme et les méthodes pour y accéder lors de
son exécution.
La méthode creerMemoire effectue une première analyse syntaxique du fichier texte fourni
lors d'un chargement. Elle crée des instances de variables, de tableau et d’étiquettes qui seront
ensuite utilisées deux fois : dans un premier temps pour vérifier la partie CODE du
programme, en vérifiant l'existence des variables utilisées, et ensuite lors de l'exécution pour
agir sur ces variables.

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 10 sur 22

4.4 - Instructions et paramètres

Les classes Instruction, InstructionUnaire et InstructionBinaire
servent à stocker les instructions du programme en instructions
exécutables par le microprocesseur de l'application. Ces classes
contiennent des instances des objets sur lesquels elle agit ainsi qu'un
code d'instruction destiné au processeur.

Les paramètres sont une instance d'une des classes précédentes
en fonction de leur type (i.e. le type de la variable sur lequel elles
agissent)
Chacune de ces classes contient donc le paramètre situé en mémoire
sur lequel porte l'instruction.

4.5 - Programme

 Une autre partie conséquente du programme est la classe Programme. Après le
chargement d'un programme et suite à la création de la mémoire comme expliqué
précédemment, une deuxième analyse syntaxique est effectuée pour cette fois-ci traduire les
instructions en créant des instances de le classe Instruction. C'est ici que les erreurs de
paramètres, ou les utilisations de variables non déclarées sont détectées.

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 11 sur 22

4.6 - le CPU

Le cœur de l'application est bien évidemment le CPU.

Il permet d'exécuter les instructions traduites par une instance
de la classe Mémoire et une instance de la classe Programme.
On retrouve également parmi les champs les registres et les
flags.

 On y trouve aussi les méthodes permettant les
différents types d'exécution.
La méthode getIp permet de connaître l'exécution en cours, ce
qui permet les trois modes de déroulement du programme:
Exécution complète, exécution pas à pas et exécution jusqu'à
une ligne donnée.

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 12 sur 22

III – Les modifications apportées

 Le but de notre stage était donc d’apporter des modifications et des améliorations à ce
logiciel. Nous allons vous présenter les différents points sur lesquels nous avons effectué des
changements, que ce soit au niveau de l’interface ou au niveau du cœur de l’application.

1 - Interface

 La première modification, la plus visible au premier abord, est l'amélioration de
l'interface graphique. Comme nous l’avons vu dans la partie « Analyse de l’existant », le
logiciel original se composait de 7 fenêtres séparées. Au lancement du programme, cela ne
gênait en rien : les fenêtres étaient automatiquement placées d'une façon plutôt fonctionnelle.
Cependant, cette indépendance des fenêtres se révèle vite être un défaut à l'utilisation. Dès
que l'on commence à les déplacer, on se retrouve vite avec une interface peu pratique et des
fenêtres qui se superposent.
C'est pourquoi nous avons commencé par modifier cette interface pour rassembler toutes les
fenêtres en une seule.

 Nous avons donc modifié la relation d’héritage pour que JEmu8086Dialog hérite de
JPanel et Jemul8086Frame de JFrame, puis ensuite modifié en conséquence tous les appels
de méthodes spécifiques à JPanel. Ce changement semble au final assez logique, les deux
étant des conteneurs.

 Cette première modification effectuée, nous avons dû ajouter un gestionnaire de mise
en page (GridBagLayout) à la fenêtre principale (représentée par la classe TFenPrinc) afin d'y
ajouter nos nouveaux éléments de façon à respecter au mieux une disposition proche de ce
que proposait l'application originale.

Vue écran de la nouvelle application

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 13 sur 22

2 - Gestion du 32 bits

2.1 – Passage en 32 bits

 Une autre grande modification apportée à ce logiciel est la gestion du 32 bits, mais
aussi des parties hautes et basses des nouveaux registres généraux. Pour obtenir ce résultat
nous avons commencé par faire une simple modification pour passer du 16 bits uniquement
au 32 bits uniquement.
Cela a consisté principalement à changer le nom des registres aux différents endroits dans le
logiciel (AX devient EAX) ainsi que modifier la plage de nombres acceptés (0 à 232-1 au lieu
de 0 à 216-1). Nous avons ici été confrontés à une première difficulté liée à la gestion des
types dans le langage JAVA. Pour le moment, chaque valeur était stockée dans un type int.
En Java, contrairement à certains langages comme le C, les types sont de tailles fixes, peut
importe la machine sur laquelle le programme est exécuté. En l'occurrence, le type int de java
est codé sur 32 bits dont un bit de signe. Nous ne pouvons donc pas stocker des nombres
entiers positifs de 32 bits, il nous a fallu utiliser le type long, et faire les modifications
nécessaires dans les différentes classes.
 Cependant cette modification n'est pas sans conséquences, en effet, nous utilisons un
vecteur (classe Vector) pour représenter un tableau. La méthode Java qui permet d'accéder à
un élément d'un vecteur ne peut pas prendre de long en paramètre, nous sommes donc
contraints de faire un cast en int, ce qui interdit d'avoir des tableaux de taille supérieure à la
valeur maximale d'un int en Java. Cela dit, il est rare de manipuler des tableaux de cette taille
dans un programme de base en assembleur.

2.2 – La gestion des parties hautes et basses des registres

 La seconde partie du travail, la plus importante en terme de fonctionnalité des registres
32 bits, a consisté à pouvoir gérer séparément les parties hautes et basses des registres
généraux ce qui permet d'ajouter de l'intérêt au logiciel en s'approchant un peu plus de
l'utilisation réelle du langage assembleur.

 Pour cela nous avons choisi de ne pas modifier le diagramme de classe établi par les
précédents développeurs, qui nous semblait être adapté tel qu'il était pour l'ajout de cette
fonctionnalité. Nous avons donc ajouté et modifié les méthodes impliquées dans la traduction
de la partie DATA en zones mémoires et de la traduction du programme en instruction lisibles
par l'émulateur. Lors de l'analyse, on accepte maintenant les mots clés DD (double mot : 32
bits) et DB (byte : 8 bits) en plus de DW (mot : 16 bits). Cette modification s'applique aussi
bien aux variables classiques qu'aux tableaux, auquel cas cela indique la taille d'un élément du
tableau.

 Ensuite, il a fallu continuer nos modifications dans ce sens pour permettre au
programme de comprendre les instructions impliquant des parties hautes et basses de
registres. (Exemple MOV var, AX). Pour cela, nous avons créé une méthode qui renvoie le
nom du registre 32 bit, s'il existe, dont nous prenons la sous-partie. Ainsi le logiciel accepte
un programme assembleur contenant ce genre de nom de registre : nous pouvons maintenant
utiliser, par exemple pour EAX, la partie basse de 16 bits AX, mais aussi les partie AH et AL
qui sont les parties hautes et basses de AX.

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 14 sur 22

 Nous avons en parallèle modifié les classes Variable et Tableau ainsi que les classes
ParamVariable et ParamTableau, pour pouvoir prendre en compte ce nouvel aspect dans le
traitement des instructions par la classe CPU.
Nous avons dû de la même manière modifier les méthodes set et get en ce qui concerne la
modification de valeurs en mémoire pour bien modifier la bonne portion de mémoire. En
effet, bien que le nom EAX, AH, AH et AL agissent au final sur un seul et même registre, il
est maintenant nécessaire de filtrer de façon précise quel élément va être modifié en mémoire.

 Maintenant la traduction de programme en instruction exécutable se charge de
déterminer la validité des paramètres pour une instruction. Ensuite lors de l'appel à une
méthode get, on filtre la valeur de la variable ou du registre concerné en fonction de sa taille à
l'aide d'un "et" logique (bit à bit) avec une valeur dépendant de la taille. Puis, lors de l'appel à
une méthode set, on modifie uniquement la partie concernée en commençant par récupérer la
valeur actuelle et en utilisant un procédé similaire à la méthode get.

 Suite à ces modifications, nous avons dû adapter le traitement des instructions par le
CPU en fonction des tailles des paramètres.
Ces modifications ont été l'occasion d'ajouter deux nouvelles instructions: SHR et SHL.

 De cette façon l'émulateur gère maintenant les registres, variables et tableaux de
doubles mots, de mots et de bytes.

Un exemple de programme accepté suite aux modifications:

 ; exemple pour les registres 32 bit
 ; définition des données
 DATA
 Var1 DB 0
 Var2 DW 0
 Var3 DD 5
 Tab1 DB[5]
 Tab2 DW[8]
 Tab3 DD[2]
 ; début des instructions
 CODE
 start:
 ;exemple PUSH/POP
 MOV AH, 1
 MOV AL, 1
 PUSH AX
 MOV BX, 35
 PUSH BX
 POP ECX
 ;exemple MOV
 MOV EDX,2
 etiquette:
 SHL EAX,3
 MOV ECX,0
 MOV Tab1[CL],EAX
 DEC EDX
 ECRIRE AX
 CMP EDX,0
 JNE etiquette

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 15 sur 22

3 - SSE

3.1 – Le SSE en quelques mots

 L’une des modifications importantes que nous avons apportée au programme est la
gestion de quelques instructions SSE (Streaming SIMD Extensions)
« SSE est un jeu de 70 instructions supplémentaires pour microprocesseurs x86, apparu en
1999 sur le Pentium III en réponse au 3DNow! d'AMD apparu 1 an plus tôt. » 1
L’intérêt principal de ces instructions est le fonctionnement de type SIMD (Single Instruction
on Multiple Data). Cela signifie que la même instruction est appliquée simultanément à
plusieurs données pour produire plusieurs résultats.

 Le SSE a donc ajouté huit nouveaux registres de XMM0 à XMM7. Ce sont des
registres 128 bits. Ils peuvent donc compacter ensemble par exemple 4 nombres flottants 32
bits simple précision (en utilisant le standard IEEE 754).

 Apparu avec le Pentium 4 en 2001, le jeu d’instructions SSE2 apporte des avancées
significatives : il ajoute des instructions flottantes double précision (64 bits) mais surtout, il
étend les instructions MMX qui utilisaient des registres 64 bits aux registres XMM (128 bits).

3.2 – Notre représentation

 L’un de nos buts lors du développement du projet était de réussir à insérer quelques
unes de ces instructions SSE dans le programme. Cela nous obligeait à compléter le schéma
des classes existant pour gérer des registres 128 bits. La difficulté étant de choisir comment
représenter 128 bits sachant que le type le plus grand en java est le type « long » sur 64.

 Pour contourner cela, nous avons choisi de représenter un registre 128 bits par un
tableau de 16 cases de 8 bits chacun. Mais plutôt qu’un tableau de byte, nous définissons un
tableau de short. En effet, en java, les types simples sont signés et pour pouvoir travailler sur
des entiers signés, nous avons dû contourner le problème. Avec un octet on peut stocker 28
valeurs soit de 0 à 255 si elles sont non-signées mais de -128 à 127 dans le cas contraire. Ce
problème inhérent à Java (où les types simples sont obligatoirement signés) fait perdre en
clarté et complique le code, mais se contourne donc facilement.

3.3 - Les classes modélisant les données 128 bits.

 A l’image des données 32 bits, plusieurs classes seront utiles pour travailler avec des
données de 128 bits : la classe mère : Donnee128 comporte comme champ le tableau de 16
cases de short. Héritant de cette classe, Etiquette128 ajoute simplement un champ nom
(String) à la donnée.
Enfin la classe Variable128, héritant de Etiquette128, comporte un champ sorte qui permet de
caractériser la donnée : elle peut être un registre ou bien un emplacement mémoire (en réalité
un tableau, selon le principe de notre émulateur.)

 Maintenant que nous avons la structure de base pour traiter nos registres 128 bits, nous
allons nous pencher sur les différentes instructions SSE que nous avons ajoutées.

1 Définition Wikipedia, Article “Streaming SIMD Extensions”

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 16 sur 22

3.4 – Les instructions

L’instruction MOVDQU

Instruction Description

MOVDQU xmm1, xmm2/m128 Move unaligned double quadword from xmm2/m128 to xmm1.

MOVDQU xmm2/m128, xmm1 Move unaligned double quadword from xmm1 to xmm2/m128.

Tab1 : Description de l’instruction MOVDQU 2

 L’instruction MOVDQU (Move Unaligned Double Quadword) est comparable à
l’instruction MOV du x86. Elle permet de transférer un Double Quad, c'est-à-dire 128 bits
soit d’un registre SSE vers un autre soit d’un emplacement mémoire vers un registre SSE (ou
vice-versa).

Les instructions PADDB / PADDW / PADDD

Instruction Description

PADDB xmm1,xmm2/m128 Add packed byte integers from xmm2/m128 and xmm1.

PADDW xmm1, xmm2/m128 Add packed word integers from xmm2/m128 and xmm1.

PADDD xmm1, xmm2/m128 Add packed doubleword integers from xmm2/m128 and xmm1

Tab 2 : Description des instructions PADDB / PADDW / PADDD3

 Les trois instructions PADDB / PADDW / PADDD sont très proches : elles effectuent
des additions d’entiers par paquets : c’est l’application du principe SIMD (Single Instruction
on Multiple Data). L’instruction PADDB additionne les données de 128 bits par paquets de
byte. En cas d’overflow, c'est-à-dire si la somme est trop grande pour être représentée sur 8
bits, seuls les 8 bits les plus faibles sont écrits dans l’opérande de destination, les retenues
sont ignorées. De même, avec l’instruction PADDW, l’addition est faite par paquets de mots
(16 bits) et avec l’instruction PADDD, l’addition est faite par paquets de doubles mots (32
bits).

 Pour implémenter ces opérations, on créé des accesseurs getByte, getWord, getDouble
dans la classe Donnee128. Chaque accesseur a comme paramètre un entier qui désigne sa
place. Voici par exemple getWord (dans la classe Donnee128)

 //retourne le mot n° n (entre 0 et 7)
 int getWord(int n){
 return (int) ((reg[2*n+1]+256*reg[2*n])& 0x0ffff);
 }

2 D’après la documentation : http://www.ews.uiuc.edu/~cjiang/reference/vc184.htm
3 D’après la documentation : http://www.ews.uiuc.edu/~cjiang/reference/vc223.htm

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 17 sur 22

Ainsi, dans la classe CPU.java, on retrouve les opérations permettant d’effectuer l’instruction
PADDW :
 for (int i=0; i<8; i++){
 sum = (int) (d128.getWord(i)+d128b.getWord(i));
 d128.reg[2*i]= (short) (sum/256 & 0xff);
 d128.reg[2*i+1]= (short) (sum & 0xff);
 }

- d128b est la donnée 128 bits source
- d128 est la donnée 128 bits de destination
- sum est une variable temporaire stockant la somme des deux mots.
Il suffit ensuite d’affecter le résultat obtenu dans le registre 128 bits de destination, mot par
mot.

3.5 – Exemple

Voici un exemple pour illustrer le fonctionnement de la partie SSE :

DATA

 T1 DD[4]
 T2 DD[4]
 T3 DW[8]
 T4 DW[8]
CODE

 MOV ECX, 0
 MOV EAX, 1
 MOV EBX, 65535
loop:

 MOV T1[ECX], EAX
 MOV T2[ECX], EBX
 MOV T3[ECX], EAX
 MOV T4[ECX], EBX
 INC ECX
 INC EAX
 CMP ECX, 4
 JL loop

 MOV ECX, 0
 MOVDQU xmm0, T1[ECX]
 MOVDQU xmm1, T2[ECX]
 PADDD xmm0, xmm1
 MOVDQU xmm2, T3[ECX]
 MOVDQU xmm3, T4[ECX]
 PADDW xmm2, xmm3
 MOVDQU T1[ECX], xmm0
 MOVDQU T3[ECX], xmm2

Ce programme illustre l’utilisation des instructions SSE. Les deux premières instructions
MOVDQU déplacent 128 bits d’un tableau vers un registre. Les instructions PADDD et
PADDW vont effectuer des additions en parallèle : par paquets de 16 bits pour l’instruction
PADDW et par paquet de 32 bits pour l’instruction PADDD.

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 18 sur 22

3.6 - Conclusion de la partie SSE

 Intégrer les instructions SSE à notre programme était un défi intéressant : en effet, tout
le code fonctionnait avec les registres traditionnels et il fallait pouvoir adapter les méthodes
pour qu’elles agissent aussi sur ces nouveaux registres. Outre une bonne connaissance et une
bonne compréhension du code, cela nécessitait également de bien se documenter sur le
fonctionnement du SSE. Lors de cette partie, la première difficulté était de trouver comment
représenter un registre 128 bits, en intégrant la particularité de Java pour lequel les types
simples sont nécessairement signés. Ensuite, il a fallu adapter chacune des méthodes qui
fonctionnaient pour les registres 32 bits : la récupération des paramètres, les accesseurs pour
les données 128 bits et les utiliser pour chaque opération.
Bien sûr la liste des instructions SSE ajoutées n’est pas exhaustive ! Il s’agissait simplement
d’illustrer les modifications que nous avions apportées au programme initial pour la prise en
charge des registres 128 bits et des instructions SSE. Ainsi, il est très rapide maintenant que
ce travail est fait d’ajouter de nouvelles instructions. Cela pourrait être par exemple le travail
d’autres étudiants à l’avenir. Il nous semblait important de ne pas imposer à d’éventuels
successeurs les mêmes difficultés de compréhension que nous avions subies, par manque de
commentaires ou d’organisation des classes.

4 - Gestion des erreurs

 Avec le logiciel original, quand nous essayions de charger un programme qui
comportait une erreur de syntaxe, le logiciel qui rencontrait donc une erreur à la traduction de
ce programme semblait ne rien charger, et c'était dans la console que se trouvait la réponse à
cette erreur. Nous avons donc pris le temps de gérer les exceptions provoquées par ces
erreurs. Désormais, on obtient un message d'erreur lors du chargement d'un fichier qui
comporte des erreurs. L'utilisateur sait maintenant le numéro de la ligne de la première erreur
ainsi que son type quand il est connu (erreur de paramètre pour une instruction, variable non
déclarée…)

Cette nouvelle fonctionnalité s'est
avérée être très pratique pour nos
propres tests et nous pensons
qu'elle complète le logiciel d'une
façon intéressante. En plus de voir
l'effet de programme tout fait sur le
processeur, l'utilisateur débutant en

assembleur peut plus facilement apporter des modifications ou même construire son propre
programme en corrigeant aisément ses fautes.

 Le programme affiche donc dans une fenêtre d’avertissement la première erreur qu'il
rencontre. Le créateur du programme peut donc être amené à effectuer ses corrections.
 En revanche, lors de la création du programme, on ne peut pas déterminer si le
programme va accéder à une case hors limites du tableau, ce qui est cohérent avec le
fonctionnement d’un débuggeur normal.

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 19 sur 22

5 – Le nouveau diagramme de classes

 Nous avons commenté le code et nous avons également tenu à le réorganiser avec les
possibilités qu'offre le langage. Nous avons donc créé 3 paquetages et réparti les classes. Ces
modifications font suite à la difficulté que nous avons eue à bien comprendre le code original,
très peu commenté.

Voici le nouveau diagramme de classes:

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 20 sur 22

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 21 sur 22

IV – Conclusion

 Pour nous, ce projet a été l'occasion de retravailler un projet existant, déjà fonctionnel
et plutôt bien construit. C'est la première fois dans le cursus licence que nous avons travaillé
de cette manière. Reprendre un code existant comporte des avantages et des inconvénients :

D’un côté, nous nous trouvons face à des difficultés nouvelles. Il faut en effet
comprendre la manière dont le code a été pensé alors que nous ne disposions que de très peu
de documentation. L’absence totale de commentaires, l’utilisation du seul paquetage par
défaut nous ont montré qu’un projet pouvait être très clair dans l’esprit de ses auteurs mais
que ceux qui reprennent le code peuvent se retrouver face à un véritable obstacle.

Mais d’un autre côté, quand la barrière de la compréhension a été franchie, nous
pouvons aller plus loin puisque le programme de base est déjà avancé et nous n’avons donc
pas besoin de reprendre le sujet au début.

 Finalement, ce stage a été très bénéfique pour nous. En effet il mêlait ensemble
plusieurs disciplines et nous a permis de mettre à profit les études des semestres précédents et
de parfaire nos connaissances dans des matières déjà étudiées au premier semestre :
En effet, les acquis du cours de programmation objet étaient sans cesse sollicités et ce
nouveau développement de projet en java nous a encore permis d’aller plus loin dans les
possibilités du langage.

En outre, notre sujet était parfaitement dans la continuité du cours d’architecture des
ordinateurs et d’initiation à l’assembleur. Il nous a donc permis de bien mieux comprendre le
fonctionnement des instructions, des flags ou des registres. Pour nous, il est certain que ce
projet de « longue durée » a été bénéfique : nous n’avons pas souvent eu l’occasion de nous
plonger dans un projet de cette façon. Et passer du temps sur un sujet forme notre esprit et
notre intelligence à raisonner un peu plus comme des informaticiens !

Enfin, un des avantages majeurs de ce projet a été le travail en binôme. Ce n’est bien
sûr pas un travail en grande équipe mais nous apprend déjà à bien répartir le travail, à se
concerter régulièrement pour organiser le travail et à s’enrichir mutuellement en partageant
des idées. Cela a été très formateur tout au long de ce mois de travail.

Nous voyons bien sûr qu’il reste des améliorations à apporter et des fonctionnalités à

ajouter. D’un point de vue esthétique, la coloration syntaxique du code aurait sans doute été
utile. De plus, pour être vraiment exhaustif, notre programme doit pouvoir accepter encore de
nouvelles instructions pour se rapprocher au mieux du langage assembleur des processeurs
actuels. Mais la vitesse d’évolution des caractéristiques des processeurs promet d’occuper de
nombreuses générations d’étudiants en informatique !

Rapport de stage – Licence informatique Florian Schaeffer - Billy Rousseaux

Page 22 sur 22

Bibliographie / Sitographie

� Programmer en JAVA : 5e édition java 5 et 6 / Claude Delannoy. – Editions
EYROLLES, 2007 – 800 pages.

 ISBN : 978-2-212-12232-9

� Développons en Java version 0.95 / Jean-Michel DOUDOUX - 18/11/2007 -
Disponible sur son site: http://www.jmdoudoux.fr/accueil_java.htm

� http://benoit-m.developpez.com/assembleur/tutoriel/CoursASM_Fichiers/sommaire.php
 Club d'entraide des développeurs francophones
 Benoit-M., 03 janvier 2003
 Tutorial sur l'assembleur

� http://java.sun.com/javase/6/docs/api/
 Sun – Documentation java 6

� http://en.wikipedia.org/wiki/X86_instruction_listings
 Article wikipédia X86

� http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
 Article wikipédia SSE

� http://www.ews.uiuc.edu/~cjiang/reference/
Documents de référence sur les instructions SSE

