PROGRAMMATION

Jean-Michel RICHER

Programmation Assembleur x86
32 et 64 bits sous
Linux Ubuntu

Jean-Michel RICHER

4eme Edition
version 2023.09

Destinée au cours a partir de
la rentrée de Septembre 2023

© Copyright 2020 par Jean-Michel RICHER

Avertissements

Cet ouvrage peut étre reproduit et utilisé uniguement a des fins
non commerciales, notamment dans le cadre de I'enseignement
de I'assembleur. Il ne peut, en aucune maniére, étre modifié ou
commercialisé sans I'accord de son auteur.

Toute demande de modification, de rectification ou de
correction peut étre adressée par courrier électronique a
['auteur.

Lensemble du code des études de cas et des différents
chapitres est disponible sur le site web de l'auteur a l'adresse
Suivante :

http://leria-info.univ-angers.fr/~jeanmichel.richer/
assembleur.php

ISBN-13 : 978-2-9573160-0-7

Contact: jean-michel.richer@univ-angers.fr
Adresse : Faculté des Sciences

Université d’Angers

2 Boulevard Lavoisier

49045 ANGERS Cedex 01

France

mailto:jean-michel.richer@univ-angers.fr

Ce livre est dédié a ceux qui ont contribué a sa réalisation
en premier lieu @ mes parents

pour mavoir donné la vie

pour m‘avoir éduqué

et avoir financé mes études

ensuite, aux enseignants qui m'ont donné l'envie
d’apprendre et de transmettre mon savoir

Juillet 2020, Avrillé

Eduquer c'est chercher a concilier deux mouvements contraires :
celui qui porte a aider chaque enfant a trouver sa propre voie

et celui qui pousse a lui inculquer

ce que soi-méme on croit

juste, beau et vrai

Nicolas Sarkozy, Lettre aux Educateurs
4 septembre 2007

Bien écrire, c'est déja presque bien penser
et il n'y a pas loin de la jusqu'a bien agir

Thomas Mann

REMERCIEMENTS

J'adresse mes remerciements a I'équipe technique du Département
Informatique de [I'Université d'Angers dont notamment Eric
Girardeau, Jean-Mathieu Chantrein, Benjamin Jeanneau et Frantz de
Germain pour m‘avoir facilité 'acces a certains matériels afin de
réaliser de nombreux tests de performance.

Codes sources

1.1.1 Fonctionbsr,version 1, 28
1.1.2 Fonction bsr,version3, 29
1.3.1 Fonction nombre premier, version inefficace 39
1.3.2 Fonction nombre premier, version améliorée 40
1.3.3 Fonction nombre premier, version optimisée 40
1.3.4 Nombre premier aveccrible 41
1.3.5 Tria bulles en ordre croissant 42
1.3.6 Recherche de doublons, version simpliste 46
2.4.1 Précision et nombres flottants, 76
2.5.1 Convertir une chaine en majuscules 82
4.3.1 Helloworldennasm 140
4.4.1 Exemple de traduction, 144
5.4.1 Si Alors avec conjonction de conditions 168
5.4.2 Si Alors avec conjonction de conditions 168
543 Tantque oL e e e e e e e e e e e 171
5.4.4 Equivalence des boucles pour ettantque 171
5.4.5 Traduction amélioréedufor 172
5.4.6 Exemple de switch simplifiable par une expression 173
5.4.7 Exemple de switch avec table de conversion 173
5.4.8 Exemple de switch avec table de conversion en assembleur 32 bits 174
5.4.9 Dépliagedeboucle 176
5.4.10Dépliage de boucle avec macro instruction 178
6.2.1 Appelanten32bits e 193

CODES SOURCES

6.2.2 Appeléen32bits 194
6.3.1 Traduction en 64 bits de la fonctionsum 201
6.3.2 Traduction en 64 bits de la fonction sum - version améliorée . . . 202
11.3.1 Produit de matrice, fonction de référence 301
11.6.1 Produit de matrice, Inversion de bouclesjetk 306
11.8.1 Produit de matrice - Tuilage 4x4 310
11.8.2 Produit de matrice - Tuilage 311
13.2.1 SAXPY modifiée - fonction de référence 336
13.3.1 SAXPY modifiée - implantation FPU 337
13.4.1 SAXPY modifiée - fonction de référence dépliée par4 338
13.4.2 Macro inStruCtion NasIM « « & ¢ v e v v v v v e et e 339
13.4.3 SAXPY modifiée - implantation partielle avec FPU et dépliage par 4340
13.5.1 SAXPYversionSSE 341
13.7.1 SAXPYversionFMA 343
14.2.1 Maximum de Parcimonie fonction de référenceenC 351
14.3.1 Maximum de Parcimonie fonction de référence en assembleur . 353
14.4.1 Maximum de Parcimonie fonction de référence sansif 355
14.5.1 Maximum de Parcimonie fonction de référence sans if optimisée 357
14.6.1 Maximum de Parcimonie version SSE2 359
14.7.1 Maximum de Parcimonie version SSE4.1 360
14.8.1 Maximum de Parcimonie version AVX2 361
15.2.1 Compter les voyelles avecunif 370
15.2.2 Compter les voyelles avecun switch 371
15.2.3 Compter les voyelles avecun tableau 371
16.2.1 Fibonacci - fonction récursive 391
16.2.2 Fibonacci - fonction récursive améliorée 392
16.4.1 Fibonacci - fonction de référence 394
16.5.1 Fibonacci - fonction de référence en assembleur 395
16.6.1 Fibonacci - fonction itérative avec tableau. 396
16.7.1 Fibonacci - fonction itérative avec boucle while 396

CODES SOURCES 3

16.7.2 Fibonacci - fonction itérative avec while en assembleur 397

16.7.3 Fibonacci - fonction itérative avec while et amélioration du dépliage400

16.8.1 Fibonacci - fonction itérative vectorielle 404
16.8.2 Fibonacci - fonction vectorielle SSE 405
16.8.3 Fibonacci - fonction vectorielle AVX 406
16.9.1 Fibonacci - fonction la plus performante 410
17.2.1 Nombre auto-descriptif, fonction de référence 414
17.4.1 Nombre auto-descriptif, fonction de conversion en chiffres . . . 416
17.5.1 Fonction assembleur - version 1 -début 417
17.5.2 Fonction assembleur - version 1 - conversion 418
17.5.3 Fonction assembleur - version 1 - comparaison et sortie 419
17.5.4 Fonction assembleur - version 2 - remplacement de la division

par une multiplication, 420
17.5.5 Fonction assembleur - versions 5 - remplacement de la division

par une multiplication, 422
17.5.6 BCD - version 1 - Détermination de la longueur du nombre . . . 425
17.5.7 BCD - version 1 - Conversion du nombre 426
17.5.8 BCD - version 1 - Macros instructions pour la conversion 427
17.5.9 BCD - version 1 - Comparaison du nombre d’occurrences des

chiffresaveclenombre oL oo L 427
17.5.10 BCD - version 2 - Conversion« v v v v v v v v ... 429
17.5.11 BCD - version 2 - Trouver la longueur du nombre 429
17.5.12 Division par 10000 - Conversion 430

B.1.1 Programme comportant quelques bogues 438

CODES SOURCES

Table des matieres

1 Informatique, informaticien et assembleur 27
1.1 Pourquoi apprendre I'assembleur 27
1.1.1 Matériel et logiciel 32
1.2 Le métier d'informaticien. 33
1.2.1 Qu'est ce quun ordinateur?. 33
1.2.2 Qu’est ce que l'informatique?. 33
1.2.3 Qu’est ce qu'un informaticien? 35
1.2.4 En quoi consiste son travail?, 36
1.3 Savoir programmer et savoir réfléchir. 38
1.3.1 Nombres premiers v i it e . 38
1.3.2 115 42
1.3.3 Recherchededoublons 45
1.4 Le Génie (du) logiciel. 48
1.5 Conclusion. o i i it e e e e 51
1.6 EXerciCes o i i i i e e e e e e e e e e 51
2 Représentation de 'information 53
2.1 Introduction i i e e e e e e e e e 53
2.2 Représentation desentiers, 57
2.2.1 Lebinaire. e 57
2.2.2 Loctal e e e e e e e 59
2.2.3 Lhexadécimal 60
224 Lesentiersnaturels. e 60
2.2.4.1 Meéthode des divisions successives. 61
2.2.4.2 Méthode des intervalles de puissances 61

S5

6 TABLE DES MATIERES

2.2.4.3 Méthode par complémentation 62
2.2.4.4 Intervalles de représentation. 62
2.2.4.5 Débordement 62
2.2.5 Lesentiersrelatifs, 63
2.2.5.1 Débordement 64

2.3 Calculs en binaire avec des entiers 65
2.3.1 Addition. e e 65
2.3.2 Multiplication. e 66
2.3.3 SOUStraction o o i it e e e e 68
2.3.3.1 Soustraire 1 e e e 68
2.3.4 DIVISION v v v e e e e e e e e e e e e e 69
2.4 Représentationdesréels 71
2.4.1 Codage v v i e e e e e e e e 72
2.4.2 Partiedécimale. o o 73
2.4.3 Remarques e 74
2.4.4 Erreursde précision oo 75
2.4.5 Intervalle et simple précision 77
2.4.6 Valeurabsolue, 78
2.4.7 Division entiére non signée par un invariant 79
2.5 Représentation des chaines de caracteres. 81
2.5.1 DASCII . . oo e e e e e e e e e e e e e e e e 81
2.5.2 I'Unicode i it e e e e et 82
2.6 Littleetbigendian 84
2.7 Conclusion v v v v vt e e e e e e e e e e e e 84
2.7.1 Queretenir? v it e e e e e e e e e e e e e e e 84
2.7.2 Compétences 2 aCqUETIT v v v v v v e e e e e e e e 85
2.8 Exercices i i e e e e e 85
3 Le Fonctionnement du Microprocesseur 89
3.1 Introduction e e e e 89
3.2 Lamémoire centrale, . 90
3.2.1 Alignement des données en mémoire 92

3.2.2 Doublecanal 94

TABLE DES MATIERES 7

3.2.3 Mémoirecache e 94
3.2.4 Niveauxdecache. 95
3.2.5 Organisation des mémoires caches entre elles. 96
3.2.6 Cache associatifs par groupe 98
3.2.6.1 Ajouter une adresse danslecache. 98
3.2.6.2 Vérifier si une adresse est danslecache 99

3.3 Le miCroproCesseur v v v v v v v e e e e e e e e e e e 100
3.3.1 Fréquence de fonctionnement 101
3.3.2 Architectures RISCet CISC 102
3.3.3 Architecture x86 104
3.3.3.1 LesloisdeMoore, 106
3.3.4 LesRegistres i i i i i i e e e e e 106
3.3.5 Adressage MEMOITe v v v v v v e e e e e e e 107
3.4 Amélioration des miCroprocesseurs 108
3.5 Traitement des instructions. 110
3.6 Pipeline d’instructions 111
3.7 Frontal : chargement et décodage 113
3.7.1 Chargement et prédiction de branchement 114
3.7.2 Décodage d'instructions 0. 115
3.8 Exécution des instructionso oo, 116
3.8.1 Exécutiondansledésordre 116
3.8.2 Microprocesseur super scalaire 117
3.8.3 Ecrituredurésultat 118
3.8.4 Amélioration en longueur etenlargeur 118
3.8.5 Multi-coeur et SMT i 118
3.9 Apprendre a connaitre son ordinateur sous Linux 119
3.9.1 Le MiCrOproCeSSEUT. . . v v v v v v v e e v e e e e e e e e e 119
3911 InXi. . vt e e e e e e e 120
3.9.1.2 IStOPO. . v o i e e e 121
3.9.2 Lacarte Mere. . . . v v v v v v e e e e e e e e e e e e e e 123
3.9.3 Lamémoire. v v v v it e e e e e e e e e e e e e 124

3.94 CPU-X . . o e e e 127

8 TABLE DES MATIERES

3.10 Outilsde tests . . . v v v v v v i it e e e e e e e e e e 128
3.10.1 PhoromixX i i e e e e e e e e e e 128
3.10.2 Sysbench 129
3.10.3 Geekbench 130

3.11 Comparaison de microprocesseurs.« « « « « v v v v v v u .. 132

3.12 Conclusion v v v v s e e e e e e e e e e e e 134
3.12.1 Queretenir? i e e e e e e e e e e e e e 134
3.12.2 Compétence aacquérir v v v v v v v vt v e .. 134

3.13 QUESLIONS. i v e e e e e e e e e e e e e e e e e e 134

3.14 EXEICIiCeS . . v v v v v it e e e e e e e e e e e e e e e e e 134

4 Outils pour la Programmation Assembleur 137

4.1 Introduction e e e e 137

4.2 Les €diteurs . . . v v v v v i i e e e e e e e e e e e e e 138
4.2.1 JEit . . . e e e e e e 138
4.2.2 gedit. . . o L e e e e e e e e 139
4.2.3 2 139
4.2.4 BIMACS « v v v v v v e 139
4.2.5 Autres éditeurso e e e e 139

4.3 L’assembleurnasm v v it i ittt 140
4.3.1 Compilation. o i v i e e e e e e 142

4.4 Edition de lien avec gcc/g++ oo oo 142
4.4.1 Edition de liens avec un seul fichier assembleur 143
4.4.2 Edition de liens avec plusieurs fichiers. 143
4.4.3 Obtenir le code assembleur d'un fichierC. 143

4.4.3.1 utilisergec-S e 144
4.4.3.2 utiliserobjdump. o o L 144

4.5 Ledébogueurddd. 145
4.6 Logicielsannexes v v v v v i e e e e e e 145
5 Traitements de base 147

5.1 Introduction e e e e e 147

TABLE DES MATIERES 9

5.2 Registres o e e e e e 147
5.2.1 Registres8et 16 bits. 148
5.2.2 Architecture et registres 32 bits. 149
5.2.3 Architecture et registres 64 bits. 149
5.2.4 Architecture 128 bits. e 151

5.3 Instructions élémentaires. oo e e 151
5.3.1 mov : chargement et stockage 152
5.3.2 Instructions arithmétiques., 153

5.3.2.1 Instructions add, sub, incetdec. 153
5.3.2.2 Dinstructionmul. oo 0oL 155
5.3.2.3 Linstructiondivetlemodulo. 155
5.3.24 Dinstructionimul, 157
5.3.25 Dinstructionidiv. 0oL, 157
5.3.2.6 Linstructionneg. v v v v v i it e e e e e e e 157
5.3.2.7 DLinstructionlea. oL 157
5.3.3 Instructions logiques. 0 oo .. 158
5.3.3.1 Instructionsandetor. 158
5.3.3.2 Dinstruction Xor. ittt e e 159
5.3.3.3 DLinstructionnot. 0oL 159
5.3.4 Instructions de décalage. 159
5.3.4.1 Instructionsshl,shr 159
5.3.4.2 Dinstructionsar.ttt 160
5.3.5 ComparaiSOn v v v v v e e e e e e e e e e e e e e e 160
5.3.5.1 L’instruction Cmp. v i i i e e e e e e e e e e 160
5.3.5.2 DLinstructiontest., 161
5.3.6 Instructions de branchement 161
5.3.6.1 Instructions de branchement conditionnel 161
53.6.2 LOOD . . vt e e e e 161
5.3.6.3 Autres instructions de branchement. 162
5.3.7 Instructions complexes 163
5.3.7.1 Lectureduntableau 163

5.3.7.2 Ecritureduntableau 163

10 TABLE DES MATIERES

5.3.7.3 Déplacementduntableau 163

5.3. 7.4 TepTet ... e e 164

5.4 Traitementsdebase. 164
5.4.1 Langage de GOTo. v v i i i it e e e 164
5.4.2 Association variable registre 165
5.4.3 Notiondelabel. 165
5.4.4 Sialors e 166
5.4.5 SiCletC2et..etCnalors. 168
5.4.6 SiClouC2ou..ouCnalors. 168
5.4.7 Sialorssinon e 169
5.4.8 Tantque. e e e e e 170
5.4.9 Pouridelan 171
5410 Seloncas e e e e e e 173
5.4.11 Techniques d’amélioration liées aux boucles for. 174
5.4.11.1 Dépliagedeboucle Lo 175
5.4.11.2 Tuilage e 179
5.4.11.3 Perte d’efficacité : if a intérieur dunfor. 179
5.4.12 Instructions pour I'éliminationdesif. 180
5.4.13 Débit et latence des instructions 181
5.5 Conclusion v v v vt s e e e e e e e e e e 185
5.5.1 Queretenir? i i e e e e e e e e e e e e e e e 185
5.5.2 Compétences a acqueérir. v v v v v v v v i e e et 186
5.6 EXEICICES . & v v v v v i e e e e e e e e e e e e e e e e 186
6 Appel de sous-programme 189
6.1 Introduction i e e e e e 189
6.2 Appel de sous-programme en 32 bits 189
6.2.1 Roledelapile 189
6.2.1.1 Push pour empiler ou sauvegarder des données 190
6.2.1.2 Pop pour dépiler ou restaurer des données. 190
6.2.1.3 pusha, pushad,pushf. 190
6.2.2 Réalisation d’'un appel de sous-programme 191

6.2.3 Registres non modifiables 192

TABLE DES MATIERES 11

6.2.4 Valeur de retour de sous-programme en 32 bits. 192
6.2.5 Exemple d’appelen32bits 192
6.2.5.1 Appel du sous-programme 193
6.2.5.2 Lesous-programme appelé. 194
6.2.5.3 Suppression des parametres e e ... 197
6.2.6 Enteretleave. e e 197
6.2.7 Appel rapide (fastcall). i e 198
6.3 Appel de sous-programme en 64 bits 0oL 199
6.3.1 Entrée et sortie de la fonction. 199
6.3.2 Redzone e 200
6.3.3 Adresses.t e e e e e e e e e e e e e 200
6.3.4 Exemple de traduction 64 bits 200
6.3.5 Spécificités du mode 64 bits.o 202
6.3.5.1 WithRespect To (WRT). 202
6.3.5.2 Position Independent Code. 203
6.3.5.3 Alignementdelapile. 203
6.3.5.4 Entrée et sortie de sous-programme en 64 bits. 207

6.4 Codeen32oub4bits., 209
6.5 Conclusion. i i it e e e e 210
6.5.1 Queretenir? v it e e e e e e e e e e e e e e e e 210
6.5.2 Compétence a acqUerir v v v v v v v v v e et e 210
6.6 EXEICIiCeS . « & v v v i i e e e e e e e e e e e e e e e e e e 210
Coprocesseur arithmétique 213

7.1 Introduction e e e e e 213
7.2 OrganisationdelaFPU. 213
7.3 Manipulation des donnéesetdelaFPU. 214
7.3.1 Chargementavecfld. 215
7.3.2 Stockageavecfst. 216
7.4 OpPErationsS . . . v v v v v e e e e e e e e e e e e e e e e e 217
7.4.1 Opérationsdebase. i ittt it 217
7.4.2 Opérations trigonomeétriques v v v v v v vt ... 218

7.4.3 Manipulation de la piledelaFPU 219

12 TABLE DES MATIERES

7.5 ErreursliéesalaFPU., 219
7.6 ComparaiSOmn. . . . v v v v v e e e e e e e e e e e e e e e e e e e 221
7.6.1 Comparaison en architecture 32 bits. 221
7.6.2 Comparaison en architecture 64 bits. 222
7.7 Traduction des expressions réelles. 224
7.8 Affichage d'une valeur flottante 226
7.8.1 Architecture 32 bits oo . 226
7.8.2 Architecture 64 bits e 227
7.9 Conclusion. o v v it i e e e e e e 227
7.9.1 Queretenir? i e e e e e e e e e e e e 227
7.9.2 Compétences A aCqUETIT . « v v v v v v v v v v e e e e e e e e 228
7.10 EXEICICeS . . v v v v v i e e e e e e e e e e e e e e e e 228
Unités vectorielles 231

8.1 INtroduction v v i i e e e e e e e e e e e 231
8.2 SSE . . e e e e e e 232
8.2.1 Chargement et stockage desdonnées 234
8.2.2 Instructions arithmétiques. 235
8.2.3 Fonctions trigonométriques, logarithme, exponentielle 237
8.2.4 Instructions binaires e 237
8.2.5 Instructions de conversion.t 237
8.2.6 Instructions de réarrangement 238
8.3 AVX, AVX2 . . . e e e e e e e e e e e e e e e e 241
8.3.1 Spécificités e e 241
8.3.2 Partiehaute. 241
8.3.3 Instructions singulieres, 242
8.4 Affichage d'unregistre 243
8.4.1 Architecture 32 bits L. 243
8.4.2 Architecture 64 bits e 244
8.5 INtrinsiCs« v v v e e e e e e e e e e e e e e e 245
8.5.1 Types et format des instructions 247
8.5.2 Travailler avecles flottants 248

8.5.2.1 Chargement et initialisation 248

TABLE DES MATIERES 13

8.5.2.2 Stocker des flottants en mémoire 250
8.5.3 Travailler aveclesentiers 250
8.5.4 Exemple de programme0 251

8.6 AVX 512 . . e e e e e e 253
8.6.1 Spécificités e e e 253
8.6.2 Manipulation des masques 254
8.6.3 Données vectorielles. 254

8.7 AVX 10 . . . o e e e e e e e e e e e e e e e e e 256

8.8 Conclusion. i i i e 257
8.8.1 Queretenir? i e e e e e e e e e e e 257
8.8.2 Compétences AaCqUerir.« v v v v v v v v v e e e e e e 257

8.9 EXEICICeS . « & v v v i i e e e e e e e e e e e e e e e e e e 257

Algebre de Boole 259

9.1 Introduction v v i e e e e e e e e e e e 259

9.2 Définition e e e e e 260

9.3 Fonction booléenne, table de vérité 261
9.3.1 Fonctions de deux variables. 262

9.3.1.1 Lafonction and(x,y) (ET logique). 263

9.3.1.2 Lafonction or(x,y) (OU Logique) 263

9.3.1.3 La fonction zor(z,y) (OU Exclusif Logique) 264

9.3.14 loisdeDeMorgan 264

9.4 Simplification des fonctions booléennes 265
9.4.1 Regles de simplification algebriques 265
9.4.2 Méthode des tableaux de Karnaugh 266
9.4.3 Création et remplissage du tableau de Karnaugh 267
9.4.4 Simplification du tableau de Karnaugh 268

9.4.4.1 Exemple simple de simplification par tableau de Karnaugh. . 269

9.4.4.2 Exemple plus problématique. 270

9.5 Représentation des portes logiques 271
9.5.1 Universalité des portes NAND et NOR 272

9.6 Algebre de Boole et circuits 273

9.6.1 Le demi-additionneur e e e 273

14 TABLE DES MATIERES

9.6.2 Ladditionneur0 i it e e e 274
9.6.3 LeSOUSITaCteur v v v v v vt e et e e e e e e e e e e e 275
9.7 Algebre de Boole et arithmétique 275
9.8 Algebre de Boole etlogique 276
9.8.1 Définition du probleme 276
9.8.2 Modélisation du probleme en logique 277
9.8.3 Résolution du probléeme en logique 278
9.8.4 Modélisation sous forme de contraintes de cardinalité. 280
9.8.5 Contraintes #(1,1) et #(0,1) o oo o i oo L 281
9.8.6 Résolution avec des contraintes de cardinalité 282
9.8.7 Solveur e e 283
9.9 Conclusion v v v v e e e e e e e e e e e e e e 284
9.10 EXEICICeS . « v v v v v i e e e e e e e e e e e e e e e e e 284
10 Etudes de cas 287
10.1 Introduction i i e e e e e e e 287
10.2 Organisation des sources et binaires. 287
10.2.1 Ciblesmake. e 288
10.2.2 ScriptsshelletPHP 289
10.2.3 Fichiers sources. o v v v i v i i 289
10.3 Redéfinition des types et constantes. 290
10.4 Testsetmatériels 291
10.4.1 Matériels e 291
10.4.2 TestS. . . . oo e e e e e e e 292
10.4.2.1 Quantités mesurées. v v v v v v v v b e 293
10.4.2.2 Comment MesSurer v v v v v vt v .. 293
10.4.3 TestsduChapitre 2.o 294

11 Etude de cas

produit de matrices 297
11.1 Introduction 297
11.2 Stockage des matrices. e 298

11.3 Fonction de référence. 301

TABLE DES MATIERES 15

11.4 Analyse des premiers résultats. 301
11.5 Analyse du cache avecperf. 303
11.6 Amélioration avec inversion des bouclesjetk 305
11.7 Version SSE de I'inversion de labouclej, k. 306
11.8 Tuilage e e e e 309
11.8.1 Tuilaged x4avecSSE. e 309
11.8.2 Tuilage b x b de maniere générale 311
11.9 Tests de performance 313
11.9.1 Architectures anciennes (avant 2015) 314
11.9.2 Architectures modernes (2015a42019) 315
11.9.3 Architectures récentes (2020 etapres). 315
11.9.4 Analyse des versions liées au tuilage 316
11.10 Conclusion. v v v v v i i it e e e e e 318
11.11 EXEICICeS . « & v v v i i e e e e e e e e e e e e e e e e e e e 318
12 Etude de cas POPCNT 319
12.1 Introduction e e e e e 319
12.2 Améliorations simples. 322
12.2.1 Tabledeconversion0....... 323
12.2.2 Compterlesbits 323
12.2.3 Utilisation de l'instruction popcnt« 326
12.3 Traitements par 32 bits 326
12.4 Vectorisation SSEet AVX oo oo 328
12.5 Implantations 0 0 i it e e e e e e 330
12.6 Résultats o v i e e e e e e e e 330
12.6.1 Architectures anciennes (avant 2015) 331
12.6.2 Architectures modernes (2015a42019) 331
12.6.3 Architectures récentes (2020 etapres).o ... 333
12.7 Conclusion. i i i e 333
13 Etude de cas Variante de SAXPY 335
13.1 INtroduction v i e e e e e e e e e e e e 335

13.2 Fonction de référence. e e 335

16 TABLE DES MATIERES

13.3 Version FPU e 336
13.4 Version FPU dépliédepar4 338
13.5 Version SSE e 339
13.6 Version AVX . . . o o e e e e e e e e e e e 342
13.7 Version FMA o e e 342
13.8 Résultats v v vt e e e e e e e 344
13.8.1 Unmotsurlinterfaceez ii 344
13.8.2 Architectures anciennes (avant 2015) 345
13.8.3 Architectures modernes (2015a42019) 345
13.8.4 Architectures récentes (2020 etapres). 346
13.9 Conclusion. o v i i i e e e e e 347
13.10 EXEICICeS . . v v v v v it e e e e e e e e e e e e e e e e e e 347

14 Etude de cas

Maximum de Parcimonie 349

14.1 Introduction i e e e e e e e 349
14.2 Fonctionde référence. 351
14.3 Implantation en assembleur 352
14.4 Amélioration de la fonction de référence 354
14.5 Optimisation de la version sansif 355
14.6 Version SSE e e e 356
14.6.1 Association variables registres 356
14.7 Version SSE4.1 e 359
14.8 Version AVX / AVX2 o 0 i e e e e e e e e e e e e e e 360
14.9 Fonction de référence et compilateur 362
14.10 Version intrinsiCs v v v v v v vt e e e e e e e e e e e e 362
14.11 Version AVX512 e e e e e e 363
14.12 Testsde performance 364
14.12.1 Architectures anciennes (avant 2015) 365
14.12.2 Architectures modernes (2015a2019) 365
14.12.3 Architectures récentes (2020 etapres).o 366
14.13 Conclusion v v v vt it e e e e e e e 367

14.14 EXercices v v v i e e e e e e e e e e 368

TABLE DES MATIERES

15 Etude de cas
Compter les voyelles

15.1

15.2

15.3
15.3.1

Introduction 0 e e e e e e e e e e e e
Fonctions de référence o v v i i i i e e e
Traduction de la méthode du tableau en assembleur

Initialisation du tableau

15.3.1.1 Initialisation par registre général

15.3.1.2 Initialisationrep stosq o oo i oo

15.3.1.3 [Initialisation par registre vectoriel AVX.

15.3.2
15.3.3
15.3.4
15.4
15.5
15.6
15.7
15.8
15.8.1
15.8.2
15.8.3
15.8.4
15.9

Boucle principale. L .
Sortiede fonction
Dépliage par4 o i i e e e e e e
Vectorisationavec SSE L e
Vectorisation avec AVX2 i it e e e e e e e e
Vectorisation AVX2 avec intrinsicS. v v v v v v v
Vectorisation avec AVX512 oo e
Résultats e e e e e
Architectures anciennes (avant 2015)
Architectures modernes (2015a42019)
Architectures récentes (2020 et apres). oo v v
Influence du nombrede voyelles

Conclusion v e e e e e e

16 Etude de cas
Suite de Fibonacci

16.1
16.1.1
16.2
16.3
16.4
16.5
16.6

Introduction i e e e e e e e e

Dynamique des populations.
REcursivité o ot e e e e e e e e e e e e
Formule avec nombres flottants
Version de référenceen C. i
Versions assembleur de la fonction de référence

Versions axées sur les tableaux.

17

369
369
369
372
372
373
373
373
374
374
375
376
379
380
382
383
383
385
387
387
388

18

16.7
16.7.1
16.7.2
16.7.3
16.7.4
16.7.5

16.8
16.8.1
16.8.2

16.9
16.9.1
16.9.2
16.9.3

16.10

TABLE DES MATIERES

Versions itératives. v v v v i it e e e e e e e e e 396
ASTUCE o i e e e e e e e e e e e e e e 397
Amélioration lors du dépliage. 398
Amélioration des dernieres itérations 399
Amélioration aveCc esp v v v v it e e e e e e e e e 401
Amélioration du dépliagepar8. 402

Versions vectorielles., 403
Version SSE. 403
Version AVX. oo e e e e e 403

Résultats i e e e e 404
Architectures modernes (2015a2019) 407
Architectures récentes (2020 etapres). 407
Variation des fréquences de fonctionnement 408

Remerciements it 409

17 Etude de cas

nombres auto-descriptifs 411

17.1 Introduction e e e 411
17.2 Fonctionderéférence., 413
17.3 Premiere amélioration, 415
17.4 Convertir en chiffresetnonenchaine. 415
17.5 Versions assembleur. e . 416
1751 Version1-Traduction 416
17.5.2 Version 2 - Remplacement de la division. 419
17.5.3 Version 3 - Remplacement de la division et dépliage 420
17.5.4 Version 4 - Comparaison vectorielle 421
17.5.5 Versions 5 -Divisionpar100 422
17.5.6 Versions 6-CodageenBCD. 423
17.5.6.1 Décomposition avec les registres 424
17.5.6.2 Décomposition avec les instructions spécifiques 428
17.5.7 Versions 7 - Division par 10000. 430
17.6 Tests de performance, 431

A

B

C

E

TABLE DES MATIERES

Programme de démonstration

Compilation et eXécution. v v v v v v v v v vt

..........................

Erreur liée au débordementdepile

..........................

Afficher le programme.,

Afficher le contenu des registres.

Afficher le contenu des variables.

Modifier le contenu des registres ou des variables.

..........................

Surveiller un changementde valeur.

..........................

Comparaison bsretlzent.

Amélioration sans passerparebp

Amélioration avec suppressiondunsaut

Ameéliorations Sans SaUL. . . « « v v v v v v e e e e e e e e e e e

Conversion et négation v v v v v v v v v e ..
Propagationdusigne,

Déplacements conditionnels.

Conventions d’appel Linux
Le GNU Débogueur
B.1
B.2
B.3 Afficher les données.
B.4 Electric Fence
B.5
B.6 Autres commandes .
B.6.1
B.7
B.8
B.9
B.10 Points d’arrét.
B.11
Travail sur bsr
C.1 Introduction
C.2
C.3 Code a traduire . . .
C.4 Résultats
Implantation de la fonction signe
D.1 Introduction
D.2
D.3
D.4
D.4.1
D.4.2
D.4.3
D.5 Tests de performance
Code ASCII de 0 a 127

19

435

437
437
438
440
441
442
444
444
444
445
445
446
446

449
449
450
450
452

453
453
454
454
455
455
456
456
457

459

20 TABLE DES MATIERES

Glossaire des Instructions 463

Avant propos

Cet ouvrage s’adresse aux étudiants en informatique, automatique et électro-
nique qui désirent s’initier a la programmation en assembleur x86 que ce soit en
architecture 32 ou 64 bits ou qui désirent parfaire leurs connaissances dans ce
domaine. Si j'ai voulu écrire ce livre c’est afin de partager 'expérience que jai
pu acquérir au cours des vingts années passées a enseigner ce sujet a I'université.
J'ai pu constater que les étudiants en informatique sont généralement rebutés
par l'architecture des ordinateurs qui est pourtant un sujet fondamental dans leur
cursus. La programmation assembleur qui en découle apparait comme un sujet peu
attrayant, difficile a maitriser, et ce, généralement en raison de lacunes concernant
des notions de base en informatique. On pensera bien évidemment aux notions
relatives au codage de l'information, aux opérations de manipulation des bits (and,
or, not), mais également aux pointeurs qui font partie des notions élémentaires
fondamentales et utilisées de maniere intensive en assembleur. Revenir aux sources
de la programmation, c’est a dire a 'assembleur, permet de comprendre ce qui se
passe réellement lorsque I'on code dans des langages structurés tels C, Pascal, For-
tran ou des langages objet comme C++. Les notions liées a 'assembleur permettent
également de comprendre comment rendre son code plus performant en ayant a
I'esprit quelques regles élémentaires.

Ma génération, celle de la fin des années 60 et du début des années 70, fut
la premiere a découvrir et utiliser les micro-ordinateurs. La révolution micro-
informatique a consisté a mettre dans les mains de chacun un ordinateur de petite
taille a un prix abordable alors que la plupart des ordinateurs de ’époque étaient
des systemes volumineux qui occupaient une piéce entiere et dont le coft était
prohibitif : de l'ordre de la centaine de milliers ou du million de Francs. Pour
donner un ordre d’idée, au début des années 80, un IBM PC cofitait en fonction
de sa configuration entre 30000 et 50000 Francs ce qui représentait une somme
énorme pour la plupart des ménages alors qu'un Commodore 64 ne cofitait que
6000 Francs.

Bien que les premiers micro-informaticiens furent considérés comme des non
scientifiques, des bidouilleurs, des personnes qui cherchaient mais sans véritable
but si ce n’est celui de se faire plaisir en triturant des machines électroniques, c’est
qu’a I'époque beaucoup de choses restaient a créer, imaginer, développer et il était
nécessaire de tester, d’essayer, d’expérimenter afin de comprendre ce que ce nouvel
appareil qui débarquait dans notre quotidien avait dans ses entrailles. C’est cet

21

22 TABLE DES MATIERES

esprit épris de curiosité qui a forgé notre engouement pour le matériel (hardware)
et bien évidemment le logiciel qui permet de faire fonctionner le matériel.

J'ai trés tot été confronté a 'assembleur. D’'une part mon premier ordinateur
fut un Commodore 64 [25], ordinateur a succes, vendu a plus de 17 millions
d’exemplaires a travers le monde. Ce monstre de puissance était affublé d'un micro-
processeur MOS Technology 6510 tournant a la vitesse de 1 Mhz et était doté de
64 ko de RAM, dont 48 ko utilisables pour stocker les programmes. A I'époque cela
était suffisant. Le langage BASIC (Beginner’s All-purpose Symbolic Instruction Code)
du C64 était sobre. Notamment, il ne disposait pas d’instruction de type clrscr
ou clearscreen chargée d’effacer I'écran. Il fallait utiliser I'instruction PRINT avec
un symbole particulier en forme de coeur afin de vider I'écran. Il était également
nécessaire pour réaliser nombres d’opérations graphiques, d’exécuter des instruc-
tions PEEK ou POKE qui consistent respectivement en une lecture et une écriture de
donnée en mémoire. C’est typiquement une action de bas niveau liée au matériel
et donc proche de 'assembleur.

Je suis également redevable de mon engouement pour 'assembleur a Benoit
Michel dont le "Livre du 64" [21] fut le livre de chevet de mon adolescence. On
découvrait dans cet ouvrage, qui traite des arcanes du C64, que le BASIC n’était
qu’'une surcouche qui était orchestrée et exécutée par 'assembleur ou plutét le
langage machine du microprocesseur. Grace au désassembleur dont le code était
donné dans le livre, jai désassemblé la ROM et jai pu comprendre comment
fonctionnait l'interpréteur BASIC et comment on pouvait le modifier de maniere a
intégrer de nouvelles instructions.

J'ai toujours trouvé plaisant de pouvoir programmer au plus bas niveau car
on est au plus pres de la machine et les problemes a solutionner demandent une
certaine ingéniosité. Il est également nécessaire de faire preuve de rigueur car on
ne dispose pas de structures de contrdle. On utilise adresses et pointeurs a outrance
et, dans le cas de l'architecture 32 bits de machines de type x86, la limitation
imposée par le nombre de registres disponibles pour stocker données et adresses
est handicapante. Il faut donc faire preuve d’inventivité.

L’ensemble de cet ouvrage se base sur la programmation dans un environnement
Linux de type Ubuntu/Debian et utilise de nombreux logiciels inhérents a ce
systeme d’exploitation comme make pour la compilation automatique, g++ pour
le compilateur C++ et nasm en ce qui concerne la partie assembleur. Linux, de
par ses caractéristiques, offre au développeur un large panel d’outils puissants qui
permettent de traiter tous les aspects du processus de développement logiciel en
passant par le profilage et les tests. On pourra bien entendu transposer ce qui a été
vu a d’autres environnements comme MacOS ou Windows.

J'ai concu cet ouvrage comme un cours académique, c’est a dire que les premiers
chapitres introduisent les notions fondamentales (Chapitres 1 a 9) et les suivants
se révelent plus pratiques.

Le chapitre 1 traite de notions générales et fondamentales en informatique et

TABLE DES MATIERES 23

aborde succintement des notions liées au Génie Logiciel et au travail de I'informati-
cien.

Le chapitre 2 concerne le codage de l'information notamment des nombres
entiers, des réels que I'on qualifie de nombres a virgule flottante et des chalnes de
caracteres.

Le chapitre 3 aborde les notions liées a la mémoire (comme l'alignement,
I'adressage mémoire et le dual channel) et les notions relatives au fonctionnement
du microprocesseur (chargement des instructions, décodage et exécution, pipeline,
etc).

Le chapitre 4 traite des logiciels utilisés dans le cadre de cet ouvrage c’est a
dire les éditeurs, 'assembleur, le compilateur et le débogueur.

Le chapitre 5 reprend les notions vues sur les registres dans le chapitre 3 et
introduit les instructions assembleur de base qui travaillent sur les entiers. On
montre par la suite comment traduire les structures de contrdle du langage C
comme le if, le while, le for et le switch en assembleur x86.

Le chapitre 6 apprend comment passer des parametres a un sous-programme
et comment récupérer ces parametres dans le sous-programme appelé, que ce soit
en architecture 32 bits ou en architecture 64 bits.

Le chapitre 7 aborde le traitement des nombres a virgule flottante par le coproces-
seur (FPU). On montre comment traduire simplement une expression arithmétique
en utilisant les mnémoniques de la FPU.

Le chapitre 8 traite des unités vectorielles et des instructions liées a ces unités
que sont le SSE, 'AVX et TAVX512. On introduit également les intrinsics qui sont des
fonctions du C qui seront remplacées lors de leur traduction par des instructions
vectorielles. Ces fameuses fonctions intrinseques permettent d’écrire du code vecto-
riel qui sera optimisé par le compilateur C tout en restant au niveau du langage
C.

Le dernier chapitre académique (chapitre 9) traite de l'algébre de Boole. Méme
s’il n’est pas vraiment lié a 'assembleur, il permet de comprendre le réle central
que joue l'algebre de Boole en informatique, allant du codage des circuits jusqu’a
la logique. Ce chapitre quelque peu disgressif peut néanmoins faire partie de ce
livre et permet une ouverture a la logique.

Plusieurs études de cas (chapitres 11 a 15) permettent de mettre en oeuvre
les connaissances vues lors des premiers chapitres et jexplique comment traduire
en assembleur des fonctions écrites en langage C afin d’obtenir le code le plus
performant possible. Ce code est ensuite testé sur différents matériels et 'analyse
des résultats permet de démontrer au lecteur que le matériel (processeur, carte
mere et mémoire) peut avoir une influence sur un choix particulier de traduction
en assembleur.

Le chapitre 11 aborde l'optimisation du produit de deux matrices carrées
d’entiers. On montre en particulier I'importance de I'acces mémoire et de la mémoire

24 TABLE DES MATIERES

cache.

Le chapitre 12 se focalise sur 'implantation de I'instruction popcnt qui compte
le nombre de bits positionnés a 1 dans un registre. On montre au travers de
différentes implantations comment cette instruction peut étre améliorée si on doit
la coder en C lorsqu’elle n’est pas disponible nativement sur un microprocesseur.

Le chapitre 13 traite de I'implantation de la fonction saxpy et permet d’intro-
duire plusieurs instructions assembleur liées au coprocesseur arithmétique et au
calcul vectoriel avec unités SSE sur les flottants.

Le chapitre 14 aborde des notions liées a la bioinformatique. On montre com-
ment améliorer trés fortement 'implantation d’une fonction en utilisant les instruc-
tions vectorielles sur les entiers et notamment en traitant les données par groupe
de 16 ou 32 octets en utilisant respectivement les registres SSE et AVX.

Le chapitre 15 se focalise sur la programmation en architecture 64 bits et
montre comment le fait de pouvoir disposer du double de registres par rapport a
I'architecture 32 bits permet de simplifier et implanter efficacement une fonction
qui compte des voyelles dans une chaine de caractéres.

Le chapitre 16 sintéresse a I'implantation d’une fonction qui calcule le n-eme
terme de la suite de Fibonacci. Plusieurs versions sont proposées allant du dépliage
de boucle a la vectorisation en passant par la formule de calcul directe basée sur le
nombre d’or.

Enfin, le dernier chapitre des études de cas 17 cherche a améliorer une fonction
qui indique si un nombre entier est un nombre auto-descriptif ou non. Un nombre
auto-descriptif se définit comme un entier naturel ayant pour propriété que chacun
de ses chiffres, repéré par son rang, indique combien de fois ce rang apparait en
tant que chiffre dans I'écriture de ce nombre. On montre ici I'intérét de remplacer
la division par un invariant par une multiplication, comme évoqué section 2.4.7.

Se sont ajoutées au cours du temps quelques annexes, en fin d’ouvrage :

e un rappel des conventions d’appel Linux en 32 et 64 bits

e une démonstration de l'utilisation du débogueur GDB

e une mini étude de cas concernant I'utilisation de l'instruction assembleur bsr

e une mini étude de cas liée a 'implantation de la fonction signe qui donne le
signe de son opérande

e une table ASCII descriptive pour les codes de 0 a 127
e un glossaire des instructions assembleur

J'espére, au travers de cet ouvrage, donner au lecteur une meilleure compré-
hension du fonctionnement du microprocesseur et réconcilier les développeurs
avec 'assembleur en montrant comment les traitements de haut niveau peuvent
étre traduits de maniéere efficace dans un langage tres limité. Il est certain que les
compilateurs ont fait de gros progres et sont capables de traduire efficacement
bon nombre d’algorithmes, mais certains traitements, en raison de leur complexité,

TABLE DES MATIERES 25

peuvent encore étre améliorés en les codant a la main. Passer a 'assembleur permet
par exemple de paralléliser le code en utilisant les instructions vectorielles et gagner
ainsi un facteur important en terme de performance.

Que la force de 'assembleur soit avec vous!

26

TABLE DES MATIERES

Chapitre 1

Informatique, informaticien et
assembleur

There’s an art to all this madness
Tho’ it seems insane to you
There’s a rhyme to all the reason
In everything I do

Have you any imagination

Of what I'm goin’ through

The Jacksons, Art of Madness

1.1 Pourquoi apprendre I’assembleur

Le langage FORTRAN (FORmula TRANslator) mis au point par John Backus et
son équipe chez IBM en 1956 représente une avancée majeure pour l'informatique
car ce langage de haut niveau permet alors de s’affranchir des contraintes et spéci-
ficités propres a chaque microprocesseur. Dans ce type de langage la déclaration
d’une variable permet de faire abstraction de sa localisation en mémoire, c’est le
compilateur qui se chargera de placer la variable a une adresse fixe et I'identifiant
de la variable permet de manipuler a la fois sa valeur et son adresse de maniére
transparente, alors qu’en assembleur, une variable est identifiée par son adresse.

L’ajout de structures de controle (if then else, for, while, etc) apporte en outre
un confort notable pour I'écriture de traitements complexes et l'utilisation de
I'indentation permet visuellement de comprendre la structure du programme. A
contrario, le langage assembleur est un langage limité, sans structures de controle.

Alors pourquoi revenir en arriere ? Cela ne constitue t-il pas une régression que
de coder en assembleur ?

Tout dépend du point de vue. Si vous devez conduire une voiture pour aller
d’'un point A a un point B vous vous fichez sans doute de savoir quelles sont les

27

O 0 N o 1 AW N =

e e N e
o U A W N = O

28 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

différentes pieces qui constituent un moteur. Mais, si vous devez réparer une voiture
ou si vous ne voulez pas rester en rade au beau milieu de nulle part a attendre une
dépanneuse, alors, cela devient essentiel. Connaitre ’'assembleur c’est, en partie,
étre en mesure de comprendre comment fonctionne un ordinateur et comment
trouver et corriger les bogues d'un programme.

La raison principale qui conduit généralement a programmer en assembleur
tient au fait que 'assembleur est le langage le plus proche du microprocesseur et,
en étant proche de celui-ci, on tente d’en extraire la substantifique moélle *, ou en
d’autres termes, on tente d’extraire le maximum de son efficacité. Un exemple tres
concret est I'utilisation d’une fonction qui compte le nombre de bits positionnés a
un dans un entier 16, 32 ou 64 bits. Nous verrons que cette fonction est tres utile
par la suite dans les études de cas de cet ouvrage. Sur les processeurs récents cette
fonction est disponible sous forme d’une instruction assembleur appelée popcnt
pour Population Count et est tres efficace (voir Chapitre 12) comparativement a
une fonction C que I'on devrait écrire pour obtenir le méme résultat.

Dans le méme esprit, on peut également penser aux instructions assembleur
bsr et bsf pour Bit ScanReverse / Forward qui déterminent la position du bit le plus
ou le moins significatif d'un entier. Ces deux instructions ne sont généralement pas
disponibles dans la plupart des langages informatiques et il faut les implanter avec
les instructions du langage.

// fonction qui implante bsr (bit scan reverse)
u32 function_bsr(u32 a) {
(int 1 = 31; i >=0; --i) {
((a & (1 << i)) !'=0) (u32) 1i;

OxXFF;
b

// retourne la somme des bsr(t[i]) pour i dans [@..n-1]
u32 method_1(u32 *t, u32 n) {
u32 sum = 0;
(u32 i =0; i <n; ++i) {
sum += function_bsr(t[i]);

sum;

Listing 1.1.1 — Fonction bsr, version 1

Pour rentrer abruptement dans le vif du sujet, regardons quel gain on peut
obtenir en implantant la fonction function_bsr en C ou en utilisant directement
I'instruction assembleur. Le but de ce test est d’évaluer l'efficacité de chaque mé-
thode. L’instruction bsr détermine la position du bit de poids fort d’'un entier. Ainsi,

1. Expression rendue célébre par Rabelais dans Gargantua (1534) et qui désigne ce qu’il y a de
plus précieux.

O O N AW N =

=
(=]

1.1. POURQUOI APPRENDRE I’ASSEMBLEUR 29

pour la valeur décimale 123 qui, en binaire, s’écrit 1111011, c’est le bit 6 qui est le
bit de poids fort (ou bit le plus a gauche). Le bit de poids faible, c’est a dire le bit le
plus a droite, a pour indice 0. Il est positionné a 1 dans 123.

Le Listing 1.1.1, fonction method_1, applique la fonction function_bsr sur un
tableau t de n entiers 32 bits. On en profite pour réaliser la somme des valeurs
obtenues afin de produire une somme de controle (checksum, variable sum) ce qui
permet de vérifier que I'on obtient bien le méme résultat pour chaque fonction
testée.

Le type u32 représente un entier non signé sur 32 bits et correspond au type
size_t du langage C. La fonction function_bsr cherche le bit le plus significatif >
en utilisant la variable i qui sera décrémentée progressivement. Initialement i est
égale a 31 ce qui correspond au bit le plus a gauche dans un entier 32 bits (cf.
Chapitre suivant).

La méme fonction peut étre implantée (cf. Listing 1.1.2) en utilisant la possibilité
offerte par le compilateur C++ d’introduire I'appel a I'instruction assembleur bsr.
Le codage est difficile a comprendre et il faut se référer a la documentation du
compilateur pour avoir une idée de la syntaxe utilisée, mais laissons cela de coté
pour le moment.

u32 method_3(u32 *t, u32 n) {
u32 sum = 0Q;
(u32 i =0; i <n; ++i) {
u32 input = t[il];
u32 output;
("bsr %0, %1" : "=r" (output) : "r" (input) :);
sum += output;

sum;

Listing 1.1.2 — Fonction bsr, version 3

On notera cependant qu’en langage C, ces instructions (bsr, bsf, ...) ont été
ajoutées sous forme de fonctions built-in, c’est a dire des extensions qui permettent
au programmeur d’utiliser la syntaxe d’un appel de fonction pour faire appel a
une instruction du processeur. L'implantation dépend alors du jeux d’instructions
dont dispose le microprocesseur. Si I'instruction assembleur est présente elle sera
utilisée, sinon elle sera remplacée par une fonction écrite en C.

La Table 1.1 résume les temps d’exécution en secondes des fonctions évoquées
précédemment, appliquées sur un tableau d'un million d’entiers. On réalise le calcul
100 fois afin d’obtenir des temps significatifs. Trois méthodes ont été évaluées :

e la méthode 1 correspond a I'appel d’'une fonction écrite en C (Listing 1.1.1)

2. Le bit a 1 d’indice le plus grand.

30 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

e la méthode 2, écrite en C, utilise la fonction __builtin_clz qui retourne le
nombre de bit a 0 avant de trouver un bit a 1 en partant du bit le plus
significatif (bit 31), on retourne donc 31 - __builtin_clz(t[il)

e la méthode 3 utilise directement I'instruction assembleur bsr (Listing 1.1.2)

Méthode Temps (s) Amélioration
méthode 1 / fonction C 8,68 -
méthode 2 / __builtin_clz 1,19 x 7,3
méthode 3 / asm + bsr 0,96 x 9,0

TABLE 1.1 — Temps d’exécution en secondes pour le calcul répété 100 fois du bit le plus
significatif sur un tableau d’'un million d’entiers non signés sur AMD Ryzen 5 3600

Un rapide examen du code assembleur généré pour la méthode 2 montre que le
compilateur remplace la fonction __builtin_clz par l'instruction bsr. On obtient
donc des temps treés proches pour les méthodes 2 et 3. On constate que 'utilisation
de l'instruction assembleur permet d’obtenir une méthode dont le temps d’exécution
est environ 9 fois plus rapide que la fonction C que I'on devrait implanter pour
réaliser le calcul. On trouvera en annexe (cf. Annexe C) de plus amples résultats.

Voila donc un exemple tres explicite de ce que permet 'assembleur en terme
d’efficacité.
Cependant, un public peu averti pourrait considérer que dans la grande majorité

des cas, savoir programmer en assembleur n’est d’aucune utilité au moins pour
deux raisons :

e d’une part, les langages destinés au web (PHP, Javascript, Python ®, Ruby) sont
des langages interprétés ou 'assembleur n’est pas utilisé ou pas directement
utilisable et, de plus, le développeur qui consacrera son temps a créer des
interfaces graphiques, optimiser des requétes SQL ou concevoir des sites web
n’aura jamais d’interaction avec I'assembleur,

e d’autre part, pour les langages compilés tels que C, C++, Fortran le compi-
lateur est généralement capable de produire un code assembleur bien plus
optimisé que celui écrit a la main en faisant appel a différentes techniques
(vectorisation, parallélisation, dépliage de boucle, optimisation guidée par
profilage) qui sont accessibles via les options en ligne de commande des
compilateurs.

En outre, la principale difficulté de la programmation en assembleur réside en
partie dans I'absence de structures de controle que 'ontrouve dans les langages
de haut niveau (if, for, while, etc). On est donc contraint d’écrire dans un langage

3. Concernant Python, il s’agit d’un cas particulier puisque I'on peut optimiser le code Python en
le compilant et que les librairies Python sont écrites en C/C++.

1.1. POURQUOI APPRENDRE I’ASSEMBLEUR 31

bas niveau, ce qui rend la relecture et la compréhension du code difficile, il est
absolument nécessaire de bien commenter son code !

Comme nous le verrons plus tard et comme nous l'avons déja évoqué dans
I’Avant Propos, le fait de ne disposer finalement que de 6 registres généraux en
architecture 32 bits (eax, ebx, ecx, edx, esi, edi) pour réaliser les traitements
(esp et ebp étant utilisés pour gérer la pile), est tres contraignant et nous oblige
a constamment jongler avec les registres : tel registre va contenir telle donnée au
début d’un sous-programme, puis telle autre donnée au milieu et finalement un
autre résultat a la sortie du sous-programme.

Donc finalement, savoir programmer en assembleur c’est difficile et cela ne
sera pas tres utile? Pourquoi alors écrire cet ouvrage? La réponse est bien évi-
demment non, car apprendre a programmer en assembleur nous apporte plusieurs
compétences qui, de mon point de vue, sont essentielles de posseder pour tout
informaticien qui se respecte. L’apprentissage du langage assembleur nous apporte :

¢ la connaissance de notre outil de travail : programmer en assembleur nous
amene a savoir comment fonctionne le microprocesseur, ce qu’il est capable de
réaliser, comment il traite les données, comment il interagit avec la mémoire.
On pensera également au fait que le microprocesseur est un systéme complexe
qui combine plusieurs technologies et c’est de la synergie de ces technologies
que provient I'efficacité de I'exécution du code (voir le Chapitre 3),

e la possibilité d’optimiser du code : vous apprendrez des notions liées a 'opti-
misation du code (dépliage de boucle, vectorisation) car tout informaticien se
doit de produire du code valide (c’est a dire qui réalise le traitement demandé)
et efficace (qui le fait de la maniére la plus rapide possible), cela peut avoir
une influence non négligeable sur votre carriére,

e la possibilité de supplanter le compilateur : certains traitements sont dif-
ficilement traduisibles de manieére optimale par le compilateur, cela arrive
rarement, mais dans certains cas, coder ces traitements en assembleur se
révele un atout primordial et permet de faire la différence,

e la rigueur : programmer en assembleur demande d’étre rigoureux car il
est nécessaire avant toute chose de spécifier ce que stockeront les registres,
comment on va manipuler les données, comment on va les traiter. On retrouve
la méme necessité de rigueur lorsque I'on programme avec des langages de
haut niveau des lors que 'on manipule plusieurs concepts simultanément.

Notons enfin que l'utilisation de I'assembleur est parfois obligatoire lorsque liée
au matériel : la programmation des drivers de périphériques passe généralement
par une partie assembleur qui réalise I'interface entre le périphérique et le systeme
d’exploitation.

32 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

1.1.1 Matériel et logiciel

Un autre point essentiel lié a la programmation en assembleur est le fait qu'un
systeme informatique se compose de deux parties :

e une partie matérielle (hardware) qui représente 'ensemble des composants
de la machine,

e une parite logicielle (software) constituée des logiciels s’exécutant en utilisant
ou tirant partie du matériel.

Un informaticien se doit de comprendre le fonctionnement du systéme dans
sa globalité car les caractéristiques du matériel influent sur les performances des
programmes. Par exemple, il y a de cela quelques années j’ai réalisé un test sur
I'implantation d’'une version de la fonction popcnt, que nous avons évoqué en début
de chapitre. Ce test s’exécutait en 8 secondes sur un microprocesseur Intel Pentium-
M. Afin d’optimiser le code avec gcc j’ai utilisé 'option -mtune=pentium-m sensée
prendre en considération les caractéristiques d’un Pentium-M afin de produire
du code assembleur plus performant. Le résultat fut un temps d’exécution pour
le méme test de 23 secondes, soit pres de trois fois plus lent! Les deux codes
ne différaient que par quelques instructions. Pour étre en mesure de comprendre
pourquoi le code est plus lent dans la version sensée étre plus rapide il est nécessaire
de comprendre le code assembleur ainsi que les caractéristiques du microprocesseur
qui exécute le code.

Une bonne connaissance du fonctionnement interne de I'ordinateur permet
de comprendre pourquoi certains algorithmes se révelent efficaces et pourquoi
d’autres sont mal adaptés par rapport a une architecture donnée ou par rapport
au probleme a traiter et nous permet alors d’en améliorer I'efficacté. Ainsi, les
microprocesseurs AMD ont des unités de traitement des nombres flottants tres
lente par rapport aux microprocesseurs Intel. Si on veut gagner en efficacité sur
le traitement des flottants il faut alors coder les traitements en utilisant la partie
basse des registres vectoriels SSE (cf. Chapitres 6, 7 et 8).

Les traitements informatiques possédent, au regard de ceux qui en sont les utili-
sateurs et donc les tributaires, une exigence de qualité (robustesse et performance)
et 'informatique s’attache a résoudre des problemes complexes par leur structure
ou par le volume de données a gérer. L'informaticien doit donc étre capable de
trouver le traitement (algorithme) le plus adapté aux données a analyser et savoir
coder correctement des algorithmes dans un langage donné. Par exemple, déter-
miner si un entier est pair peut étre réalisé en effectuant une division par 2 et en
vérifiant que le reste de la division est égal a 0. Malheureusement, la division, de
part sa nature complexe, est pénalisante et demande plus de temps de traitement
pour s’exécuter que les autres opérations comme 'addition, la soustraction ou la
multiplication. Etant donné que 'on travaille avec des nombres codés en binaire,
une autre méthode consiste a vérifier que le premier bit du nombre n’est pas a 1 ce
qui prend beaucoup moins de temps.

1.2. LE METIER D’INFORMATICIEN 33

1.2 Le métier d’informaticien

1.2.1 Qu’est ce qu’un ordinateur?

Définition : Ordinateur

Un ordinateur est une machine électronique congue pour effectuer des calculs
et traiter des informations de maniere automatique.

Le terme ordinateur fut inventé par Jacques Perret, professeur de philologie
latine a la Sorbonne, a la demande d’IBM France en 1955. IBM cherchait en effet a
cette époque un nom pour commercialiser son nouveau calculateur qui fut alors
baptisé ordinateur IBM 650.

Un ordinateur est composé de plusieurs parties appelées :

e composants (carte mere, microprocesseur, barrette de mémoire, carte gra-
phique)
e et périphériques (disque dur, lecteur de DVD, clavier, souris, moniteur, ...).

La distinction entre composant et périphérique est parfois ténue et repose
généralement sur le fait qu'un périphérique se trouve éloigné de la carte meére
alors qu'un composant est en contact direct avec celle-ci. Cependant le terme
composant peut étre utilisé pour englober les périphériques. Pour certains, le terme
périphériques fait uniquement référence a tout ce qui est externe au boitier : clavier,
souris, moniteur, imprimante, en d’autres termes, ce qui se trouve a la périphérie
du boitier.

1.2.2 Qu’est ce que 'informatique ?

Définition : Informatique

Science du traitement de I'information effectué par un ordinateur. Elle com-

prend 'ensemble des activités consistant a collecter, organiser et traiter de
maniere automatique les données par un ordinateur.

Le terme informatique a été créé en mars 1962 par Philippe Dreyfus (Directeur
du centre national de calcul électronique de la société Bull dans les années 1950,
un des pionniers de l'informatique en France) a partir des mots information et
automatique.

En anglais on trouve parfois le terme Informatics, mais plus généralement on
emploie le terme Computer Science, voire Computer Engineering pour désigner
I'informatique. On notera la différence établie entre le mot anglais computer (calcu-
lateur), c’est a dire la tache premiére pour laquelle les ordinateurs furent congus et

34 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

utilisés, et le mot informatique, c’est a dire, leur utilisation au quotidien : le traite-
ment automatique de I'information. On peut alors soulever une question d’ordre
philosophique et se demander si calculer c’est traiter 'information, et inversement
traiter I'information n’est-ce que réaliser un calcul ?

Il faut insister ici sur le mot science, car a ses débuts I'informatique n’était pas
considérée par les autres disciplines exactes (mathématiques, physique et chimie)
comme une science. Ces dernieres ont plus de deux mille ans d’histoire. L'informa-
tique a atteint le rang de science en quelques décennies depuis les années cinquante
méme si on peut faire remonter les premiers travaux sur les calculateurs mécaniques
au XVII° siecle, voire méme avant si on pense a la machine d’Anticythere.

Historiquement, I'informatique a commencé a entrer en tant qu’outil pédago-
gique dans I'enseignement secondaire francais a partir de la fin des années 1970.
En 1980 [17] lors d’'une table ronde sur le sujet de 'enseignement frangais face a
l'informatique, Jacques Tebeka “, pose la question suivante : Faudrait-il enseigner
Uinformatique comme une discipline indépendante, au méme titre que les mathé-
matiques ? Ou la considérer seulement comme une aide a Uenseignement dans les
différentes disciplines ?

En fait ces propos soulignent le dilemme auquel fait face I'informatique depuis
plusieurs décennies : faut-il I'enseigner comme une science au méme titre que
les mathématiques ou comme outil technique ? Car finalement, savoir utiliser un
traitement de texte, un tableur ou rechercher de I'information sur internet relévent

. . Savoi : - iapre -
de compétences techniques. Savoir programmer un ordinateur (cf. ci-apres) releve
de la science informatique.

Le méme intervenant, Jacques Tebeka, fit également part lors de cette conférence
de son désir que I'informatique soit enseignée comme discipline : Je viens de faire un
petit calcul. A la vitesse actuelle, on pourra généraliser Uenseignement de l'informatique
dans 430 ans... En tant qu’industriel je demande qu’on ne s’étende pas sur le probléme
philosophique de savoir s’il faut enseigner Uinformatique ou Uinformatique a travers
les disciplines. Je demande qu’on aille vite, beaucoup plus vite...

L’'informatique, depuis des années, n’est enseignée au college et lycée dans le
systeme éducatif frangais que comme outil et non comme discipline. C’est seulement
au niveau de I'enseignement supérieur (Universités, IUT, Ecoles d'Ingénieurs) que
I'informatique devient une discipline a part entiere.

En ce qui concerne ma formation, j’ai eu quelques cours d’informatique en 3éme
(1984-1985) réalisés par I'enseignant de mathématiques. Il nous a appris a faire de
la programmation en Logo, puis en Pascal sur Apple 2. Plus tard, lorsque je suis
entré a 'université de Bourgogne a Dijon en 1988 comme étudiant, I'informatique
en premiere année traitait de 'apprentissage de la programmation avec le langage
BASIC et n’était pas enseignée uniquement par des informaticiens mais également
par des physiciens. Lorsque j’ai été recruté a 'Université d’Angers comme maitre

4. Responsable du centre informatique de la société ESSO en France et aux Etats-Unis, conseiller
informatique du groupe BSN Gervais Danone, directeur général du groupe Datsun.

1.2. LE METIER D’INFORMATICIEN 35

de conférence, en Octobre 2000, le langage C n’était pas enseigné en licence (L3).
J’ai donc incorporé au cours d’Architecture des Ordinateurs que j’enseignais un
volet langage C, car ce dernier est central en informatique. On l'utilise pour la
programmation systeme sous Linux, et, de ce langage découlent d’autres langages
comme le C++, le Java, le Javascript, le PHP.

Il aura fallu batailler tres dur pour enraciner 'informatique comme discipline et
science car c’est seulement dés la rentrée 2019 que 'enseignement de l'informatique
fut proposé au lycée a tous les éleves de seconde générale et technologique (soit
1h30 par semaine), et en tant que discipline de spécialité de 1ere puis Terminale
(4h puis 6h par semaine).

1.2.3 Qu’est ce qu’un informaticien?

Définition : Informaticien

Un informaticien est un scientifique qui met en place des procédures de

traitement automatique de l'information grace a un ordinateur tout en conce-
vant des algorithmes efficaces et en exploitant au mieux les capacités de la
machine.

Jinsiste ici sur le fait qu’en tant que scientifique l'informaticien se doit de
réfléchir du point de vue de la complexité de ses algorithmes mais également du
point de vue de leur implantation dans un langage informatique.

L’ordinateur est I'outil qu’utilise 'informaticien pour réaliser son travail et nous
nous devons de connaitre et maitriser notre outil de travail afin de solutionner les
problemes qui nous sont posés.

On peut dresser un parallele avec 'automobile et le mécanicien. Imaginez que
votre voiture vous pose des problemes récurrents et qu’elle ait du mal a démarrer
tous les matins. Pour régler le probléme vous vous rendez chez un garagiste et
confiez votre véhicule a un mécanicien qui, pour vous, représente un expert qui
saura trouver une solution adéquate a votre probleme. Il établira un diagnostique
et vous indiquera la cause du probleme (batterie, bougies, carburateur, etc) puis
vous proposera une solution (remplacement de la piece défectueuse) qui est sensée
étre la moins onéreuse pour vous.

Que penser si le mécanicien n’y entend rien en mécanique ? Vous avez des
problémes au démarrage, vous perdez de la puissance quand vous montez une
cote, votre feux arriere ne fonctionne plus. Il saura vous proposez néanmoins une
solution et elle sera toujours la méme : changez de voiture ! Effectivement changer
de voiture solutionnera le probléme, mais a quel prix! L'incompétence du prétendu
spécialiste vous sera alors préjudiciable.

Il en va de méme en informatique. Si vous n’avez pas su coder efficacement
un algorithme ou si vous n’avez pas su choisir le bon algorithme, vous pouvez

36 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

toujours proposer a celui qui utilise votre programme et qui trouve que celui-ci
prend trop de temps a s’exécuter, d’acheter une machine plus puissante, mais cela
ne solutionnera le probléme qu’en partie. Si un autre informaticien est capable de
proposer un algorithme plus efficace ou de détecter dans votre algorithme ou votre
codage un verrou, vous risquez de passer pour une personne peu compétente qu’il
est préférable de remplacer.

1.2.4 En quoi consiste son travail ?

Le travail de I'informaticien consiste, partant d’énoncés en langage naturel
(francais, anglais, etc) a traduire ces énoncés en une série d’'opérations clairement
définies que I'on appelle algorithme. Ces algorithmes sont ensuite traduits en
instructions directement compréhensibles par le microprocesseur de la machine.

Définition : Algorithme

Un algorithme est une succession finie d’actions clairement identifiées exécu-
tées dans un ordre précis.

Le mot algorithme est dérivé du nom du mathématicien persan Al Khwarizmi
(vers ’'an 820), qui introduisit en Occident la numération décimale (rapportée

d’Inde) et enseigna les regles élémentaires des calculs qui en découlaient.
\ J

On peut résumer le travail de I'informaticien en disant qu’il doit étre capable de
créer un logiciel. La simplicité de cette expression ne laisse pas présager de ’étendue
des compétences qu’elle englobe. On peut, afin de mieux comprendre ce que cela
implique, prendre I'analogie avec la construction d’'une maison.

Imaginons que vous vouliez faire construire une maison et que vous disposiez,
pour cela, d'un terrain. La premiere étape consiste a rencontrer un architecte qui,
en fonction de vos besoins (nombre d’étages, de chambres, disposition des pieces,
...) et des contraintes du terrain (forme, présence d’un dénivelé ou non), dessinera
les plans de votre maison. Une fois les plans finalisés, il faut faire appel a une
entreprise de BTP (Batiments et Travaux Publics) qui contractera différents corps
de métiers (terrassier, grutier, macon, électricien, plombier, carreleur, charpentier,
couvreur, peintre, etc) afin de construire votre nouvelle demeure.

La difficulté de la tache de l'informaticien c’est que, construire un programme
informatique, s’apparente a construire une maison, avec une contrainte de taille :
I'informaticien doit étre a la fois architecte, macon, électricien, plombier, etc. Il doit
étre a la fois :

e concepteur cest a dire réfléchir d'un point de vue théorique a 'organisation
de la structure de son programme, des classes qu'’il va créer et de I'interaction
entre ces classes,

e constructeur, c’est a dire savoir implanter son code en gardant a I'esprit qu’il
doit produire du code efficace, maintenable, lisible et compréhensible par un

1.2. LE METIER D’INFORMATICIEN 37

relecteur, alors que lisibilité et efficacité sont antinomiques °.

En ce qui concerne I'évolution du métier d’informaticien, on pourrait caricaturer
en disant que dans les années 70, 80, on a eu tendance a séparer conception et
codage. La partie conception était considérée comme noble et ne demandant pas
nécessairement de savoir coder. Elle était réservée a des personnes ayant fait des
études au niveau bac + 4 (master) voire a bac + 8 (doctorat). Cette tache, que
certains considérent comme ingrate ou de bas niveau, qu’est le codage était plutot
réservée aux analystes programmeurs que 'on formait au niveau bac + 2 ou bac +
3 (licence).

Cette vision des choses a évolué a partir des années 90, lorsque I'informatique est
devenue de plus en plus complexe avec des programmes contenant des centaines de
milliers de lignes de code et donc des centaines de classes ainsi que des paradigmes
et des concepts de programmation non triviaux (fonctionnel, logique, généricité,
multi-tiches).

Un autre point important est le passage a Uéchelle, c’est a dire le fait de traiter
des volumes de données de plus en plus importants. Lorsque 'on développe un
algorithme, on travaille généralement avec un jeu de données en entrée de petite
taille de maniere a détecter rapidement les erreurs et bogues inhérents a tout
programme informatique. Puis une fois le programme finalisé autour de I'algorithme
a implanter, on passe a des jeux de données plus importants. Parfois la taille des
données va conduire a revoir les structures de données car celles-ci prennent une
place trop importante en mémoire, ou alors, on s’apercoit que notre programme qui
mettait quelques secondes a s’exécuter sur un petit jeu de données met finalement
plusieurs heures, voire plusieurs jours pour s’exécuter sur un jeu de données
plus conséquent car 'accés aux données n’est pas efficace (voir par exemple le
Chapitre 11). Il se peut également que la complexité du probléme rende impossible
le traitement de grandes instances.

Tous ces facteurs concourent a comprendre que I'informaticien, pour accomplir
sa tache de nos jours, doit détenir au moins un niveau master pour disposer des
connaissances et de la maturité nécessaires a 'accomplissement de son travail et il
faut souvent ajouter a cela plusieurs années d’expérience.

Enfin, un dernier facteur entrant en jeu, et souvent négligé, est le fait que
les informaticiens ne congoivent pas, la plupart du temps, des programmes pour
eux-mémes mais pour les autres. C’est a dire pour des compagnies téléphoniques,
des constructeurs automobiles, des avionneurs, des organismes de recherche en
médecine, en agronomie, des institutions publiques. Cela représente autant de
domaines pour lesquels le domaine d’expertise n’est pas connu de I'informaticien et
ajoute une contrainte et une difficulté supplémentaire.

5. C’est a dire contradictoires

38 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

1.3 Savoir programmer et savoir réfléchir

Afin d’exemplifier mon propos quant au fait de savoir programmer, je vais
prendre trois exemples simples au travers desquels je tenterai de démontrer que
I'informaticien se doit de réfléchir, de savoir coder mais également disposer d’'un
certain recul et d'une expérience qui demande plusieurs années de pratique. S’il
en est ainsi sur des exemples aussi simples, que penser s’il s’agit de programmes
beaucoup plus complexes? Le premier exemple touche a la recherche des nombres
premiers, le second tient au tri d’'un tableau d’entiers et enfin le troisiéme concerne
la recherche et I'élimination de doublons.

1.3.1 Nombres premiers

L'un des problemes les plus simples que jaime a demander a mes étudiants
de coder est la recherche de nombres premiers. La raison en est que ce probleme
demande un peu de réflexion. Le probleme a résoudre est la recherche des cinquante
premiers nombres premiers par exemple. La plupart des étudiants connait la
définition d'un nombre premier mais est incapable de donner le code d’une fonction
efficace capable de déterminer si un nombre est premier ou de penser a une
méthode plus ingénieuse (cf. ci-apres le crible).

Rappelons la définition d’'un nombre premier que I'on apprend au college et
lycée :

Definition 1.3.1 (Nombre premier). Un nombre n € N est dit premier si il admet
uniquement deux diviseurs : un et lui-méme. On oublie généralement de préciser
que ces deux diviseurs doivent étre différents, en conséquence 1 n’est pas premier,
le premier nombre premier est donc 2.

Cette définition d'un nombre premier suppose de connaitre la notion de divisibi-
lité. Un nombre entier n est divisible par p signifie que n = p x ¢. Mais la notion la
plus intéressante et celle du reste lié a la division entiere. Si n n’est pas divisible
par p alors il existe un reste r tel que 0 < r < p pour lequel n = p x ¢ + r. Pour
un informaticien calculer le reste de la division est une opération qui s’appelle
l'opération modulo. En C elle est représentée par 'opérateur % et dans d’autres
langages par le mot clé mod ou modulo.

Une premiére version de la fonction est_premier qui détermine si un nombre n
est premier ou non, est celle du Listing 1.3.1. Je I’ai souvent obtenue en réponse
a ce probléme de la part des étudiants lorsque je leur proposais de le résoudre.
Elle traduit simplement la définition que nous avons donnée d’'un nombre premier,
elle compte le nombre de diviseurs et indique que le nombre passé en parametre n
n’est pas premier si le nombre de diviseurs est différent de 2. Cette version est bien
entendu totalement inefficace pour plusieurs raisons :

[e- BN [e) 9] » w N —

1.3. SAVOIR PROGRAMMER ET SAVOIR REFLECHIR 39

bool est_premier(int n) {
(n < 0) false;
int nbr_diviseurs = 0;
(int i = 1; i <= n; ++i) {
((n % i) == @) ++nbr_diviseurs;

(nbr_diviseurs == 2);

Listing 1.3.1 — Fonction nombre premier, version inefficace

e sin est divisible par 2 (excepté 2) alors il n’est pas premier et il est inutile de
continuer a rechercher d’autres diviseurs

e sin n'est pas divisible par 2, on vérifie quand méme qu’il est divisible par des
multiple de 2 ce qui n’a aucun intérét

e si on a obtenu un nombre de diviseurs supérieur a 2, il faudrait simplement
s’arréter plutot que d’en rechercher d’autres

On peut donc améliorer cette fonction de la sorte (cf. Listing 1.3.2) :

e on teste le cas ou n est égal a 2 ou 3 et dans 'affirmative on indique que le
nombre est premier

e on élimine ensuite le cas des nombres pairs en vérifiant si le nombre est
divisible par 2

e on ne teste pas les diviseurs au dela de /n, car si n est divisible par p, il s’écrit
n = px qavec p < ¢, le cas extréme étant celui ou p = ¢. Pour s’en convaincre
il suffit de regarder comment se décompose 37 (cf. Table 1.2). A partir de

p q T p q T
1 37 O 11 3 4
2 18 1 12 3 1
3 12 1 13 2 11
4 9 1 14 2 9
S 7 2 15 2 7
6 6 1 16 2 5
7 5 2 17 2 3
8 4 5 18 2 1
9 4 1 19 1 18
10 3 7 20 1 17

TABLE 1.2 — Décomposition de 37

10

11

12

13

14

15

10

11

40 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

V/37 ~ 6 on ne trouvera pas de diviseur puisqu’'on aura déja testé les valeurs
de p de 1 a 6 et que ¢ possede des valeurs entre 1 et 5.

e on ne teste que les diviseurs impairs

bool est_premier(int n) {
(n <=1) false;
(n <= 3) true;

// est-ce un nombre pair ?
((n % 2) == 0) false;

// chercher les diviseurs impairs jusqu'a
// racine carrée de n
int limit = static_cast<int>(floor(sqrt(n)));
(int k = 3; k <= limit; k += 2) {
((n % k) == 0) false;

true;

Listing 1.3.2 — Fonction nombre premier, version améliorée

On peut améliorer cette version et en donner une version optimisée (Lis-
ting 1.3.3) en se basant sur I'élimination des multiples de 2 et 3, puis sur la
recherche de diviseurs impairs. Dés lors, on testera beaucoup moins de diviseurs.

bool est_premier_v3(int n) {
(n <= 3) n>1;
@=(%2) || ©6==(n % 3)) false;

(int i = 5; (i * i) <=n; i += 6) {
(((n%i)==0) || ((n% (1 +2)==0))

false;

true;

Listing 1.3.3 — Fonction nombre premier, version optimisée

Plutot que de passer par une fonction qui calcule si un nombre est premier, on
peut utiliser la méthode du crible d’Eratosthéne (voir Listing 1.3.4) qui consiste a
remplir un tableau qui indique si un nombre est premier ou non et a éliminer ses
multiples. Cette méthode est plus efficace que les précédentes si on doit déterminer
dans un intervalle donné quels sont les nombres premiers.

el [c- BN (o)} [S2E N w N —

==
= o

Jun
N

13
14
15
16
17
18

19

1.3. SAVOIR PROGRAMMER ET SAVOIR REFLECHIR 41

// on teste les nombres de 1 a un million

int N = 1000000;
// tableau qui indique si un nombre est premier ou non
bool xtab = new bool [N+1];

// @ et 1 ne sont pas premiers

tab[0] = false;

tab[1] = false;

// tous les autres nombres sont initialement premiers
(int i = 2; i <= N; ++i) tab[i] = true;

// on élimine les multiples de chaque nombre

int n = 2;
(n <=N) {
(tab[n]) {
(int j = 2*n; j < N; j+=n) tab[j] = false;
}
++n;
}

Listing 1.3.4 — Nombre premier avec crible

Nous présentons Table 1.3, les temps d’exécution en secondes obtenus pour
différentes plateformes pour les trois méthodes que nous venons d’évoquer . La
premiere méthode qui consiste a compter le nombre de diviseurs est totalement
inefficace. La version améliorée de la fonction est_premier est tout a fait acceptable.
Le crible représente la méthode la plus efficace. Les temps d’exécution pour cette
méthode sont égaux a 0 car de l'ordre de la milliseconde. Elle peut encore étre
améliorée en ne se focalisant que sur les nombres impairs par exemple.

Au final, on s’apercoit qu’il ne faut pas simplement répondre en cherchant a
coller a 'énoncé mais qu’il est nécessaire de réfléchir afin d’améliorer l'efficacité
de la fonction est_premier. Il faut également parfois chercher une méthode plus

Méthode AMD AMD Intel Intel

Ryzen 7 Ryzen5 Corei5 Corei7
1700X 3600 7400 8700

est_premier (version 1) 1859,59 1726,93 1154,00 895,17
est_premier (version 2) 0,20 0,18 0,12 0,07
Crible d’Eratosthéne 0,00 0,00 0,00 0,00

TABLE 1.3 — Temps d’exécution en secondes pour la recherche des nombres premiers entre
let1 000 000

42 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

adaptée, en 'occurrence le crible. Cette méthode troque en fait la divisibilité par le
remplissage d’un tableau ce qui la rend terriblement efficace.

Notons également qu’il existe d’autres améliorations de la fonction est_premier :
on peut par exemple tester la divisibilité par 3 ou s’appuyer sur le fait que tous les
nombres premiers supérieurs a trois sont de la forme 6k + 1.

1.3.2 Tri

Le tri d'un tableau d’entiers représente probablement le sujet le plus étudié
par des générations d’étudiants. On apprend qu’il existe différents algorithmes
de tri et qu'on peut les classer en fonction de leur complexité. Cependant la
complexité est la notion la plus maléable qui soit. Comme on ne sait pas la calculer
de maniere exacte, on évalue une complexité dans le meilleur des cas, dans le pire
des cas ainsi qu'une complexité moyenne qui généralement est la moyenne de la
complexité dans le meilleur et dans le pire des cas. Celle-ci varie en effet parfois en
fonction des données qu’on manipule. Elle n’est au final qu'un indicateur, mais le
programmeur a besoin de plus de précision afin de choisir le meilleur algorithme
possible pour traiter ses données. Par exemple deux algorithmes qui possedent la
méme complexité n’auront pas forcément le méme temps d’exécution et parfois le
codage de I'algorithme peut jouer sur son efficacité !

Pour en revenir au tri, on apprend que le tri a bulles (bubble sort), le tri par
insertion (insertion sort) et le tri par sélection (selection sort) sont des algorithmes
de tri dont la complexité dans le pire des cas est en O(n?), c’est a dire que si on doit
trier un tableau de n entiers, le nombre d’opérations élémentaires a réaliser pour
effectuer le tri nécessitera o x n? opérations avec o qui est une constante réelle qui
peut varier en fonction des opérations de I'algorithme.

Des tris plus efficaces sont les tris en O(n x log(n)) et on classe dans cette
catégorie le tri par tas (heap sort), le tri fusion (merge sort) et le tri rapide (quick
sort).

void bubble_sort(int t[], int n) {
(int i =n-1; 1 >0; —-i) {
(int j = 0; j < i; ++j) {
(th31 > tj+1D) {
swap(t[jl, t[j+11);

Listing 1.3.5 — Tri a bulles en ordre croissant

Le probleme est que 'on ne sait pas ce que représente la complexité dans le
cas du tri (voir plus loin pour la partie résultats). Nous présentons Listing 1.3.5,

1.3. SAVOIR PROGRAMMER ET SAVOIR REFLECHIR 43

le code du tri a bulles pour un tableau t de taille n. On peut voir qu’il existe deux
opérations qui influent sur la complexité du tri :

e la comparaison des valeurs t[j] > t[j+1]

¢ la permutation des valeurs swap(t[j], t[j+1])

Toute comparaison n’entraine pas forcément une permutation, il est donc diffi-
cile de quantifier dans le cas ou les données sont aléatoires ce qui peut se passer.
De plus, le temps d’exécution d’'une comparaison est différent du temps d’exécution
de la permutation.

Au final, le seul moyen dont on dispose pour comparer des méthodes de tri
ayant la méme complexité consiste a obtenir un ordre de grandeur de la complexité
réelle (et non théorique) en réalisant de nombreux tests sur des jeux de données
en comptabilisant le nombre de comparaisons et le nombre de permutations.

En particulier le tri rapide © est le plus efficace dans le cas général sur les tests
que j’ai menés.

x = t[q]
6 1, 6/9|3 4|7 /8|12 Choix du pivot
6 1.6 9|26/ 7/8]1]3 Echanger avec
Dernier élément
Ordonnancement

>< suivant pivot

Replacer le
1121113647 8|69 pivot
11211 614 7 816 9 Tri des sous

tableaux

@ Tri rapide
L —

FIGURE 1.1 - Principe du tri rapide

Il se base (cf. Figure 1.1) sur une partition des éléments du tableau initial par
rapport a une valeur pivot notée x qui sera placée a un indice ¢ dans le tableau.
Toute valeur inférieure a x aura un indice inférieur a q et toute valeur supérieure a
x aura un indice supérieur a ¢. On réitere le partitionnement de maniére récursive

6. On pourra consulter le site http://www.rosettacode.org pour découvrir le principes qui
sous-tendent les différents tris et découvrir les implantations dans de nombreux langages.

http://www.rosettacode.org

44 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

sur les sous-tableaux d’indices [1..q — 1] et [¢ + 1..n]. Notons que pour simplifier la
compréhension le premier indice du tableau est 1 et non 0 comme en C.

Le choix de la valeur pivot est ici essentiel. Elle peut étre choisie a un indice
compris entre 1 et n. Cependant si on choisit I'indice 1 ou 'indice n cela peut se
révéler un trés mauvais choix.

Nous présentons Table 1.4 quelques résultats concernant le temps d’exécution
de méthodes de tri appliquées a des tableaux d’entiers pour des données qui sont
initialement en ordre croissant (c’est a dire déja triées), puis en ordre décroissant
(triées en ordre inverse) et enfin placées aléatoirement.

tri par insertion 0.000 169.000 85.300
tri a bulles 0.000 167.040 348.220
tri rapide - version 1 87.420 91.360 0.040
tri rapide - version 2 0.000 0.010 0.040
tri fusion 0.020 0.020 0.060

TABLE 1.4 — Temps d’exécution en secondes pour trier 500 000 entiers sur Intel Core i5
7400 @ 3.00GHz

On remarque que les méthodes de complexité en O(n?) comme le tri par in-
sertion ou le tri a bulles peuvent se révéler tres rapides si les données sont déja
triées. Par contre, si les données sont placées aléatoirement ou en ordre inverse,
leur temps d’exécution est prohibitif.

En ce qui concerne le tri rapide, la version 1 qui consiste a choisir la valeur
de pivot a I'indice le plus grand du tableau donne de mauvais résultats (comme
évoqué précédemment) pour des données triées ou triées en ordre inverse. Par
contre, si on choisit le pivot au milieu du tableau (version 2), on obtient des temps
de calcul minimes.

Le tri fusion est assez proche du tri rapide mais un peu moins performant. Cela
est dli au fait que la fusion qui consiste a créer un seul tableau a partir de deux
sous-tableaux triés nécessite de créer un tableau temporaire avec I'implantation
que nous avons choisie.

Pour en revenir a la complexité, nous donnons Table 1.5 les complexités obser-
vées en nombre de comparaisons et permutations pour trier un tableau de cing
cent mille entiers. Dans le cas du tri fusion il s’agit du nombre de recopies lors de
la fusion. On comprend alors mieux pourquoi le tri rapide est le plus efficace, c’est
qu’il génere le moins d’opérations de comparaisons et de permutations.

Pour conclure sur cette partie, la connaissance des algorithmes est primordiale
mais elle ne donne pas forcément leur efficacité réelle. Les données peuvent influer
sur le temps d’exécution, les variantes d’implantation se révelent plus ou moins

1.3. SAVOIR PROGRAMMER ET SAVOIR REFLECHIR 45

Méthode Croissant Décroissant Aléatoire
tri par insertion n n? 0.5 x n?
tri a bulles 0.5 x n? n? 0.75 x n?
tri rapide 4.8 x n x log(n) 4.8 xn xlog(n) 6.2 xn xlog(n)

)
tri fusion 5.1 xn xlog(n) 6.9xnxlog(n) 8.1xn xlog(n)

TABLE 1.5 — Complexité - Nombre de comparaisons + nombre de permutations ou de
recopies pour 500 000 entiers

efficaces. Il est donc nécessaire de ne pas se fier a la théorie et il faut expérimenter
par soi-méme, implanter les algorithmes et les tester. Nous recommandons au
lecteur intéressé la lecture du chapitre 4 de [4] et des chapitres 6 et 7 de [3].

1.3.3 Recherche de doublons

Je fus contacté en 2018 par une étudiante qui rencontrait un probléme avec
un programme CUDA’ qui prenait trop de temps a s’exécuter et provoquait un
timeout, c’est a dire que le programme est arrété parce que son exécution dure trop
longtemps.

Ce timeout est dii au fait que, sur la plupart des machines de bureau ou portables,
la carte graphique est utilisée pour I'affichage. On peut également l'utiliser pour
faire des calculs parallele mais dans ce cas l'affichage n’est plus disponible. Si le
calcul ne dure que quelques milli secondes cela n’est pas perceptible, mais si le
calcul dure plus de quelques secondes, il me semble que le choix a été fait de
terminer le programme afin que l'utilisateur récupere la main apres 5 secondes.

Le probleme a résoudre consiste a supprimer les doublons d’un ensemble d’en-
registrements stockés sous forme d’un tableau de N enregistrements de P champs
de type entier. Le premier champ contient un identifiant d’enregistrement qui varie
de 1 a N. On veut donc connaitre les enregistrements dont les champs 2 a P
sont similaires. Notons qu’ici nous faisons le choix de stocker ce tableau a deux
dimensions sous forme d’un tableau a une dimension de N x P entiers.

La méthode la plus simple (cf. Listing 1.3.6) et utilisée par I'étudiante qui
m’a contacté, consiste a parcourir le tableau et a vérifier que les enregistrements
suivants sont identiques ou non a I'enregistrement i. Cependant cette méthode
posséde une complexité en O(N?/2) et le nombre d’enregistrements N sur lequel
on travaille est de 'ordre de 7 millions. Le calcul de la complexité est assez simple :

e pour l'indice i = 0, on aura N — 1 comparaisons

e pour: =1onenaura N —2

7. CUDA pour Compute Unified Device Architecture est une technologie mise au point par NVidia
pour faire du calcul paralléle sur carte graphique.

10

11

12

13

14

15

16

46 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

// nombre d'enregistrements
int N = 7000000;

// nombre de champs
int P = 10;

int xenr = new int [N x P];
void recherche(int *enr, bool *elimine) {
(int i = 0; 1 < N-1; ++i) {
(int j = i+1; j < N; ++j) {

(identique(&enr[i * P], &enr[j * P]) {
elimine[j] = true;

Listing 1.3.6 — Recherche de doublons, version simpliste

e ainsi de suite jusqu'ai = N — 1, pour lequel on aura une comparaison

Au finalon a :

F

@
Il
—

ce qui est proportionnel a N2,

L’étudiante n’a fait que transposer le code du Listing 1.3.6 sur CUDA. Le premier
thread doit donc comparer le premier enregistrement aux N — 1 autres enregistre-
ments ce qui est totalement inefficace que ce soit sur une carte graphique ou sur
un microprocesseur et c’est ce qui provoque le timeout sur la carte graphique.

Se pose alors I'épineux probleme de diminuer la complexité de I'algorithme de
recherche de doublons. On diminuera la complexité si on ne doit pas comparer
I'enregistrement 7 aux N — ¢ suivants mais a un plus petit nombre d’enregistrements.
Il faut donc trouver un moyen de classer les enregistrements qui sont similaires ou
identiques afin de les comparer par la suite. Dans ce but, on peut envisager :

e d’ajouter un champ qui contient une valeur de hachage de I'enregistrement
e de trier les enregistrements suivant la valeur de hachage

e et de finalement comparer uniquement les enregistrements qui ont la méme
valeur de hachage

Pour rappel, une valeur de hachage (hash value en anglais) est une valeur entiére
qui résulte d’un calcul qui prend en compte tout ou partie des champs d’une struc-
ture de données et qui a pour but d’identifier de maniére unique I’enregistrement.

1.3. SAVOIR PROGRAMMER ET SAVOIR REFLECHIR 47

On peut la voir comme une signature des données qu’elle représente. Malheu-
reusement il est difficile de trouver une fonction de hachage qui donne une valeur
unique pour chaque enregistrement des lors que le nombre d’enregistrements est
important. Cependant, si cette valeur de hachage permet de distinguer un grand
nombre d’enregistrements alors elle peut se révéler utile. Lorsque deux structures
de données différentes possedent la méme valeur de hachage on parle de collision.
Dans certains cas, la collision est problématique si on désire distinguer de maniere
unique chaque donnée.

Il semble que les fonctions de hachage de type FNV ® soient trés intéressantes
car elles permettent une bonne séparation ou distinction des données.

En utilisant la méthode que nous venons de décrire la complexité diminue et se
résume a celle du tri des enregistrements qui sera de 'ordre de NV x log(/N), si on
choisit un algorithme de tri efficace (cf. section précédente).

Temps de calcul doublons

Au final, sur un microprocesseur récent, pour 7 millions d’enregistrements, la

premiere méthode prendra une quinzaine d’heures pour terminer alors que
la deuxieme prendra quelques secondes. Soit une amélioration drastique !

La encore, réfléchir au probléme avant de le résoudre et donc choisir le bon
algorithme apporte un gain conséquent en terme de temps de calcul. C’est ce genre
d’expérience qu’il faut acquérir au cours des ans et parfaire sa connaissance des
algorithmes ainsi que des matériels afin de répondre au mieux aux problémes qui
nous sont posés, a nous, informaticiens.

Imaginons que vous soyez un mauvais informaticien, votre méthode de résolu-
tion prendra donc une quinzaine d’heures pour résoudre le probleme précédent. Si
votre patron vous indique maintenant qu’il a un client qui aura 1000 problémes
du méme type a résoudre dans quelques mois et que ce client désire obtenir les
résultats au bout d’'une semaine apres vous avoir fourni les données, une rapide
analyse vous amenera a la conclusion qui suit.

Mille problemes impliquent 15000 heures de calcul, soit environ 625 jours de
calcul sur une seule machine. La solution, pour répondre en une semaine, consiste
donc a disposer de plusieurs ordinateurs. Vous proposerez donc a votre patron
d’acheter un cluster (ce qui risque de cofiter assez cher) et ce cluster devra disposer
d’au moins 90 coeurs’ de calcul. Si dans deux ans, le client dispose non plus de
1000 mais de 10000 problemes a traiter et qu’il désire toujours obtenir le résultat
dans le méme délai, cela implique de disposer de 10 fois plus de processeurs,
soit plus de 890. Disposer d’'un cluster dix fois plus gros engendre un coflit non
négligeable mais peut également conduire a un surcofit lié a I'achat d’'un nouveau
local adapté et dimensionné pour accueillir le cluster et le refroidir.

8. Fowler, Noll, Vo, voir http://www.isthe.com/chongo/tech/comp/fnv/index.html.
9. 15000 / (7 jour x 24 heures) = 89,28

http://www.isthe.com/chongo/tech/comp/fnv/index.html

48 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

Maintenant, si une nouvelle recrue se voit confier la tache d’améliorer le temps
de résolution et qu’en réfléchissant un peu elle parvient a imaginer que I'utilisation
d’une fonction de hachage risque de diminuer le temps de calcul, vous risquez
de vous attirer les foudres de votre patron et de passer pour un incapable aux
yeux d’'un bon nombre de personnes. En effet, si le probleme est résoluble en 5
secondes avec fonction de hachage au lieu de 15 heures, alors résoudre 10000
problémes prend 50000 secondes, soit un peu plus de 14 heures de calcul sur une
seule machine. Votre manque de professionnalisme aura donc co(ité trés cher a
votre entreprise.

A titre d’exercice, nous invitons le lecteur a tenter d’'implanter la recherche de
doublons comme nous 'avons expliquée.

1.4 Le Génie (du) logiciel

De maniere générale I'intérét ou 'engouement pour les sciences, au dela de la
découverte, réside dans le fait qu’on est confronté quotidiennement a des problemes
et on se doit d’y apporter une solution, voire la meilleure solution. Parvenir a
trouver une solution originale, performante apporte alors une grande satisfaction
intellectuelle.

Le travail de I'informaticien consiste a faire exécuter par un ordinateur des
traitements qui doivent étre pensés pour étre les plus efficaces par rapport au
matériel dont il dispose. Les méthodes de développement logiciel issues de la
mouvance Agile '° préconisent au contraire de commencer par faire ce qui est
simple plutdt que de faire ce qui est compliqué, et par conséquent, efficace. C’est le
fameux principe KISS (Keep It Stupidly Simple). Bien entendu ce genre d’approche
est discutable et posseéde des avantages comme des inconvénients.

Commencer par faire ce qui est simple (par exemple un tri a bulles) permet
d’avancer plus vite dans le codage des diverses fonctionnalités d’un logiciel. Ce-
pendant, il faudra revenir par la suite sur le code et le modifier pour introduire de
lefficacité. Inversement utiliser des algorithmes efficaces va nous amener a ralentir
la cadence de développement. Plus un algorithme est complexe, plus il faudra de
temps pour le coder, le tester, et plus on a tendance a introduire de bogues.

Néanmoins, du point de vue utilisateur, c’est souvent l’efficacité qui prime dans
le choix d’un logiciel. L’informaticien se trouve donc souvent dans cette position peu
confortable, tiraillé entre deux choix contradictoires : utiliser un algorithme simple
pour augmenter sa productivité mais ralentir les traitements, ou alors, produire du
code efficace (donc complexe) pour diminuer le temps d’exécution des traitements
mais ralentir sa productivité.

10. http://agilemanifesto.org/

http://agilemanifesto.org/

1.4. LE GENIE (DU) LOGICIEL 49

Définition : Génie Logiciel

En Informatique, le Génie Logiciel est une discipline qui a pour but d’ap-
prendre les méthodes qui permettent de mener a terme la réalisation d’'un
logiciel, en partant de 'expression du besoin d’un client et en passant par la
conception, 'implantation, les tests, pour arriver jusqu’au déploiement de

I'application et sa maintenance.
\. J

Les premieres méthodes élaborées dans les années 1970 a 1980 avaient tendance
a se fonder sur une approche considérée trop rigide. Pour caricaturer, encore une
fois, ces méthodes fonctionnaient sur le modele suivant : on allait voir le client
et on comprenait (plus ou moins bien) son besoin, puis on concevait le logiciel
pendant quelques mois et on présentait le résultat final au client. Le probleme est
que le résultat pouvait ne pas convenir au client :

e soit parce que pendant la phase de développement la vision du client ou son
besoin évoluait,

e soit parce que le logiciel final n’était pas ergonomique,
e soit parce que les besoins du client avaient été mal compris par I’équipe de
développement des le début.

En effet, les développeurs ont leur propre vision du logiciel et les utilisateurs en
ont une autre. Par exemple, les utilisateurs vont préférer appuyer sur une touche
pour ouvrir une fenétre qui contiendra l'information d’un client, plutét que de
fermer la fenétre courante qui affiche sa commande et accéder par un menu a la
fonctionnalité qui donne I'information du client. Parfois, pour le programmeur, il
est plus pratique ou plus simple de faire un choix plutét qu'un autre en raison de
I'implantation qu’il a choisi alors que l'utilisateur se focalise sur 'ergonomie.

Toute modification du logiciel contraint les développeurs a repenser et modifier
I'application ce qui peut engendrer plusieurs semaines ou mois de développement
supplémentaires. Certaines entreprises, pour éviter ce genre de déconvenue, vont
facturer trés cher toute modification dans le but de faire comprendre au client que
les changements sont pénalisants pour celui qui développe le logiciel et ont, par
conséquent, des répercussions sur les délais et le budget alloué au logiciel.

Les méthodes Agile, évoquées précédemment, mises au point dans les années
1990 et 2000, tentent de répondre a cette problématique en intégrant le client a
I’équipe de développement et en construisant le logiciel par groupes de fonction-
nalités, c’est ce que l'on appelle le développement itératif. Aprés avoir développé
quelques fonctionnalités pendant trois a quatre semaines, on présente le résultat
au client et on prend en compte les modifications qu’il demande dans le prochain
cycle de développement qui intégre également de nouvelles fonctionnalités.

Ces nouvelles méthodes Agile pronent également la simplication des procédures
et 'adaptation (ou adaptabilité) au changement.

Simplifier les procédures signifie obtenir rapidement ce que I'on veut afin
d’avancer rapidement et ne se concentrer que sur la tache principale c’est a dire

50 CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

développer le logiciel. Un développeur sera plus serein et efficace s’il peut remplacer
son écran tombé en panne dans I'heure, plutot que d’avoir a remplir un formulaire
en trois exemplaires, le faire signer par son supérieur hierarchique et attendre
quelques jours avant d’obtenir un nouvel écran.

L’adapation au changement, quant a elle, concerne aussi bien les besoins du
client que l'arrivée ou le départ d'un nouveau collegue au sein de 1’équipe de
développement.

Méme si les méthodes Agile connaissent un engouement certain, elles ne sont
pas la panacée. Elles ont pour but, comme nous venons de le voir, 'adaptabilité
aux besoins du client ou de I’équipe et ont tendance a considérer que l'agilité, qui
signifie dans ce cadre, 'acceptation et 'adaptation au changement, levera beaucoup
de verrous et permettra de surmonter de nombreux problemes qui tendent a faire
capoter certains projets qui, finalement, n’arrivent pas a terme ou qui ne respectent
pas les délais ou le budget.

Malheureusement, ces méthodes ne fonctionnent pas toujours car elles oublient
I'analogie avec la construction d’une maison que nous avons évoqué précédemment.

En effet, s’adapter aux demandes de changement du client reviendrait, si nous
reprenons notre analogie avec la construction d'une maison, a revoir le plan de la
maison, a détruire certaines pieces pour en créer de nouvelles, a supprimer des
cables pour en faire passer de nouveaux a un autre endroit. Si une maison devait
étre construite ainsi, en modifiant les plans en cours de construction, il est presque
certain qu’elle n’arriverait pas a terme ou que le résultat serait décevant pour le
client. On comprend bien qu’une telle approche risquerait de grever le budget de
construction. Sans compter la démotivation de I’équipe de construction qui serait
contrainte de défaire et refaire son travail plusieurs fois et aurait le sentiment de
stagner.

Les changements au niveau du logiciel peuvent donc intervenir mais a la marge,
pas en profondeur, ce qui impose de bien réfléchir au préalable a I'architecture du
logiciel a concevoir.

Un autre facteur qui semble totalement négligé par la totalité des méthodes
de génie logiciel est le fait que la vision du logiciel que posséde I'équipe de dé-
veloppement évolue au fur a mesure de sa construction. Si vous demandez a un
développeur, une fois le logiciel opérationnel, ce qu’il pourrait améliorer, il vous
dira sans doute qu’avec le recul et la vision globale qu’il en a, s’il devait refaire le
logiciel, il procéderait autrement pour implanter telle partie, qu’il aurait congu les
classes de maniere différente, etc. Méme si le logiciel fonctionne, le fait qu’il puisse
apparaitre mal congu est un facteur psychologique qui peut impacter de maniere
significative la motivation du développeur et influencer sa volonté a continuer de
le modifier ou de 'améliorer.

1.5. CONCLUSION 51

1.5 Conclusion

Pour résumer, il est primordial pour I'informaticien de disposer d'une connais-
sance approfondie de son outil de travail. Avant de se lancer dans I’écriture du
code source d’une application, il est nécessaire de réfléchir de maniere posée et
de s’interroger afin de trouver la meilleure architecture possible pour le logiciel
que l'on doit concevoir ainsi que la meilleure organisation sous forme de classes,
de méthodes et de coopérations entre les classes. Une séance de brainstorming a
plusieurs est souvent salutaire car on ne pense pas toujours a tout et les autres
peuvent nous aider dans notre réflexion globale.

Lors de I'écriture du code, il est du devoir du développeur de bien commenter
son code, cest a dire d’expliquer pourquoi une classe ou une méthode existe, quel
est son role, comment elle réalise le traitement qui lui est demandé, quels sont les
parametres a fournir et quel est le résultat attendu.

Cette nécessité de réflexion et de documentation est d’autant plus vitale que
I'on travaille a bas niveau, comme en assembleur, car la relecture du code peut étre
fastidieuse, d’autant plus qu’il n’y a pas de structures de contréle. Elle est vitale
pour une personne qui serait amenée a relire votre code, mais également pour
soi-méme. Lorsqu’on laisse de c6té un projet qu’on avait commencé et que I'on
continue son développement quelques semaines ou mois plus tard, on se demande
souvent comment on a réalisé telle fonction. Si on dipose de commentaires de
qualité, il sera alors plus simple de progresser.

1.6 Exercices

Exercice 1 - En utilisant les entiers 32 bits du langage C (int) écrire un programme
qui fait la somme des entiers de 1 a n et trouver a partir de quelle valeur de n, la
somme, qui est également de type int, n’est plus correcte.

On n’oubliera pas d’inclure l'option de compilation -fwrapv de g++ pour obtenir
une comparaison exacte.

Exercice 2 - Reprendre 'exercice précédent mais avec les entiers 32 bits non signés.

52

CHAPITRE 1. INFORMATIQUE, INFORMATICIEN ET ASSEMBLEUR

Chapitre 2

Représentation de 'information

Karla Mangeait

de Grandes Tortillas
et du Pain de Elote,
Zen, sur son Yacht

Dans ce chapitre nous allons découvrir comment est modélisée I'information
afin de pouvoir étre traitée par le microprocesseur car le fonctionnement des
ordinateurs se fonde sur un modele logique ou binaire, c’est a dire, un modele a
2 états distincts qui sont le 1 ou le 0, le vrai ou le faux, 'ouvert ou le fermé. Ce
modele binaire (ou base 2) est utilisé pour représenter I'information de différentes
facons en fonction des données a traiter. La compréhension de la représentation de
I'information est également essentielle lorsque ’on programme en assembleur car
elle permet de réaliser certaines fonctionnalités tres rapidement (cf. valeur absolue
de la Section 2.4) ou le calcul de certaines valeurs (voir Chapitre 12).

2.1 Introduction

Etre informaticien demande de penser d’'une certaine maniére qui est différente
de la maniere de penser des mathématiciens : un informaticien d’un bon niveau ne
fera pas forcément un mathématicien d’'un bon niveau et inversement.

Par exemple : les mathématiciens travaillent avec la notion d’infini alors que
les informaticiens travaillent dans des domaines finis : la taille de la mémoire, la
taille du disque dur, le nombre de processeurs utilisés pour réaliser un calcul en
parallele, toutes ces quantités sont finies.

Un mathématicien peut dire que : quand n tend vers l'infini, 1/n tend vers O
mais ne sera jamais égal a 0. Pour un informaticien, a partir d’'une certaine valeur
de n, il remplacera 1/n par O car il aura dépassé la capacité de représentation d'un
trés petit nombre.

53

O O N v AW N -

[T S = T =
S © ® N o U A W N R O

54 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

Du point de vue de la démarche, un mathématicien va démontrer qu'un pro-
bleme admet ou non des solutions dans telles conditions mais sans donner ces
solutions. La réponse sera généralement de type oui ou non : oui, le probleme
admet une solution, ou non, il n’en admet pas. le mathématicien peut également
nous indiquer comment construire une solution.

L’informaticien va s’attacher a trouver une, ou toutes les solutions, ou a prouver
qu’on ne trouvera pas de solution en résolvant le probleme : c’est a dire en tentant
de trouver une solution et en ne pouvant, au final, n’en trouver aucune en ayant
testé tous les cas possibles; la réponse sera une solution, la ou les meilleures pour
un critére donné, ou aucune.

Au niveau de la machine l'information est représentée sous forme binaire avec
des suites de O et de 1. Il est donc primordial de comprendre comment I'information
(entiers, réels, texte) est représentée en informatique si on désire raisonner comme
un informaticien puisque c’est de cette représentation :

e que l'on peut déduire la limite des calculs possibles que 'on pourra réaliser

e mais également, trouver les traitements les plus efficaces pour résoudre un
probleme donné

A titre d’exemple, considérons un traitement qui s’attache a déterminer si un
nombre entier est impair ou, en d’autres termes, comment sait-on qu'un nombre
entier est impair ?

Facile, me direz-vous, il suffit que ce nombre se termine par 'un des chiffres
suivants : 1, 3, 5, 7, 9. Mais comment procéder avec un ordinateur ?

Une premiére solution consiste a faire ce que font les humains : extraire le
chiffre unité du nombre et le comparera 1, 3,5, 7ou 9 :

#include <iostream>
std;

int main(int argec, char xargv([]) {
int x = 123789;

(arge > 1) x = atoi(argv|[1]);

// extraire 1l'unité

int u = x % 10;

// la comparer
((u==1) || (u==23) || (u==25) [| (u==7) || (u==29)) {
cout << x << " est impair" << endl;

} {
cout << x << " est pair" << endl;

EXIT_SUCCESS;

O e N o LW N =

NONON DN N NN R R o s s e H ol s
N 6 G f W N =B O Vv ® N oG hs W N = O

1

2.1. INTRODUCTION 55

Voici le code assembleur x86 64 bits qui correspondrait au code C précédent
pour la partie comparaison. Ici, on retourne la valeur 1 dans le registre eax pour
indiquer que le nombre est impair et 0 pour indiquer qu’il est pair :

est_impair
.text
; code 64 bits
; bool est_impair (int n)

; n => edi
est_impair:

mov eax, edi ; eax <— edi
Xor edx, edx ; edx <= 0
mov ecx, 10 ; ecx <— 10
div ecx ; eax <- eax / ecx, (u) edx <- eax % ecx
mov eax, 1 ; eax <- 1, valeur de retour true
cmp edx, 1 ; si u == 1 alors sortir de la fonction
je .end
cmp edx, 3 ; si u == alors sortir de la fonction
je .end
cmp edx, 5 ; si u == alors sortir de la fonction
je .end
cmp edx, 7 ; si u == 7 alors sortir de la fonction
je .end
cmp edx, 9 ; si u == 9 alors sortir de la fonction
je .end
Xor eax, eax ; sinon, le nombre est pair on sort avec
; la valeur 0 (false)

.end:

ret

Comme nous n’avons pas encore vu d’instructions assembleur, quelques explica-
tions s'imposent. Les lignes 9 a 12 calculent le reste de la division de n par 10, le
modulo. Celui-ci est obtenu dans le registre edx apres utilisation de l'instruction
div qui réalise la division. On place ensuite en ligne 13 la valeur 1 (true) dans eax
car c’est, par convention, ce registre qui contient la valeur retournée par la fonction.
Les lignes 14 a 23 ne font que comparer le reste de la division a 1, 3, 5, 7 puis 9,
et, il s’agit de 'une de ces valeurs, on se dirige directement vers la sortie de la
fonction. Finalement, si le reste n’est pas un chiffre impair, on met, en ligne 24, eax
a 0 (false), puis on sort de la fonction.

Un informaticien ne procédera pas ainsi, il sait que la représentation binaire
des nombres fait que, si un nombre est impair, il possede son premier bit (bit en
position 0) a 1, étant donné que c’est la seule puissance de 2 impaire. Il effectuera
donc un ET-binaire avec le nombre et vérifiera que le résultat est égal a 1 ou qu’il
est différent de 0, ce qui revient au méme :

#include <iostream>
std;

O 0 N o 1 A

10
11
12
13
14
15
16

56 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

int main(int argc, char xargv|[]) {
int x = 123789;

(arge > 1) x = atoi(argv[1]);
((x & 1) != 0) {

cout << x << " est impair" << endl;

} {

cout << x << " est pair" << endl;

EXIT SUCCESS;

Au final, le calcul réalisé par un informaticien, ou tout au moins une personne
qui posséde des connaissances en informatique, est moins coliteux en temps de
calcul et moins soumis a certains aléas.

Un test réalisé pour comparer les deux méthodes (cf. Table 2.1), et, qui consiste
a répéter 50_000 fois I'application de 'une des deux fonctions précédentes sur les
éléments d’un tableau de 100 _000 entiers générés dans des conditions spécifiques
(voir ci-apres), donne les résultats suivants :

Initialisation Méthode 1 Méthode 2

aléatoire 38.42 5.28

1 12.04 5.44
.3 12.23 5.41
.5 12.45 5.29
w7 12.86 5.40
...9 14.81 5.50
pairs 12.46 5.49

TABLE 2.1 — Temps d’exécution (en secondes) des méthodes en fonction des nombres a
traiter sur Intel Core i7-10850H

La méthode d’initialisation des éléments du tableau peut étre :

e aléatoire : on aura autant de nombres pairs que de nombres impairs
e ne générer que des nombres impairs se terminant par 1, 3,5, 7 ou 9

e ne générer que des nombres pairs

L’analyse des résultats montre que la méthode 1, traduction de la maniére dont
procede un programmeur non expérimenté, est sensible aux données et se révele
toujours moins efficace que la méthode 2. En effet, trouver si un nombre se termine
par 3 prend plus de temps que comparer si un nombre se termine par 1 car on

2.2. REPRESENTATION DES ENTIERS 57

effectue un test supplémentaire, et ainsi de suite jusqu’a comparer si un nombre se
termine par 9, comme le montre le code assembleur ci-dessus.

Dans le cas de données aléatoires (nombres pairs ou impairs sans ordre précis),
on note que le temps d’exécution est prohibitif (exorbitant) avec la méthode 1. Cela
est d{i a la prédiction de branchement (cf. Section 3.7.1) qui ne peut déterminer
sur quelle valeur de I'unité sortir de la fonction.

Dans ce cas, la méthode 2 est 7,27 (= 38,42/5, 28) fois plus performante que la
méthode 1.

2.2 Représentation des entiers

Pour représenter un nombre entier naturel dans une base b, il faut disposer de b
chiffres distincts allant de 0 a b — 1. Tout nombre n s’exprime alors sous la forme :

k

n= Z a; X bt (2.1)

=0

ol chaque a; est un chiffre. Ainsi en base 10, on peut écrire :

197510 =1x1000+9x100+7x10+5x 1
=1x10°4+9 x 10>+ 7 x 10" +5 x 10°

En informatique, on utilise la base 2 ou binaire mais il est parfois plus facile
d’utiliser d’autres bases comme l'octal (base 8) ou 'hexadécimal (base 16) afin de
représenter de grandes quantités ou de faire des calculs.

2.2.1 Le binaire

Dans la notation binaire, également appelée base 2, on ne dispose que de deux
chiffres 0 et 1. Par exemple 11001, représente la valeur décimale 25 :

110015 =1 x 24+ 1 x 22+ 1 x 2° = 1619 + 810 + 110 = 2510

58 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

Jai choisi de mettre en indice de chaque nombre la base a laquelle il se
rapporte. Quand on ne le précise pas il s’agit par défaut de la base 10.

Dans la suite de 'ouvrage, afin d’améliorer la lisibilité des nombres j'utilise
le symbole souligné () apres chaque quartet pour les nombres binaires ou
chaque triplet pour les nombres décimaux :

11010101010 = 110_1010_10105 = 170619 = 1_70619 = 1_706
On poura également utiliser la notation suivante :
e b pour le binaire : 1011_0001, ou 1011_00015
e o pour l'octal : 261, ou 2615
e d pour le décimal : 177, ou 1775 ou 177

e h pour 'héxadécimal : B1;, ou Bl
. J

En binaire un chiffre est appelé un bit pour Blnary digiT. On distingue générale-
ment dans un nombre binaire le bit (ou chiffre) le plus a gauche qui est appelé bit
de poids fort (ou most significant bit en anglais) et le bit le plus a droite appelé bit
de poids faible (ou least significant bit).

2m Valeur 2m Valeur
20 = 1 28 = 256
2t = 2 29 = 512
22 = 4 210 = 1024
2 = 8 21l = 2 048
2 = 16 212 — 4096
2 = 32 218 = 8 192
2 = 64 21 = 16_384
2T = 128 215 = 32768
216 = 65_536 231 = 2 147 483 648
2T = 131 072 282 = 4 294 967 296
263 = 9 223 372 036 854 775 808 264 = 18 446 744 073_709 551 616

TABLE 2.3 — Liste de puissances de 2 de 20 & 264

Etant donné qu’en informatique on travaille toujours sur une quantité finie, on
a introduit des termes pour identifier un nombre de bits consécutifs déterminé :

e un ensemble de 4 bits consécutifs est appelé un quartet
e un ensemble de 8 bits consécutifs est appelé un octet (byte en anlgais)
e deux octets consécutifs (16 bits) forment un mot (word)

2.2. REPRESENTATION DES ENTIERS 59

e quatre octets consécutifs (32 bits) forment un double mot (double word)
e huits octets consécutifs (64 bits) forment un quadruple mot (quad word)

e seize octets consécutifs (128 bits) forment un double quadruple mot (double
quad word)

Quand on travaille en tant qu’informaticien il est généralement tres utile de
connaitre les puissances de 2 allant de 2! jusqu’a 26 (voire jusqu’a 2%°) car cela
permet de réaliser certains calculs de téte. Je recommande a tout informaticien
d’apprendre la Table 2.3.

Il est également nécessaire de connaitre les puissances de 2 proches des puis-
sances de 10 (cf. Table 2.4) puisqu’elle définissent la taille des mémoires et espaces
de stockage. Elles sont basées sur les préfixes du Systeme International (SI) d’unités
et simplifient la manipulation des grandes quantités.

Puissance Préfixe Puissance Préfixe
210 kilo 250 Peta
220 Mega 260 Exa

230 Giga 270 Zetta
240 Tera 280 Yotta

TABLE 2.4 — Liste de puissances de 2 liées aux puissances de 10

La phrase introductive de ce chapitre reprend dans 'ordre, pour chaque mot, la
premiere lettre des préfixes : ainsi le K de Karla correspond a kilo, le M de Mangeait
correspond a Mega, etc. Il s’agit d'un moyen mnémotechnique pour se rappeler
I'ordre des préfixes du SI.

Certains constructeurs comme les fabricants de disques durs préférent utiliser
103 au lieu de 1024. Un disque de 80 Giga octets, qui posséde un espace de stockage
de 80 x 10° octets, apparait pour le systéme d’exploitation comme un disque de 74
Giga octets '.

2.2.2 L’octal

La base 8 est utilisée pour représenter des octets comme par exemple des
caracteres mais elle est en général peu usitée. On la retrouve lors de I'utilisation de
commandes Unix comme chmod qui change les droits d’'un fichier ou tr qui permet
de transposer ou d’éliminer des caractéres dans un fichier ou un flux de données.
Voici, par exemple, deux commandes Unix qui utilisent 'octal :

1 |richer@universe:~$ chmod 644 fichier
2 |richer@universe:~$ tr ':' '\@12' < fichier

1. 80 x 109/1024% = 74,5

60 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

La premiere ligne donne au propriétaire les droits de modification et lecture,
aux membres du groupe et aux autres uniquement les droits de lecture sur le fichier.
La seconde permet de remplacer le caractére ’:’ par un saut de ligne car 123 = 10
ce qui correspond au caractére ’\n’. Il faut noter que le nombre commence par un
0 qui indique qu’il faut lire la valeur en octal.

Binaire vers l’octal

Le passage du binaire a I'octal est simple puisqu’un triplet (3 bits consécutifs)
correspond a un chiffre octal.

2.2.3 L’hexadécimal

La base 16 permet de représenter des adresses ou des nombres utilisant plusieurs
bits comme les double et quadruple mots. Ainsi un double mot qui occupe 32 bits,
soit 32 chiffres en binaire, utilise seulement 8 chiffres hexadécimaux.

Dans la base 16 on utilise les chiffres 0 a 9 ainsi que des lettres pour représenter
les chiffres supérieurs ou égaux a 10 en partant de A qui vaut 10 pour aller jusqu’a
F qui vaut 15 en décimal :

A2F81s = Ax1634+2x162+F x 161 +8 x 16° = 41 720
10 x 16% +2 x 162 + 15 x 16" 4 8 x 16°

On remarquera qu’en C ou en assembleur on peut écrire les nombres hexadéci-
maux en les préfixant avec 0x, on écrira donc 0xA2F8.

Binaire vers I’hexadécimal

Le passage du binaire a I'hexadécimal est simple puisqu'un quartet (4 bits
consécutifs) correspond a un chiffre hexadécimal.

2.2.4 Les entiers naturels

Les entiers naturels N sont des entiers positifs ou nul, ils sont généralement
représentés en langage C par le type unsigned int ou encore par uint32_t du
fichier d’entéte stdint.h, en d’autres termes il s’agit de valeurs dites non signées.

On a souvent besoin de convertir des nombres décimaux en binaire ou en
hexadécimal dés lors que 'on programme en assembleur. Pour passer d’un nombre
décimal en un nombre dans une autre base il existe plusieurs méthodes :

1. méthode des divisions successives
2. méthode des intervalles de puissances
3. méthode par complémentation

2.2. REPRESENTATION DES ENTIERS 61

2.2.4.1 Méthode des divisions successives

On réalise des divisions successives par la base b du nombre n a convertir. On
s’arréte lorsque le quotient de la division est inférieur a b, puis on prend le dernier
quotient et les restes successifs obtenus lors des divisions (cf. Figure 2.1).

FIGURE 2.1 — Méthode des divisions successives par 2, 8 et 16

Ainsi le nombre 189 en décimal s’écrit également :
e 1011 1101,

e 2753

e BDy;

2.2.4.2 Méthode des intervalles de puissances

On applique ici la méthode au binaire mais elle peut étre transposée a d’autres
bases. Si on connait les puissances de 2, il est plus facile de convertir les grands
nombres. En effet on n’est jamais a ’abris de commettre une erreur avec la méthode
des divisions successives. Avec la méthode des intervalles, on cherche entre quelles
puissances de 2 se trouve le nombre a convertir et on retranche la puissance la plus
petite comme sur ’exemple suivant :

e 189 est compris entre 128 et 256, il contient donc 128 = 27

e 189 - 128 = 61 est compris entre 32 et 64, il contient donc 32 = 25
e 61 - 32 = 29 est compris entre 16 et 32, il contient donc 16 = 2*

e 29 - 16 = 13 est compris entre 8 et 16, il contient donc 8 = 23

e 13 -8 =5, et finalement 5,5 = 101,

On retrouve donc comme dans la méthode précédente que 1895 = 1011_11015.

62 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

2.2.4.3 Méthode par complémentation

Enfin, si le nombre a convertir se trouve proche d’'une puissance 2*, on peut
procéder par complément c’est a dire en calculant 2¥ — 1 — n. Prenons un exemple :
32_745 est proche de 32 768 = 2'5. Si on calcule (2! — 1) — 32745, on obtient 22
qui s’écrit en binaire 1_0110,. Il suffit alors de retirer les bits a 1 du nombre 22 a
(2'5 — 1) en utilisant par exemple 'opérateur xor (ou exclusif) :

111 1111 1111 1111, (32767)
xor 1 0110, (22)
— 111 1111 1110 1001, (32745)

2.2.4.4 Intervalles de représentation

En informatique, on travaille a quantité finie et on utilise pour représenter
I'information des octets, des mots, des double mots ou des quadruple mots. La
Table 2.5 indique pour un nombre de bits fixés (n) le nombre de valeurs différentes
que l'on peut représenter ainsi que les valeurs minimum et maximum si on utilise
des valeurs non signées.

n valeur minimum valeur maximum nombre de valeurs

8 0 255 256
16 0 65 535 65_536
32 0 4294 967 295 4 294 967 296

TABLE 2.5 — Entiers naturels représentés avec un nombre fixé de bits

On peut résumer la Table 2.5 en disant qu’avec n bits on peut représenter 2"
entiers naturels différents allant de 0 a 2" — 1. Ainsi avec 32 bits on peut représenter
un peu plus de 4 milliards de valeurs différentes.

2.2.4.5 Débordement

Que se passe t-il si on si essaye de représenter la valeur 259 sur 8 bits ? Si, par
exemple, on ajoute 4 a 255, il se produit alors un dépassement de capacité (overflow)
ou débordement et la valeur obtenue est alors égale a 259 modulo 256 = 3. On
rappelle que le modulo est le reste de la division entiere, ici, 259 = 256 x 1 + 3,
donc 3 est le reste de la division entiere de 259 par 256. La conséquence est que si
on ne préte pas attention au calcul ce dernier risque d’étre erroné.

Considérons, par exemple, les entiers non signés sur 32 bits. Si on réalise la
somme des entiers naturels de 1 a n, a partir de quelle valeur de n la somme
n’est-elle plus exacte ? Ce probléme est laissé a titre d’exercice de programmation.

2.2. REPRESENTATION DES ENTIERS 63

Vous devriez normalement trouver la valeur limite de n = 92_681, ce qui
correspond a la somme 4_294 930 221, soit une valeur proche de 2%, au dela, le
calcul est inexact.

2.2.5 Les entiers relatifs

L’ensemble des entiers relatifs Z représente les nombres entiers positifs, négatifs
ou nul. En langage C, il s’agit du type int ou int32_t, c’est a dire des valeurs
signées. Plusieurs représentations existent afin de pouvoir coder nombres positifs
et négatifs mais on utilisera la notation binaire en complément a deux qui permet
de réaliser des opérations arithmétiques dont le résultat sera correct. Dans cette
notation, les nombres positifs utilisent le méme procédé de réprésentation que la
notation binaire de la section précédente.

Pour obtenir le codage en binaire en notation en complément a deux d’'un
nombre négatif, on procéde en commencant par fixer la taille de 'espace de
codage en nombre de bits, généralement 8, 16, 32 ou 64 bits. Prenons par exemple
8 bits. On réalise ensuite la série d’opérations suivantes :

1. on prend la valeur absolue |z| du nombre que 'on code sur 8 bits

2. on réalise ensuite une opération de complémentation (z) c’est a dire que I'on
remplace les O par des 1 et inversement

3. on ajoute 1 au résultat final

Ainsi, pour coder la valeur x = —1 sur 8 bits en notation binaire en complément
a deux, on obtient :

lz| = 0000_0001,
F = 1111 1110,
+ 0000_0001,
= 1111 1111,

On remarque alors que si le bit de poids fort est a 0, il s’agit d'une valeur
positive ou nulle. Par contre si le bit de poids fort est a 1, il s’agit d'une valeur
négative.

On notera x; un nombre en notation en complément a 2 afin de le différencier

avec un nombre en notation binaire.
. y

La Table 2.6 indique pour un nombre de bits fixés (n) quelles sont les valeurs
minimum, maximum et le nombre de valeurs différentes que I'on peut représenter.

On peut résumer la table en disant qu’avec n bits on peut représenter 2" entiers
relatifs différents allant de —2"~! & +27~! — 1.

64 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

n valeur minimum valeur maximum nombre de valeurs

8 —128 127 256
16 —32_768 32 767 65_536
32 —2 147 483 648 2 147 483 647 4 294 967 296

TABLE 2.6 — Entiers relatifs représentés avec un nombre fixe de bits

2.2.5.1 Débordement

De la méme maniére qu’avec les entiers naturels on peut avoir un dépassement
de capacité. Fixons la représentation sur 8 bits et considérons le nombre 126 auquel
on ajoute 3, on obtient alors 129 qui est en dehors de l'intervalle de représentation,
puisque pour 8 bits, la valeur maximale que 'on peut représenter est 127. Mais sur
8 bits, 129, = 1000_00015. Etant donné que le bit de poids fort est a 1, cela signifie
qu’on traite un nombre négatif! Comment un nombre positif peut il étre négatif ?

-1 01

-127 128 127

FIGURE 2.2 — Intervalle de représentation des entiers relatifs sur 8 bits

La raison est d{ie au débordement. Comment savoir a quel nombre correspond
1000_00015 ? 11 suffit de réaliser les opérations inverses qui conduisent au codage
des nombres négatifs :

1. on retranche 1

2. on complémente = chacun des bits

y = 1000 00015
—0000_0001,
= 1000_0000,

y = 0111 1111,

2.3. CALCULS EN BINAIRE AVEC DES ENTIERS 65

Donc 1000_00015 correspond finalement a la représentation binaire en complé-
ment a deux de —127. Comme on peut le voir sur la Figure 2.2, a partir de 127,
si on se déplace dans le sens des aiguilles d'une montre de deux positions, on se
positionne sur —127. La boucle est bouclée!

Une autre méthode qui permet de savoir a quel nombre correspond 1000 00015
consiste a ne pas considérer qu’il s’agit d'un nombre signé et de le convertir en
décimal et le soutraire a 2%, si on a choisi une représentation sur 8 bits. Ici on
a 128 + 1 = 129. On retranche alors 129 a 256 ce qui donne 256 — 129 = 127. Le
nombre correspondait alors a —127.

De la méme maniere, sion a 1111 10113, il s’agit de 255 — 4 = 251. Si on calcule
256 — 251, on obtient 5. On en déduit que 1111 10115 correspond a —5.

2.3 Calculs en binaire avec des entiers

Que ce soit en notation binaire naturelle pour les entiers non signés ou en
notation binaire en complément a deux pour les entiers signés, on applique les
mémes schéma d’opérations qu’en arithmétique classique.

2.3.1 Addition

L’addition de deux nombres binaires est assez simple, il suffit d’appliquer les
régles suivantes :

e 0y + 0y =09
o Oy +1y=1,
012+02:12

1, + 15 = 104, on abaisse le 0 et on génere une retenue de 1

enfin le dernier cas correspond a une retenue en entrée de 1, des lors 1, +
1, + 1, = 11,, on abaisse le premier 1 et on génere une retenue en sortie de 1
Ces regles s’appliquent aussi bien pour les nombres signés que les non signés.

Considérons une représentation des nombres sur 8 bits, pour le calcul de
1101_10105 + 1110_1111,. Dans ce cas on ne garde que les 8 premiers bits du
résultats :

Retenue(s) 1 1 1 1 1 1

—_ =
)

+ 111011

66 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

Le résultat est-il correct ? Il suffit de traduire les nombres binaires en décimal
en décidant si on travaille avec des valeurs signées ou non signées :

e s’il sagit de valeurs non signées, alors on effectue le calcul 218 + 239 = 457
qui modulo 256 est égal a 201

e g’il s’agit de valeurs signées, alors on effectue le calcul —38 + (—17) = —55
qui est juste car —559 = 1100_10015

2.3.2 Multiplication

La multiplication fonctionne comme en décimal :

)

l’

+ 1 11 10
+ 1 11

+ 1 11

+ 1 10

+ 10

+ 0

= 00000110

Le seul probleme que I'on rencontre est celui de la somme des valeurs, on peut
alors procéder de deux maniéres différentes :

e soit en faisant la somme comme on le ferait en décimal :

2.3. CALCULS EN BINAIRE AVEC DES ENTIERS

Colonnes 8 7 6 5 4 3 2 1
Retenues 1
1 —
1 —
1 <
1 1 1 1 1 110
+ 11 1 1 1 000
+ 11 1 1 0 000
+ 11 1 0 0 00O
+ 1 1. 0 0 0 0O0O
+ 10 0 0 0 00O
= 0O 0 0 0 0 110

67

Pour la cinquieme colonne en partant de la droite on a une retenue en entrée
et trois 1, ce qui fait 4, soit 100,, on aura donc une retenue pour la septieme
colonne. De la méme maniére, la somme des valeurs de la sixiéme colonne
donne 4 = 1004, on aura donc une retenue de 1 pour la huitieme colonne. Pour
la septiéme colonne on a 5 plus une retenue en entrée ce qui fait 6 = 110,, ce
qui provoque une retenue pour la huitieéme et la neuvieme colonne. Comme
on a fixé une représentation sur 8 bits, la retenue pour la neuvieme colonne
ne doit pas étre prise en compte. Enfin pour la huitiéme colonne, on a deux
retenues en entrée plus 6, ce qui fait 8 = 10004, on abaisse donc le premier 0
et on ne tient pas compte de la retenue pour la onziéme colonne.

e soit en faisant des additions deux a deux :

1111111
+ 1111100
11000

+ 0 0

o}

0 (s1)

1 0 (s5)

68 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

Au final on obtient 0000_0110,. Si on se place dans le cadre de valeurs non
signées le calcul effectué est 254 x 253 = 64 262 qui modulo 256 donne 6 car
64 262 = 251 x 256 + 6. Si on considére que I'on traite des valeurs signées, on
effectue le calcul —2 x —3 = 6.

2.3.3 Soustraction

Le principe de la soustraction est le méme qu’en décimal. Lorsque I'on calcule
25 — 16, on commence a s’intéresser aux unités. 5 étant inférieur a 6, on ajoute
une dizaine a 5 et on calcule 15 — 6 ce qui donne 9. On passe ensuite aux dizaines.
Sachant que I'on a ajouté une dizaine précédemment, on retire cette dizaine et on
calcule 2 — 1 auquel on retranche la dizaine, soit2 — 1 —1 = 0.

I1 suffit donc d’appliquer les régles suivantes :

o 02—02:02

e 0y — 1, étant donné que 0 < 1 il faut calculer 10, — 1, = 1, et propager une
retenue de 1

[] 12—02:12
[] 12—12:02

e 0y — (15 + 1) = 05 — 104, on ajoute une dizaine, ce qui donne 10, — 10, = 0,
et on propage une retenue de 1

e 1o — (13 + 13) = 15 — 105, on ajoute une dizaine, ce qui donne 11, — 105 = 15
et on propage une retenue de 1

Voyons cela sur un exemple et calculons 5 — 10, soit en binaire sur 4 bits
0101, — 1010. Dans ce cas on ne garde que les 4 premiers bits du résultats :

Retenue(s) en sortie

O s

Retenue(s) enentrée 1 1

= 1011

Soit au final 1011, qui dans le cadre de la représentation signée en complément
a 2 correspond a —5. On a donc bien le résultat escompté.

2.3.3.1 Soustraire 1
Pour soustraire 1 d'un nombre binaire =z, il suffit :

e sile nombre z se termine par un 1, de transformer ce 1 en 0

2.3. CALCULS EN BINAIRE AVEC DES ENTIERS 69

e par contre, si le nombre se termine par un ou plusieurs 0, il suffit de trouver
le premier bit a 1, puis de complémenter sur cette partie

Par exemple :

e 1101, — 15 = 1100,
e 11 10005 — 15 donne 11 0111, puisqu’on prend le complément de 1000,

2.3.4 Division

La division, tout comme en décimal, est difficile a appréhender. Elle consiste a
diviser le dividende n par le diviseur d et obtenir un quotient ¢ ainsi qu'un reste r.
On a donc n = g x d + r. On va considérer que n > d par la suite.

Comment divise t-on en binaire ? Il suffit de rechercher la position (numéro du
bit) dans le dividende n ot il est possible de soustraire le diviseur d le plus a gauche
possible, puis d’effectuer la soustraction. On réitere ensuite 'opération en placant
un 1 a droite du quotient et en le décalant de & — 1 rangs vers la gauche lorsque
k —1 > 0, avec k qui représente la différence entre deux positions successives
comme on peut le voir sur 'exemple de la Figure 2.3.

position 109876543210
]

1 1 1 W
1ooor11oooo 111

1+ 1+ 1+

| — 10100010
111roooo

- 111 1
- 1 1 1 »
01000F

1+ 1+ 1+

10

1136=162*7+2

FIGURE 2.3 - Division binaire sur un exemple

Dans cet exemple, on divise 1136 par 7. C’est a partir de la position (ou bit) 7
que l'on obtient au niveau du dividende, un nombre plus grand que le diviseur, en
I'occurrence 1000, = 8. On soustrait alors 7 a 8, il nous reste 1 et on abaisse les
chiffres restants du dividende. Etant donné que I'on vient de soustraire une fois 7
au dividende, on place un 1 a droite du quotient qui était initialement égal a O.

70 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

On s’intéresse alors au dividende modifié qui est 1111_0000, et on trouve que
I'on peut lui retrancher le diviseur 7 = 111, a partir de la position 5. On calcule
alors k = 7—5—1 =1, il faut donc décaler le quotient de 1 rang vers la gauche.
Le quotient est alors 10, et on place un 1 a droite du quotient qui devient 101, en
raison de la soustraction effectuée.

Le dividende restant est alors 1_0000,. On peut lui retrancher le diviseur a partir
de la position 1. Dans ce cas, k =5 — 1 — 1 = 3. On décale donc le quotient de 3
rangs vers la gauche, celui-ci devient alors 10_1000.

On réalise la soustraction du diviseur au dividende et on place un 1 a droite du
quotient qui est a présent égal a 101_00015.

Le dividende devient 10,, il est inférieur au diviseur donc on arréte la division,
mais comme la derniere soustraction a été réalisée en position 1, il est nécessaire de
décaler le quotient d’un rang vers la droite. Finalement le quotient est 1010_0010,,
soit 162 et le reste est de 2.

On peut en dégager I'algorithme suivant extrait d’une librairie C++ que jai
écrite :

int pos = greater_or_ equal_at (dividend, divisor);
(pos >= 0)
{
quotient.shl (1) ;
quotient.set_bit (BIT 0, 1);
sub_at (dividend, divisor, pos);
int next_pos = greater_ or_equal_at (dividend, divisor);
int shift = pos - next_pos - 1;
(shift > 0) quotient.shl (shift);
pPos = next_pos;

Ce code repose sur l'utilisation d’une structure de données appelée Bits qui
représente une suite de bits par un tableau de caracteres, ainsi que sur I'utilisation
de deux fonctions :

e greater_or_equal_at qui détermine a partir de quel bit dans le dividende on
peut soustraire le diviseur de maniere a ce que le résultat soit supérieur ou
égal a0

e sub_at qui réalise la soustraction a la position trouvée par le sous-programme
précédent

2.4. REPRESENTATION DES REELS 71

2.4 Représentation des réels

La norme IEEE 754 (Standard for Binary Floating-Point Arithmetic) date de
1985 2. Elle définit initialement quatre représentations de nombres réels qui sont
appelés nombres flottants ou nombres a virgule flottante en informatique ° :

e simple précision (32 bits), correspond au type float du langage C
e double précision (64 bits), correspond au type double du langage C
e simple précision étendue (43 bits et plus)

e double précision étendue (79 bits et plus), on utilise généralement 80 bits
ce qui correspond a la modélisation des nombres au sein du coprocesseur
arithmétique (cf. Chapitre 7)

D’autres formats de représentations ont été ajoutés par la suite :

e la demi précision (half precision) qui code sur 16 bits et est utilisée dans le
cadre des réseaux de neurones

e la quadruple précision qui code sur 128 bits
e l'octuple précision qui code sur 256 bits
Dans la norme IEEE 754, les nombres sont décomposés en trois parties dis-
tinctes :
e le Signe (.S) qui vaut 0 pour un nombre positif et 1 pour un nombre négatif et
qui correspondra au bit le plus significatif

e suivi de 'Exposant (F) que nous appelons Exposant décalé (F,) car on lui
ajoute une valeur positive

e et de la Mantisse (M) que nous qualifions de Mantisse tronquée M, car on
supprime le premier 1 une fois le nombre normalisé

On peut voir Table 2.7 les caractéristiques des nombres flottants en fonction de
la précision de la réprésentation. Nous avons indiqué également les plus petites et
plus grandes valeurs que I'on peut représenter.

Ainsi, dans le format IEEE 754 en 32 bits, un nombre n s’exprime par :

n=(—1)"x M x 27 = (=1)% x 1, M, x 2(F=127)

On voit que I'on retire 127 a 'exposant décalé car celui-ci est augmenté, par
convention, de 127 comme nous allons le voir ci-apres.

72 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

Précision 32 bits 64 bits 128 bits

Signe (bits) 1 1 1 1
Exposant (bits) 5 8 11 15
Mantisse (bits) 11 23 52 113

Plus petit nombre 46,103107° 41,1751073% 42,2251073% 43.36210~4932
Plus grand nombre +65504 +1,7011038 +1,797103% +1.18910%932
Décimales 3 7 16 34

TABLE 2.7 — Caractéristiques des nombres flottants en fonction de la précision.

[-]1027,625 = 100_0000_0011,101,
normalisation

1,00_0000_0011 101\2

M_t = 00_0000_0011 101,

:

3130 2322 0
000:0000{0111;0100:0000:0000

C 4 8 0 7 4 .0 0
FIGURE 2.4 — Codage d’un nombre flottant en IEEE 754 32 bits

16

2.4.1 Codage
Comment coder un nombre réel au format IEEE 754 ? Prenons 'exemple de
la représentation en simple précision sur 32 bits (cf. Figure 2.4) du codage de

n = —1027,625. On procede comme suit :

e il s’agit d'un nombre négatif donc S =1

e on code la partie entiere en valeur absolue :

102719 = 10241 + 219 + 110 = 2'% + 2" +2° = 100_0000_0011,

e on code la partie décimale en utilisant des puissances de 2 négatives :

0,625 =0,5+0,125=2"1 4273

/////

3. Les Anglo-saxons utilisent le point pour représenter la virgule, on parle donc de floating point
number.

2.4. REPRESENTATION DES REELS 73

¢ la mantisse qui regroupe partie entiere et décimale est alors
M =100_0000_0011, 1015

Pour obtenir la mantisse tronquée et ’exposant décalé, il suffit de déplacer la
virgule vers la gauche derriere le premier 1, on parle alors de normalisation du
nombre a représenter :

1,00000000111015

Par conséquent, on a déplacé la virgule de 10 rangs vers la gauche (voir Fi-
gure 2.4), ce qui correspond a F = 10.

¢ la mantisse tronquée est alors égale a la mantisse a laquelle on a enlevé le
premier 1 devant la virgule, on obtient donc M; = 0000000011101,

e I'exposant décalé est égal, par convention en 32 bits, a 127 + F, dans notre
cas £ = 10, donc :

E; =127+ 10 = 1370 = 1000_10014

On remplit alors chacun des champs du nombre flottant (Figure 2.4) et on
compléte la mantisse tronquée par des zéros a droite. Au final on obtient une valeur
sur 32 bits que 'on exprime généralement en hexadécimal pour plus de lisibilité.
On obtient donc C4 80 74 0046.

2.4.2 Partie décimale

Pour coder la partie décimale d'un nombre il existe une autre méthode que celle
qui consiste a sommer les puissances de deux négatives afin de retrouver la valeur
cherchée.

Cette méthode consiste a multiplier la partie décimale par 2 jusqu’a obtenir O
quand cela est possible.

A chaque étape on garde le chiffre le plus a gauche du résultat de la multipli-
cation qui sera 1 ou O puis on réitere la multiplication sur la partie décimale du
résultat de la multiplication en supprimant le premier 1 s’il existe.

Prenons un exemple simple, on désire obtenir le codage en binaire de 0, 8125 :

n nx2 r
0,8125 1,625 |
0,625 1,25 1
0,25 0,5 0

0,5 1,0 1
0,0

74 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

e on multiplie 0, 8125 par deux ce qui donne 1, 625, on garde le premier chiffre
1 et on réitére sur 1,625 — 1

e on multiplie 0, 625 par deux ce qui donne 1, 25, on garde le premier chiffre 1
et on réitere sur 1,25 — 1

e on multiplie 0, 25 par deux ce qui donne 0, 5, on garde le premier chiffre O et
on réitére sur 0,5 — 0

e on multiplie 0, 5 par deux ce qui donne 1,0, on garde le premier chiffre 1 et
onsarrétecar 1 —1 =0

Au final on obtient 0,8125 = 0, 11015.

Un exemple plus problématique est le codage de 0,3 :

n nx2a r
0,3 0,6 (
0,6 1,2
0,2 0,4
0,4 0,8
0,8 1,6
0,6 1,2

= O

—_ = O O

Dans le cas de 0, 3 le résultat ne tombe pas juste et on obtient une séquence qui
se répete a l'infini (et méme au-dela) :
0, 0 1001 1001 1001

Si on code 0, 3 au format IEEE 754 en 32 bits, on a :

e le signe est S = 0 car le nombre est positif

la normalisation du nombre donne M = 0,0100110011001... et donc £ = —2
car on doit déplacer la virgule de deux rangs vers la droite pour atteindre le
premier 1 du nombre

en conséquence I'exposant décalé est de F; = 127 — 2 = 125 = 0111 _1101,

la mantisse tronquée est 00110011...

la représentation de 0, 3 est donc 3E_99_99_9A_h

2.4.3 Remarques

La constante 127 est utilisée pour les nombres flottants en simple précision afin
de pouvoir coder les nombres dont la partie entiére est égale a 0. Dans ce cas
I'exposant E est négatif, par exemple 0, 0625 = 24, on ajoute un décalage de 127
pour pouvoir représenter ces nombres.

2.4. REPRESENTATION DES REELS 75

Notons que 'assembleur nasm que nous utiliserons est capable de convertir
automatiquement une valeur décimale en sa représentation IEEE 754, nous n’aurons
donc pas a réaliser ces calculs fastidieux d’encodage des nombres a virgule flottante.

Symbole Hexadécimal Signe Exposant Mantisse

0.0 00000000 0 000000005 00...09
00 7F800000 0 111111115, 00...09
—00 FF800000 1 111111115, 00...09
—NaN FFC00000 1 11111111, 10...04

TABLE 2.8 — Constantes prédéfinies pour les nombres en virgule flottante

Certaines valeurs ont une signification particuliére (cf. Table 2.8). Notamment
NaN qui en anglais signifie Not a Number et qui est utilisée pour signaler une erreur
lors d’un calcul. 11 existe deux types de valeurs NaN :

e gNaN ou quiet NaN, ne produit pas d’exception et sera propagée afin que le
calcul se termine sans provoquer l'arrét du programme

e sNaN ou signaling NaN est sensée provoquer une exception

Pour les systeme POSIX/Unix les exceptions générées lors de calculs sur les
nombres a virgule flottante mettent fin a 'exécution du programme a moins qu’elles
ne soient interceptées par un gestionnaire (handler) qui captera le signal SIGFPE *.

On pourra utiliser le convertisseur IEEE-754 Floating Point > écrit en Javascript
qui permet a partir d'un nombre réel d’obtenir son codage en norme IEEE 754 32
bits.

2.4.4 Erreurs de précision

On notera que les puissances de 2 négatives se terminent par des puissances de
5. Par exemple, 273 se termine par 53 = 125.

Lorsque I'on utilise la représentation IEEE 754, on rencontre deux problémes :

e le premier est la conséquence de l'utilisation des puissances de 2, car comme
on le voit Table 2.9, les puissances de 2 négatives se terminent par 5, on
ne peut donc coder la plupart des nombres décimaux qu’en utilisant une
combinaison de puissances de 2 négatives et cela engendre une erreur de
précision

e le second découle du premier et tient au fait que la taille de la mantisse peut
étre trop petite pour représenter certains nombres qui comportent beaucoup

4. SIGFPE signifie SIGnal Floating Point Exception (ou Error).
5. https://www.h-schmidt.net/FloatConverter/IEEE754.html

https://www.h-schmidt.net/FloatConverter/IEEE754.html

O [e] ~ o wu S w N -

-
o

Jun
-

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

76 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

271 = 0,5

272 = 0,25

273 = 0,125

21 = 0,0625

275 = 0,03125

276 = 0,015625

27 = 0,0078125

28 = 0,00390625

2728 = 0.00000011920928955078125

TABLE 2.9 — Puissances de 2 négatives

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

float v1 = 1.2;

float v2 = 1.3;

float v3 = 1.3001;
float v4 = 1.3001001;

int main() {
float diff_vi_v2 = v1 - v2;
float diff_v2_v3 = v2 - v3;

cout << setprecision(10);

cout << "v1-v2 = " << diff_vl1_v2 << endl;
cout << "v2-v3 = " << diff_v2_v3 << endl;

float diff_v3_v4
cout << "|v3-v4|

fabs(v3 - v4);
" << diff_v3_v4 << endl;

(diff_v3_v4 < 1E-6)
cout << "v3 = v4" << endl;

cout << "v3 I= v4" << endl;
0;

51
52
53
54
55
56
57
58

523

Listing 2.4.1 — Précision et nombres flottants

2.4. REPRESENTATION DES REELS 77

de chiffres, notamment en 32 bits, car on dispose de 7 chiffres significatifs.
C’est pour cela que le coprocesseur arithmétique qui réalise les opérations
sur les nombres flottants utilise un codage sur 80 bits afin de minimiser les
erreurs de précision

On peut voir sur le Listing 2.4.1 un exemple de code tres simple qui réalise
la différence entre des valeurs proches. Cependant le résultat de 'exécution ne
correspond pas a ce que nous devrions obtenir :

vli-v2 = -0.09999990463 ! et non -0.1

v2-v3 = -0.0001000165939 ! et non -0.0001
|v3-v4| = 1.192092896e-07 ! et non 0.0000001
v3 = v4

e la différence v1 - v2 devrait étre égale a —0.1
e et celle de v2 - v3 devrait étre de —0.0001

Cela est dii au fait qu’il est impossible de coder exactement certaines valeurs
comme nous I'avons expérimenté pour représenter 0, 3.

Attention

Le probléme lié aux erreurs de précision implique que pour comparer deux
valeurs en virgule flottante on ne peut pas utiliser 'opérateur d’égalité (==)
du langage C comme on le ferait pour des entiers, il est nécessaire d’utiliser
la valeur absolue de la différence des deux valeurs (ligne 20 du Listing 2.4.1)

et de vérifier que cette différence est bien inférieure a un ¢ donné (ligne 23).
. J

Si on utilise une précision plus grande de 64 bits, c’est a dire un double en
langage C, on obtient un résultat qui correspond a un calcul exact :

vl-v2 -0.1

v2-v3 = -0.0001

|v3-v4| = 1.000000001e-07
v3 = v4

Néanmoins, on obtiendra les mémes erreurs de précision des lors que les
nombres a traiter possedent un nombre de chiffres apres la virgule important qui
dépasse la capacité de représentation des nombres en double précision.

2.4.5 Intervalle et simple précision

La valeur décimale 0, 3 est codée au format IEEE 754 sur 32 bits par 3E99999A.
De méme 0,4 = 3ECCCCCD.

N o v AW N =

78 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

Sinous calculons la différence @x3ECCCCCD - 0x3E99999A, nous obtenons 9x333333
= 3_355_443, c’est a dire que 'on peut coder un peu plus de 3, 3 millions de valeurs
entre 0,3 et 0, 4.

De la méme maniere si on code 1,0 on obtient 9x3F800000. Le nombre qui suit
1,0 est donc 3F800001 qui correspond a la valeur décimale 1,0000001, le suivant
est Ox3F800002 qui correspond a la valeur décimale 1,0000002. On a donc une
précision de 7 chiffres aprés la virugle.

En revanche si on code 1024 on obtient 9x44800000. Le nombre qui suit 1024 est,
en hexadécimal, égal a 0x44800001 et correspond a 1024, 0001, soit une précision
de 4 chiffres apres la virgule.

Ceci montre qu’en représentation IEEE 754 sur 32 bits on dispose de 8 chiffres
significatifs.

2.4.6 Valeur absolue

Pour conclure sur la partie liée au nombres flottants, demandons nous comment
coder la fonction fabs qui calcule la valeur absolue d'un nombre. Logiquement
cette fonction devrait étre implantée sous la forme suivante :

float fabs (float v) {
(v >= 0.0) {
v;

C’est a dire qu'il faudrait changer le signe du nombre seulement s’il est négatif
et cela implique donc de comparer v a 0.0. Mais il exite une méthode beaucoup
plus simple pour obtenir la valeur absolue, puisque le bit de poids fort d’un flottant
représente le signe du nombre. Il suffit donc de le mettre a O en utilisant un masque.
On peut écrire cela en C++ de la maniere suivante :

float v = -1.5;
unsigned int xp = reinterpret_cast<unsigned int x> (&v);
*p = (xp and Ox7FFFFFFF) ;

On convertit le nombre flottant 32 bits en un entier non signé 32 bits auquel on
applique un masque qui préserve tous les bits sauf le bit de signe. En assembleur
on peut traduire ce code par une seule instruction :

.data
v dd -1.5

(3 N

2.4. REPRESENTATION DES REELS 79

.text
and dword [v], Ox7FFFFFFF

Il faut noter que 'on a utilisé ici une instruction (and) qui travaille sur les entiers,
mais comme nous le verrons dans le Chapitre 7, il est normalement nécessaire
d’utiliser les instructions liées au coprocesseur pour faire des calculs avec les réels.

2.4.7 Division entiere non signée par un invariant

Dans le cas d'une division entiere (non signée) sur 32 bits par une constante
d, il est possible de rendre la division plus efficace en la remplacant par une
multiplication car on exécute alors = x (1/d). On va alors chercher a et s tels que :

1 a

d 932+s

car on ne peut pas représenter une valeur inférieure a O comme 0, 3 avec des
entiers. Dans ce cas, z/d = x x a suivi d'un décalage a droite de 32 + s bits car la
multiplication des deux valeurs 32 bits donne un résultat sur 64 bits.

Prenons un exemple concret avec d = 10. Dans ce cas, a = CCCCCCCD4 =
3 435 973 837 et s = 3. Sion prend x = 173, on obtient alors :

rxa = 173 x3 435 973 837

594 423 473 801

8A 66 _66 66 89
1000_1010 x 232 4+ ... 1001,

Le décalage de 35 bits vers la droite ou dans le cas présent de la partie haute
du résultat (8A;4) de 3 bits vers la droite, donne au final 1 0001, = 17 et permet
d’obtenir un résultat sur 32 bits.

Si on reste en 32 bits, on utilisera le code qui suit pour lequel la partie haute de
la multiplication (edx) sera décalé de 35 — 32 = 3 bits a droite :

mov eax, 173 poK
mov edx, O0OxCCCCCCCD ; a
mul edx

mov eax, edx

shr eax, 3

Comment trouve t-on a et s? C’est assez simple, il suffit de calculer 1/d et le
coder sous forme d’un flottant. Dans I'exemple précédent, 1/d = 0, 1, soit au format
IEEE 754 : 3D_CC_CC_CD,,. Pour avoir une meilleure précision, on code sur 64
bits sous forme d’un double, ce qui donne 3FB9_9999 9999 999A ;. La taille de
I'exposant étant de 11 bits dans le format IEEE 754 64 bits :

80

CHAPITRE 2. REPRESENTATION DE L'INFORMATION

on décale le nombre de 64 bits de 11 bits vers la gauche
01001100110011001...o = 4CCC...16

on fixe a 1 le bit de poids fort (bit 63) pour obtenir la mantisse, car on ne
disposait que de la mantisse tronquée

11001100110011001... = CCC...Cy5

on décale de 32 bits vers la droite pour obtenir une valeur sur 32 bits
on fixe le bit de poids faible (bit 0) a 1

On retrouve alors CCCCCCCDys.

Une fois qu'on a déterminé la valeur de q, il est assez simple de trouver s, en
testant par une boucle le décalage qui donnera le résultat escompté ou en
utilisant les instructions assembleur telles que bsr ou bsf. Le code C correspondant
est le suivant et devrait donner dans la majorité des cas les valeurs de a et de s de
maniere précise :

void find number and shift(u32 d) {

// on calcule 1/d sous forme d'une double
double ratio = 1.0 / d;
u64 a = (u64d x) &sratio;

// décalage de 11 bits (exposant)

// et on fixe le bit de la mantisse tronquée

// on décale ensuite de 32 bits

*a = (((a << 11) | 0x8000000000000000)) >> 32;

// on fixe le bit de poids faible
*a = xa | 0x01;

u32 shift;
u64 prod = (*xa) * d;
(shift = 32; shift < 63; ++shift) {
u64 r = prod >> shift;
(r == 1) {
}
}

cout << "a=" << hex << a << endl;
cout << "s=" << dec << shift << endl;

Un test simple qui consiste a réaliser 10 milliards de divisions par différentes

valeurs (11, 127, 1027, 11279, 44567187) en emlpoyant soit I'instruction div de

I'assembleur, soit la multiplication avec décalage pour d = 10, donne les temps
d’exécution reportés Table 2.10.

On voit clairement que la multiplication suivie d'un décalage est plus perfor-
mante que la division. On va notamment 3, 16 fois plus vite sur AMD Ryzen 5600g.

2.5. REPRESENTATION DES CHAINES DE CARACTERES 81

AMD Intel Intel Intel
Ryzen 5 Corei5 Corei5 Core i5

5600g 7400 12400f 10850H

division (div) 13,53 19,67 13,95 13,60
mult + décalage 4,27 7,70 3,37 5,32
gain x 3,16 %X 2,55 x4,13 X 2,55

TABLE 2.10 — 10 milliards de divisions sur différentes architectures

2.5 Représentation des chaines de caracteres

2.5.1 L’ASCII

Le stockage des caracteres ainsi que des chaines de caracteres est généralement
réalisé en ASCII 8 bits afin de pouvoir coder sur un octet 256 valeurs différentes.
Dans un langage comme le C cela est suffisant si on utilise les langues européennes.

Dans le codage ASCII (voir www.ascii-code.com ainsi qu’en annexe de cet
ouvrage), les caracteéres O a 31 sont des caracteres de controle qui ne représentent
pas un symbole mais permettent la mise en page de texte (comme le saut de page
FF, le saut de ligne LF, le retour-chariot CR ou la tabulation horizontale HT), ou la
transmission d’information pour les liaisons RS232 (port série) comme STX et ETX.

e les plages de caracteres de 32 a 47, 58 a 64, 91 a 96, 123 a 126 représentent
des symboles tels que I'espace, les opérations arithmétiques, les signes de
ponctuations (virgule, point, point-virgule, etc), les parentheses, les crochets,

e les caracteres 48 a 57 sont les chiffres

e les lettres majuscules occupent la plage 65 a 90, alors que les lettres minus-
cules s’étendent de 97 a 122

e de 128 a 255 les caracteres codés sont les lettres avec accents ainsi que des
symboles mathématiques ou de ponctuation et des symboles qui permettent
la mise en forme de tableaux

On notera que la distance entre les majuscules et minuscules est de 32. Ainsi
pour transformer ’A’ en ’a’, il suffit d’ajouter 32 au code ASCII de ’A’. Du point
de vue du binaire, il suffit de positionner le bit 5 a 1, puisque 2° = 32.

En langage C le codage des chaines consiste a stocker 'ensemble des caracteres
de la chaine de maniere contigiie (consécutive) puis a marquer la fin de chaine par
le caractere 0, représenté en en C par ’\@’. Cette représentation possede I'avantage
de pouvoir coder des chaines trés longues puisqu’elle ne pose aucune limitation sur
la longueur, si ce n’est celle de la mémoire. Cependant, elle posséde un inconvénient
di au fait qu’on ne peut connaitre la longueur de la chaine qu’en la parcourant.

www.ascii-code.com

10
11
12
13
14
15
16
17

18

v A W N =

82 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <ctype.h>
using namespace std;

int main() {
char chaine[] = "abracadabra...”;

int longueur = strlen(chaine);
(int i = @; i < longueur; ++i) {
(isalpha(chaine[i])) chaine[i] = toupper(chainel[i]);

cout << chaine << endl;

EXIT_SUCCESS;

Listing 2.5.1 — Convertir une chaine en majuscules

Si une chaine possede 1000 caracteres, elle occupera donc en mémoire 1001
caracteres, c’est a dire les 1000 caracteres de la chaine plus le marqueur de fin de
chaine. Si I'on désire changer les caracteres minuscules en majuscules il ne faut
surtout pas écrire le code du Listing 2.5.1 car cela implique de parcourir deux fois
la chaine : une premiére fois lors du calcul de sa longueur (ligne 10) et la deuxieme
fois lors du passage en majuscules (lignes 11 a 13). Il vaut mieux passer par des
pointeurs :

char *s = chaine;
(xs != '\0") {
(isalpha(*s)) *s = toupper (*s);
++s;

2.5.2 1’Unicode

Le probleme de ’ASCII est qu’il ne permet de coder que 256 caracteres différents
ce qui est insuffisant au regard de toutes les langues qui existent ainsi que des
symboles (mathématiques, physique, chimie) que 'on peut utiliser dans I'écriture
courante.

Le standard Unicode dans sa version 15.0 (Septembre 2022) permet de co-
der 149 186 caracteres ce qui couvre la presque totalité des caractéres connus.
Le Consortium Unicode a pour but d’identifier de maniére précise et distincte
I'ensemble des caracteres.

2.5. REPRESENTATION DES CHAINES DE CARACTERES 83

Chaque caractére est clairement identifié par son point de code qui est en fait
un indice entier. Par exemple le symbole € a pour point de code la valeur 8364 soit
U+20AC en hexadécimal dans le standard Unicode.

L’UTF (Universal character set Transformation Format) permet de transformer le
point de code des caractéres Unicode en une série d’octets. En fonction des besoins
de I'utilisateur on utilisera une représentation 8, 16 ou 32 bits, sachant que 'on
peut passer de 'une a I'autre sans perte.

L’encodage par octet, UTF-8, a été conc¢u pour coder des chaines a la maniere
de ce que I'on peut faire avec ’ASCII et est tres utilisé par le protocole HTML et les
éditeurs de texte :

e les 127 premiers caracteres de ’ASCII 7 bits ont les mémes valeurs en UTF-8
et sont donc codés sur un octet

e pour coder les caracteres de valeurs comprises entre 128 et 2047 on utilise
deux octets

e puis trois octets pour coder les caracteres de valeurs comprises entre 2048 et
65535

e enfin, on utilise quatre octets pour les caractéres de valeurs supérieures a
65535

En UTF-32, par contre, chaque caractere est codé par une valeur 32 bits ce qui
prend plus de place que I'UTF-8.

Par exemple la chaine "abaé€” sera codée :

ASCII

00000000 61 | 62 | ed | €9 | a4 | @a

00000006

UTF-8

00000000 61 | 62 | c3 a@ | c3 a9 | e2 82 ac | 0a

0000000a

UTF-16

00000000 ff fe | 61 00 | 62 00 | €@ 00 | €9 @0 | ac 20 | 0a 00
0000000e

UTF-32

00000000 ff fe 00 Q0 | 61 00 00 00 | 62 00 00 00 | 0 00 00 Q0
00000010 €9 00 00 Q0 | ac 20 00 00 | 0a 00 00 00

0000001c

HTML Entities

00000000 61 62 26 61 67 72 61 76 65 3b 26 65 61 63 75 74 |abà&eacut|
00000010 65 3b 26 65 75 72 6f 3b 0@a |e;€ . |
HTML Hexadecimal

00000000 61 62 26 23 78 45 30 3b 26 23 78 45 39 3b 26 23 |abQ;é &# |
00000010 78 32 30 41 43 3b 0Qa | X20AC; . |

84 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

Pour la transformation en ASCII, j’ai utilisé konwert mais comme le symbole de
I'Euro n’existe pas en ASCII, il a été traduit par le symbole de code A4.

La suite de valeurs FF FE en UTF-16 bits et FF FE 00 00 en UTF-32 indique 'ordre
de lecture des caracteres. Ici cela signifie qu’il faut commencer par la premiere
valeur trouvée. Dans le cas de 'UTF-32, la séquence d’octets 61 00 00 00 doit donc
étre considérée comme la valeur hexadécimale 00_00_00_61 = 97,y qui correspond
au caractere 'a’.

2.6 Little et big endian

Nous avons vu précédemment que certaines données tels que les nombres
entiers ou les nombres flottants peuvent étre représentées sur plusieurs octets.
L’ordre dans lequel ces octets sont ordonnés en mémoire est appelé endianness °.

Dans le mode big endian, 'octet de poids le plus fort est enregistré a 'adresse
mémoire la plus petite alors que dans le mode little endian c’est I'inverse.

Pour le monde x86, c’est le mode little endian qui est utilisé, ainsi la valeur
FFFE0201,4 sera stockée en mémoire dans I'ordre croissant des adresses sous la
forme : 01,4 suivi de 025, FE¢ et finalement FF .

2.7 Conclusion

2.7.1 Que retenir?

>> l'information est codée sur un ordinateur au format binaire et sera modélisée
par des types scalaires comme le caractére, I'entier court, I'entier, le flottant
simple ou double précision qui occupent un, deux, quatre ou huit octets

> la représentation binaire en complément a deux permet de modéliser les
entiers relatifs et de pouvoir leur appliquer les opérations arithmétiques de
base (addition, multiplication, soustraction, division)

> la norme IEEE 754 définit le format de codage des nombres réels qui sont
qualifiés de nombres a virgule flottante, ou encore de maniere plus succinte
de flottants

> le codage des nombres a virgule flottante ne permet pas de représenter tous
les nombres et cela peut conduire a des erreurs de précision lors de calculs

> deux nombres a virgule flottante sont égaux si la différence de leur valeur
absolue est inférieure a un epsilon donné, ou en d’autres termes, s’ils sont
proches.

6. Terme issu du livre les Voyages de Gulliver, conte satirique de Jonathan Swift et qui se traduit
en francais par boutisme ou par endianisme.

2.8. EXERCICES 85

2.7.2 Compétences a acquérir
Apres lecture et travail sur ce chapitre, on doit étre capable de :

[0 convertir un nombre décimal dans une autre base

O convertir un nombre en binaire, en octal ou en hexadécimal en décimal
convertir un nombre réel en son équivalent flottant

convertir un nombre flottant en son équivalent réel

réaliser une addition et une multiplication en binaire

O 000

déterminer si un nombre entier est dans I'intervalle de représentation du
codage binaire naturel ou binaire en complément a deux en fonction du
nombre d’octets utilisé pour sa représentation

2.8 Exercices

Exercice 3 - Trouvez '’équivalent décimal des nombres suivants :

e 101010 _b, 10011 _b
e 201 3, 1111 3

e 421 0,732 0

e A0 h, FF_h

Exercice 4 - Convertir les nombres décimaux suivants :
e 11 et 10 en base 2
e 26 et 210 en base 8
e 250 et 49 en base 16

Exercice 5 - Utilisez la méthode par complémentation afin de coder en notation
binaire naturelle non signée, les nombres suivants :

e 249

e 1011

e 16373
e 131069

Exercice 6 - Réaliser la somme des nombres naturels suivants en base 2. Que
remarquez-vous ?

e 0000_0010_b + 0000_0011_b
e 0000_1010_b + 0000_1111_b

86 CHAPITRE 2. REPRESENTATION DE L'INFORMATION

Exercice 7 - Quels sont les plus grands entiers naturels que 'on peut représenter
avec 8, 16 ou 32 bits?

Exercice 8 - Donner la représentation en complément a deux des nombres décimaux
suivants : —1, —2, —127, —128, —129. Combien de nombres peut-on représenter avec
8 bits en notation en complément a deux?

Exercice 9 - Calculer la somme des nombres en complément a deux suivants.
Que remarquez vous ?

0000_0111_2 + 0000_0101;
0000_0111_2 + 1000_01015
0000 0011 2 + 1111 1011,
0100_0000_2 + 0100_0001;

Exercice 10 - Calculer le produit des nombres en complément a deux suivants. Que
remarquez vous ?

e 7Xx5H

e 7x—5

o 48 x —2
o 48 x =3

Exercice 11 -
e comment multiplier simplement un nombre binaire par 2, 4, 8 ou 2" ?

e comment diviser simplement un nombre binaire par 2, 4, 8 ou 2" ?

Exercice 12 - Représentez en norme IEEE 754, les nombres suivants :
133, 87519

—14,687519

9,5937519

0, 661

Exercice 13 - Trouvez a quels nombres réels correspondent les représentations
IEEE 754 :

e 42.C8 40 00,
48 92 F5 40,
e C2 92 FO 00,
C3_B0_30 00,

2.8. EXERCICES 87

Exercice 14 - Codez la chaine de caracteres Hola mundo ! en ASCIL.

Exercice 15 - Ouvrir un éditeur de texte comme gedit, saisir la chaine "éAeBaC¢D€"
sans les guillemets et sauvegarder le fichier en le nommant a. txt. Utilisez ensuite
la commande Unix hexdump -C a.txt afin d’obtenir le contenu du fichier sous
forme d’octets. Regardez comment sont codés les caracteres accentués et le symbole
de l'euro.

Exercice 16 - Programmer la soustraction binaire en C ou tout autre langage que
vous maitrisez. On considere que les nombres sont codés soit sous forme de listes
d’entiers ou de booléens. On peut également utiliser des chalnes de caractéres ou
la classe bitset du C++. On réalise 'opération = — y en supposant que = > y.

Exercice 17 - Programmer la division binaire en C ou tout autre langage que
vous maitrisez. On considere que les nombres sont codés soit sous forme de listes
d’entiers ou de booléens. On peut également utiliser des chaines de caractéeres.
Initialement le quotient est a O et la derniere position a laquelle on a réalisé une
soustraction (k) est égale a la taille du dividende.

Tant que le dividende est supérieur ou égal au diviseur, on effectue les opérations
suivantes :

1. on recherche la position k5, a laquelle on peut soustraire le diviseur dans le
dividende

2. on décale le quotient de (k; — ky — 1) rangs vers la gauche si cette quantité
est supérieure a 0

3. on soustrait le diviseur ou dividende a la position k5 et on place un 1 a droite
du quotient

4. ky = ks

Enfin, lorsque le dividende est inférieur au diviseur, si k; n’est pas égal a 0, on
décale le quotient de k; rangs vers la gauche

88

CHAPITRE 2. REPRESENTATION DE L'INFORMATION

Chapitre 3

Le Fonctionnement du
Microprocesseur

Why are Assembly programmers always soaking wet ?
Because they work below C level !

3.1 Introduction

Ce chapitre introduit les bases de I'organisation interne d’un microprocesseur
et du sous-systeme mémoire associé. Il ne s’agit pas d’'un cours d’architecture a
proprement parler qui nécessiterait a lui seul un ouvrage entier mais d’'une revue
des notions et principes qui nous serviront plus tard pour coder efficacement. Le
lecteur averti voudra bien nous pardonner de prendre parfois certains raccourcis
afin de simplifier la machinerie complexe du microprocesseur, notre but étant de
focaliser I'attention du novice sur les points cruciaux qui seront exploités par la suite
dans la traduction en assembleur des traitements de haut niveau (voir notamment
le Chapitre 5)

L’invention du microprocesseur, également qualifié de CPU en anglais pour
Central Processing Unit ou Unité Centrale de Traitement en francais, remonte a
1971 avec la commercialisation de I'Intel 4004 en novembre de la méme année.
Le microprocesseur représente a '’époque une invention majeure car il réunit les
fonctions d’'un processeur sur un seul circuit intégré. L'utilisation de transistors pour
son implantation, la miniaturisation de ces derniers ainsi que le développement de
nombreuses techniques issues de la gestion des chaines de production ' ont conduit
a nos processeurs actuels.

Le microprocesseur est défini comme la partie d'un ordinateur qui exécute les
instructions et traite les données des programmes. On le qualifie parfois de cerveau
de l'ordinateur mais ce terme est galvaudé car il laisse a penser que I'ordinateur est

1. Que I'on qualifie de Productique.

89

90 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

intelligent. Or, un ordinateur n’est qu'un simple automate, il reproduit une série
d’actions prédéterminées et n’a d’intelligence que celle des personnes qui ont mis
au point les programmes qu’il exécute.

Les différents travaux qui ont mené a son élaboration datent des inventions
de Charles Babbage (1791 - 1871) avec sa machine différentielle dont le but
était de calculer des polynémes en utilisant une méthode de calcul dite méthode
des différences, puis sa machine analytique qu’il n’acheévera jamais. La machine
analytique comprenait beaucoup de concepts repris par la suite durant la seconde
guerre mondiale pour la conception des ordinateurs que 'on peut qualifier de
préhistoriques. Mais ce furent principalement les travaux et échanges d’idées entre
les américains John Von Neumann, John Eckert, John William Mauchly et le
britannique Alan Turing dans les années 40 et 50 qui permirent d’aboutir a nos
ordinateurs modernes.

Intrinséquement, le microprocesseur ne sait faire que trois choses : lire des
données en provenance de la mémoire, les combiner au travers d’opérations (ari-
thmétiques, logiques) et stocker le résultat de ces opérations en mémoire. Afin de
réaliser ces trois opérations de maniere efficace il est nécessaire de développer des
techniques élaborées, souvent difficiles a concevoir, puis a mettre en oeuvre. C’est
ce que nous allons voir au travers de ce chapitre. Nous avons fait le choix de rester
synthétique afin de permettre au lecteur de comprendre les principes sous-jacents
au traitement des instructions par le microprocesseur. Le lecteur intéressé par plus
de détails pourra consulter les ouvrages suivants [5, 27, 26, 2].

3.2 La mémoire centrale

Avant de parler du microprocesseur, il est nécessaire d’évoquer le sous-systeme
mémoire puisque c’est la mémoire qui fournit au processeur sa matiere premiere :
les données et les instructions. Il faut savoir qu’il existe deux approches différentes
dans la gestion des flux d’instructions et de données : celle de Von Neumann que
nous utilisons ici, pour laquelle données et instructions sont contenues dans une
seule mémoire, et celle dite de Harvard ou données et instructions sont stockées
dans des mémoires séparées.

Du point de vue de l'utilisateur la mémoire centrale apparait comme un long
tableau unidimensionnel d’octets qui permet de stocker les programmes a exécuter.
De nos jours il n’est pas rare de trouver sur nos ordinateurs personnels de 'ordre
de 8 a 16 Go de mémoire ce qui représente une quantité énorme de stockage
généralement sous utilisée pour la plupart des taches courantes.

La mémoire centrale est de type DDRz-SDRAM ou x peut prendre des valeurs
entre 1 et 4 a ’heure ou nous écrivons cet ouvrage. Le sigle RAM (Random Access
Memory) signifie que 'on peut accéder a n'importe quel octet de la mémoire en
lecture ou en écriture.

3.2. LA MEMOIRE CENTRALE 91

e Le terme DRAM (Dynamic RAM) tient a la composition de la mémoire cen-
trale pour représenter un bit d’information. Celle-ci est formée a 'aide de
condensateurs. Si le condensateur est chargé c’est qu’il représente un bit a 1,
sinon il représente un 0. Le probleme d’un condensateur est qu’il a tendance
a se décharger. Pour maintenir I'information valide, il est nécessaire de lire
et réécrire les données en mémoire afin de recharger les condensateurs. On
appelle cette étape un rafraichissement mémoire. Durant cette période de
temps tres courte la mémoire est indisponible et il est nécessaire de rafraichir
la mémoire plusieurs fois par seconde.

e Le terme SDRAM (Synchronous DRAM) implique que les lectures et écritures
se font a intervalles réguliers de maniére synchrone.

e Le terme DDR (Dual Data Rate) implique que nous doublons le taux de
transfert des données en envoyant celles-ci sur le front montant et sur le front
descendant du signal d’horloge.

e Enfin le nombre x situé apres DDR est un facteur qui définit le nombre d’octets
que l'on peut lire ou écrire lors du transfert des données.

Le débit ou bande passante (bandwidth en anglais) de la mémoire est donné
par la formule suivante en Mo/s :
bandwidth = [frequency x 2 x 27Y] x 8 (3.1)

e frequency est la fréquence de fonctionnement de la mémoire exprimée
en MHz

e le facteur 2 correspond a la DDR qui double le taux de transfert

x correspond au type de DDRx

8 est la largeur du bus de données en octets (soit 64 bits)
q J

Par exemple une DDR4-SDRAM fonctionnant a 100 Mhz possede un débit
théorique de 100 x 2 x 241 x 8 = 12800 Mo/s. On désigne également ce type de
mémoire par les sigles :

e PC4-12800 qui indique le débit en Mo/s

e ou DDR4-1600 qui indique le débit des données en MT/s (Méga Transferts par
secondes) et correspond au produit des trois premiers termes de la formule
3.1

Plus le débit est important, plus la mémoire pourra alimenter le processeur en
données a traiter. Mais il faut également prendre en compte d’autres facteurs appe-
1és timings associés a la fréquence mémoire et liés intrinséquement a la structure
matricielle des mémoires vives. Ces timings sont indiqués par les constructeurs ou
lisibles par le BIOS de la carte mere grace a un circuit électronique situé sur les
barrettes mémoires appelé SPD pour Serial Presence Detect.

92 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

La mémoire centrale n’est pas organisée sous forme d’un long tableau unidi-
mensionnel d’octets mais sous forme d’une matrice carrée, c’est a dire qui possede
le méme nombre de lignes et de colonnes, ceci afin de diminuer I’'espace occupé
par les circuits d’acces. Comme on a le méme nombre de lignes et de colonnes on
utilisera un seul canal pour transmettre le numéro de la ligne puis de la colonne
qui nous intéresse.

Pour simplifier considérons que nous disposons d'une mémoire de 4 Go organi-
sée sous forme d’une matrice de 65_536 lignes et 65_536 colonnes car 65 _536 = 2'°
et 4 Go = 2%. Pour accéder a l'adresse 197 632 = 3 x 65 536 + 1024, il nous
faut dans un premier temps envoyer un signal RAS (Raw Access Strobe) au circuit
mémoire afin de lui indiquer que nous allons lui envoyer le numéro de ligne. On
envoie ensuite le numéro de ligne, suivi du signal CAS (Column Access Strobe)
pour indiquer qu’on va a présent envoyer le numéro de colonne. Puis on envoie le
numéro de colonne. Apres quelques cycles d’attente (parfois plusieurs dizaines), on
obtient les données sur le bus de données.

Les timings ont pour objectif de définir les délais entre I'envoi d’'un signal
et le début du signal suivant ou entre 'envoi d’'un signal et la réception d’'un
autre. Le réglage des timings peut donc influer sur l'efficacité de la mémoire mais
pour un utilisateur standard il est préférable d’utiliser les valeurs préconisées
par le constructeur. Pour plus d’information concernant les timings mémoire je
recommande la lecture de l'article du site hardwaresecrets * qui traite du sujet.

Les technologies liées a la conception des mémoires centrales sont en constante
évolution (cf. Table 3.1) et sont régies par un organisme de normalisation des
semi-conducteurs appelé JEDEC (Joint Electron Device Engineering Council).

Type de mémoire Année Transferts (MT/s) Débit (Go/s)

DDR SDRAM 2000 266-400 2,1-3,2
DDR2 SDRAM 2003 533-800 4,2-6,4
DDR3 SDRAM 2007 1066-3100 8,5-24,8
DDR4 SDRAM 2014 1600-4800 12,8-38,4
DDR5 SDRAM 2020 3200-8400 25,6-67,2

TABLE 3.1 — Types de mémoire et caractéristiques

3.2.1 Alignement des données en mémoire

D’un point de vue conceptuel la mémoire SDRAM est organisée sous forme de
bancs mémoire indépendants qui correspondent au nombre d’octets que le circuit
mémoire est capable de délivrer en une lecture.

2. https://www.hardwaresecrets.com/understanding-ram-timings

https://www.hardwaresecrets.com/understanding-ram-timings

3.2. LA MEMOIRE CENTRALE 93

Cette répartition était un facteur important il y a quelques années car le fait
d’accéder a des données non alignées ralentissait 'exécution des programmes. Au-
jourd’hui avec la DDR4-SDRAM et les contréleurs mémoire dédiés ce ralentissement
n’est plus perceptible et ne constitue plus dans la plupart des cas un facteur de
ralentissement.

Alignement mémoire

Aligner les données signifie les placer a une adresse multiple d'une puissance
de 2 qui dépend du type de mémoire ou des données accédées. En général
on prendra un multiple de 16 ou de 32 pour les tableaux. Si on manipule
des données qui seront placées dans des registres vectoriels on utilisera un
multiple de 16 pour le SSE, de 32 pour 'AVX et de 64 pour 'AVX-512 (cf.
Chapitre 8).

- J

Prenons I'exemple de la Figure 3.1 pour laquelle on dispose de 4 bancs mémoire
et ou l'on a fait figurer les adresses. Lorsque 'on requéte un entier de type int qui
occupe 4 octets a 'adresse 04 la lecture des données peut se faire en une seule fois
car les données sont sur la méme ligne. Par contre si les données sont situées sur
des lignes différentes (adresses 10 et 19) cela implique 'envoi de deux requétes au
controleur mémoire, une pour chaque ligne.

Banc 0 Banc 1 Banc 2 Banc 3
Ligne0 | 00 01 02 03
Ligne 1 | (04 05 06 07
Ligne2 | 08 09 (10 11 |
Ligne3 |(12 13) 14 15
Ligne4 | 16 17 18
Ligne5 || 20 21 22 23

FIGURE 3.1 — Bancs mémoire

L’alignement concerne généralement les variables globales mais peut également
étre appliqué aux variables locales dans la pile. Le code peut également étre aligné
de maniére a faire commencer le début d'une boucle a une adresse mémoire
multiple de 4, 8 ou 16. Par exemple, le compilateur gcc comporte des options en
ligne de commande comme :

e —falign-functions : aligne le début d’une fonction
e —falign-jumps et -falign-labels : aligne le code des branches du code
e -falign-loops : aligne le début des boucles

94 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

3.2.2 Double canal

La technologie de double canal (cf. Figure 3.2) ou dual channel® en anglais
permet en théorie de doubler le taux de transfert des données en proposant d’utiliser
deux canaux au travers desquels on peut échanger des données avec deux barrettes
mémoires qui doivent étre identiques (méme fréquence, méme capacité, mémes
caractéristiques). Initialement les deux canaux étaient dépendants c’est a dire que
le premier canal lisait 8 octets et le second lisait les 8 suivants, on avait finalement
un bus de 128 bits au lieu d’un bus 64 bits d'une mémoire DDR-SDRAM. Ces deux
canaux sont ensuite devenus indépendants. Les gains obtenus par le dual channel
sont généralement faibles, de 'ordre de quelques pourcents car pour avoir un
impact significatif et pouvoir en tirer parti il est nécessaire de travailler sur des
tableaux de grande taille ce qui est rarement le cas pour la plupart des applications.

simple canal

64 bits
64 bits
RAM
CPU double canal
RAM

64 bits

FIGURE 3.2 — Double ou simple canal

Lors de tests que j’ai pu effectuer il y a quelques années avec un Intel Core i5-
4570 et de la mémoire de type DDR3 sur le probleme de Maximum de Parcimonie
en Bioinformatique, je me suis apercu que I'on pouvait atteindre une diminution
du temps d’exécution de I'ordre de 15 a 40% a partir du moment ot les séquences
ont une longueur de plus de 32_768 octets.

Sur les processeurs haut de gamme on utilise aujourd’hui du quad channel, c’est
a dire quatre canaux d’acces a la mémoire voire du hexa channel sur les derniers
Intel Xeon W-3275M.

3.2.3 Mémoire cache

La mémoire centrale est relativement lente par rapport au microprocesseur. I
en a toujours été ainsi et cet écart n’a fait que s’accroitre au cours du temps. Le

3. A ne pas confondre avec le Dual Data Rate (DDR) vu précédemment.

3.2. LA MEMOIRE CENTRALE 95

microprocesseur est donc pénalisé car il est en attente de données en provenance
de la mémoire. Pour palier ce probleme différents mécanismes ont été mis en place
comme par exemple 1'élargissement du bus de données qui consiste a récupérer
plusieurs octets consécutifs. Mais le mécanisme le plus intéressant est celui qualifié
de mémoire cache. Il consiste a utiliser une mémoire de petite taille mais tres rapide
d’accés qui contient les données les plus souvent ou les plus récemment utilisées .

On dit généralement que la mémoire cache repose sur les principes de localité
et de temporalité. Si on accede une donnée a l'instant ¢ a I'adresse a, il y a une
forte probabilité d’accéder a l'instant ¢ + 1, une donnée a I'adresse a + €. C’est le
cas lorsque l'on écrit x = x + y; ou que 'on parcourt les éléments d'un tableau.

A tout moment un programme ne travaille que sur une partie de la mémoire , il
semble donc intéressant de copier la partie de la mémoire sur laquelle on travaille
dans une mémoire locale rapide.

Pour faire une analogie, on pourrait prendre 'exemple du réfrigérateur et du
supermarché. Lorsque 'on a besoin de s’approvisionner, on fait des courses au
supermarché ce qui prend beaucoup de temps. On stocke les denrées achetées
dans un réfrigérateur et elles sont des lors tres rapidement accessibles. Le réfrigéra-
teur représente donc la mémoire cache et le supermarché représente la mémoire
centrale.

La rapidité des mémoires cache tient a deux facteurs. Premiérement, un bit de
mémoire cache est de type SRAM (Static RAM) et est représenté par une bascule
(latch en anglais) composée de plusieurs transistors et non pas d’'un condensateur
comme pour les DRAM. Le rafraichissement qui a tendance a ralentir I'accés a la
mémoire DRAM n’existe plus dans le cas des SRAM. Deuxiémement, les mémoires
caches stockent les données mais également les adresses ol se situent ces données.
Il est donc tres facile de savoir si une adresse est dans le cache ou non.

Au fil des années les mémoires caches se sont développées et sont devenues de
plus en plus volumineuses en raison notamment de 'apparition des microproces-
seurs multi-coeurs. Initialement absentes, elles ont commencé a étre disponibles
sur la carte mere, puis ont été progressivement intégrées au microprocesseur.

3.2.4 Niveaux de cache
On distingue aujourd’hui au moins trois niveaux de cache sur les processeurs
multi-coeurs. Sur la Figure 3.3, on a fait figurer une architecture de cache pour un

microprocesseur quad core, c’est a dire possédant quatre coeurs de calcul.

e le cache le plus proche de la mémoire centrale est le cache de niveau 3, noté
L3 pour Level 3. Il contient données et instructions et permet de garder la

4. En informatique les algorithmes associés a ces techniques s’appellent LRU pour Least Recently
Used et LFU pour Least Frequently Used et sont utilisés pour remplacer les données les plus anciennes
ou les moins souvent utilisées.

96 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

CPU

MEMOIRE CENTRALE

FIGURE 3.3 — Niveaux de mémoire cache

cohérence des données entre les quatre coeurs.

e le cache de niveau 2 (L2) contient également données et instructions mais
est plus petit que le cache L3 et est associé a un seul coeur de calcul

e enfin au premier niveau de cache, on scinde le cache en un cache d’instructions
L1i et un cache de données L1d car instructions et données ne suivent pas le
méme cheminement dans le traitement des instructions (cf. Section 3.5)

Sur la Figure 3.3, nous avons fait le choix de montrer une organisation de
quatre coeurs disposant chacun de leur propre cache L2. Il est possible, dans des
architectures plus anciennes (Intel Core) que deux coeurs partagent (share) le
méme cache L2.

On remarquera que plus on s’éloigne du coeur de calcul plus le cache est de
grande taille et plus il sera lent. Pour donner un ordre d’idée on peut consulter la
Table 3.2 qui indique la latence des caches pour trois microprocesseurs.

Par exemple, pour le AMD Ryzen 7 1700X, on dispose de 32 ou 64 ko pour
les caches L1, 512 ko pour le cache L2 et 16 Mo pour le cache L3. Nous verrons,
Section 3.9.1.2, qu’en fait il s’agit de deux fois 8 Mo.

3.2.5 Organisation des mémoires caches entre elles

Il existe deux organisations principales des mémoires cache lorsqu’elles doivent
coopérer. On distingue :

3.2. LA MEMOIRE CENTRALE 97

Processeur / Cache Lli (ko) L1d (ko) L2 (ko) L3 (Mo)

AMD Ryzen 7 1700X 64 32 512 16
associativité 4-way 8-way 8-way 16-way
latence (cycles) 4 4a5 17 37 a43

Intel i7-7820X 32 32 1024 11
associativité 8-way 8-way 16-way 1l-way
latence (cycles) 4 445 14 68

Intel i7-1065 32 48 512 2
associativité 8-way 12-way 8-way 16-way
latence (cycles) 5 5 13 30a36

TABLE 3.2 — Caractéristiques des caches (taille, latence, associativité) - http ://www.7-
cpu.com

e les caches inclusifs qui sont concus de maniére a ce que toute donnée présente
dans le cache L1 soit aussi présente dans le cache L2. La taille totale du cache
L1+L2 est donc celle du cache L2 puisque les données de L1 sont incluses
dans L2.

e les caches exclusifs, pour lesquels une donnée est soit dans le cache L1, soit
dans le cache L2. Lorsqu'une donnée sort du cache L1 pour étre placée dans
le cache L2 on parle d’éviction. La taille totale du cache L.1+L2 est donc la
somme des tailles des caches L1 et L2.

Intel a fait le choix des caches inclusifs alors qu’AMD utilise des caches de type
exclusifs.

Un autre probléme concerne le remplacement des lignes de cache. Lorsque I'on
remplace (voir ci-apres) une ligne de cache qui est soit la plus ancienne (LRU) ou
la moins utilisée (LFU) se pose alors le probléme du traitement de la ligne de cache
évincée afin de garder la cohérence des données.

Deux stratégies peuvent étre envisagées :

e I'écriture immédiate (Write Through) consiste a mettre immédiatemment a
jour la donnée en mémoire centrale des lors que sa valeur dans le cache est
modifiée

e D'écriture différée (Write Back) consiste a mettre a jour la mémoire centrale
lors de la modification de 'entrée du cache correspondante

Un compromis entre colit de production, complexité de réalisation et per-
formances doit étre trouvé lors de la conception d'une mémoire cache, puis un
équilibre doit étre trouvé entre les différents niveaux de cache.

Par exemple la stratégie d’écriture immédiate augmente le trafic vers la mémoire
centrale. Si la stratégie d’écriture différée pallie ce probleme elle en crée un

98 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

nouveau : en effet, certains circuits d’entrées sorties de type DMA (Direct Memory
Access) sont capables de lire ou écrire des données en mémoire sans passer par le
processeur et risquent par exemple de lire des données qui ne sont pas a jour. On
peut contourner ce probléme mais cela augmente la complexité du systéme.

3.2.6 Cache associatifs par groupe

Les mémoires caches sont organisées sous forme associative par groupe, on
dit en anglais n-way set associative. On peut considérer la mémoire cache comme
une table composée de blocs de k lignes et m colonnes qui stockent des données
ainsi qu'une partie de I'adresse ou se trouvent les données en mémoire.

Bits d’adresse
1537 6a2 1a0 15a7 6a2 140

101000101|10101| 00 ‘ | 101111101 |10101| 10 ‘

11 10 01 00 11 10 01 00

\J

\d

21| 101000101 . 21| 101111101 .
31 31
étiquette | données étiquette | données
Bloc 0 Bloc 1

FIGURE 3.4 — Cache associatif a 2 groupes

L’associativité permet d’organiser les adresses sous formes de classes d’équiva-
lence comme le montre la Figure 3.4. Imaginons que le cache contienne deux blocs
qui permettent de stocker chacun 32 x 4 octets. On dit dans ce cas que la taille de
la ligne de cache est de 4 octets et que le cache a une taille de 2 x 32 x 4 = 256
octets, soit deux blocs de 32 lignes de 4 octets. On ne compte pas la partie stockant
I'adresse.

3.2.6.1 Ajouter une adresse dans le cache

Considérons pour simplifier les choses que notre microprocesseur possede un
bus d’adresses de 16 bits c’est a dire que les adresses ont une taille de 16 bits. Pour
stocker dans le cache I'octet situé a I'adresse 48 854, on écrit I'adresse en binaire et
on la décompose ainsi :

e 48 854 = 1011 1110 1101 0110,

3.2. LA MEMOIRE CENTRALE 99

e les deux premiers bits sont mis a O pour obtenir 'adresse 48 852 car on charge
les données par groupe de 4 octets, c’est a dire la taille d’'une ligne de cache,
on chargera donc les octets situés aux adresses multiples de 4

e la ligne de cache ou on devra placer les quatre octets est obtenue par les
5 bits suivants, car il y a 32 lignes de cache et 32 = 2°, soit dans notre cas
101015 =21

e les 9 bits restants représentent ce que 'on appelle I'étiquette et seront stockés
dans le cache car ils permettent de reconstruire 'adresse exacte

On remarque donc pour cet exemple que toute adresse dont les bits d’indices 2
a 6° ont la méme valeur sera stockée dans la méme ligne du cache associatif. Afin
d’améliorer l'efficacité du cache on crée donc n blocs de ce type et on essaye de
répartir au mieux les adresses entre les blocs en utilisant un algorithme de type
LRU ou LFU comme évoqué précédemment.

3.2.6.2 Vérifier si une adresse est dans le cache

Pour déterminer si 'octet a 'adresse 41687 = 1010_0010_1101_0100, est dans
le cache, on calcule la ligne du cache ou devrait se trouver 'adresse. Dans le cas
présent il s’agit de 1 0101, = 21 (qui correspond au bits 2 a 6), puis on compare
en parallele dans chaque bloc si I'étiquette 1 0100 0101 est présente. Si c’est le cas,
I'adresse et la donnée qui lui correspond sont présentes dans le cache.

Lorsque la donnée recherchée se trouve présente dans le cache, on parle de
cache hit. Dans le cas ou elle est absente il s’agit d'un cache miss ou défaut de cache
en francais. Pour donner un ordre de grandeur, déterminer si une donnée est dans
le cache L1 prend de l'ordre de 4 a 5 ns, dans le cache L2 environ une dizaine voire
une vingtaine de ns, puis dans le cache L3 entre 30 et 70 ns et finalement I'obtenir
depuis la mémoire une centaine de ns.

5. Le premier bit a pour indice 0.

100 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

Facteur d’amélioration

Un programme s’exécutera donc plus vite si les données sont déja présentes
dans le cache et d’autant plus vite que les données sont présentes dans un
cache de niveau faible (1), c’est a dire, le plus proche du coeur de calcul.
C’est le premier facteur d’amélioration de la vitesse d’exécution des pro-
grammes : faire en sorte, quand cela est possible, que les données soient
présentent dans le cache au moment ot on les traite car elles seront acces-
sibles rapidement.

La mémoire cache posséde une influence trés importante pour certains traite-
ments liés a la lecture et 'écriture en mémoire. Un exemple typique de cette
influence est celui du produit de matrices ot des techniques d’inversion de
boucles, ou de blocage de boucles (loop blocking) associée au tuilage (tiling)
permettent de diminuer le temps de calcul de maniere drastique par rapport
a une implantation directe de la formule de calcul.

Le produit de matrices est la premiere étude de cas de ce livre (cf. Cha-
pitre 11).

3.3 Le microprocesseur

Nous nous intéressons dans ce chapitre aux microprocesseurs de la famille x86
c’est a dire compatibles avec le jeu d’instructions de I'Intel 8086. Intel a fait le choix
de garder une compatibilité dite descendante (ou ascendante suivant la vision des
choses) de son jeu d’instructions assembleur. Ainsi, un microprocesseur en 2018 est
capable d’exécuter un programme compilé pour I'Intel 8086 concgu en 1978, cest a
dire il y a 40 ans. Sachez que lorsque vous allumez votre ordinateur il se place en
mode 8086, puis ensuite en mode 32 ou 64 bits.

On utilise la dénomination IA-32 (pour Intel Architecture 32 bits) pour les
processeurs, a partir du Pentium chez Intel, qui utilisent des registres 32 bits.

Les deux grands constructeurs de processeurs x86 sont Intel et AMD, deux
sociétés américaines © .

Intel (Integrated Electronics) fut fondée en 1968 par Gordon Moore, Robert
Noyce et Andrew Grove, trois docteurs en chimie et physique issus du monde
de I'électronique numérique qui déciderent de quitter ’entreprise Fairchild Semi-
conductor. Intel est devenu le leader mondial de la famille x86 et ses nombreux
produits sont connus du grand public dont notamment le Pentium, Pentium Pro,
les processeurs Core, Core 2 et plus récemment les microprocesseurs estampillés i3,
i5, i7 et les derniers i9.

AMD (Advanced Micro Devices) fut fondée en 1969, soit un an apres Intel, par un

6. On pensera également a Cyrix (1988-1997) qui a créé des clones du 80486 et du Pentium
d’Intel.

3.3. LE MICROPROCESSEUR 101

groupe d’ingénieurs et de dirigeants de Fairchild Semiconductor dont notamment
Jerry Sanders. AMD est entré sur le marché des microprocesseurs x86 en 1975
en produisant par rétro-ingénierie une version de I'Intel 8080. C’est au début des
années 80 qu’AMD devint un producteur de microprocesseurs sous licence Intel car
la société IBM désirait ne pas dépendre du seul fournisseur Intel pour la production
de ses PCs. AMD a également concu ses propres microprocesseurs faits maison
comme les fameux K5, K6, Athlon et derniérement les microprocesseurs Ryzen et
Threadripper.

3.3.1 Fréquence de fonctionnement

Tout comme la mémoire le microprocesseur fonctionne a une fréquence donnée
qui donne la cadence d’exécution des différentes unités de traitement. La fréquence
de fonctionnement fut durant de nombreuses années le nerf de la guerre. Produire
un processeur avec une fréquence de fonctionnement supérieure permettait de
surpasser son concurrent. Cependant plus la fréquence est élevée, plus le processeur
consomme de I’énergie et dégage de la chaleur. Ces dernieres années la fréquence
a été régulée afin que 'on puisse gérer de maniere plus fine I'énergie. En effet un
microprocesseur n’a pas besoin de tourner en permanence a une fréquence élevée,
uniquement lorsqu’il est sollicité par un ou plusieurs programmes. Le choix a donc
été fait d’utiliser, dans un premier temps, trois fréquences de fonctionnement :

e une fréquence au repos (idle), par exemple 1,0 GHz
e une fréquence de fonctionnement rapide (boost), lorsqu’un seul coeur est
actif (3,5 GHz)

e une fréquence de fonctionnement moyenne lorsque plusieurs coeurs sont
actifs (3,0 GHz)

A partir de 2018, Intel et AMD ont introduit une gestion encore plus fine de
I’énergie avec une diminution progressive de la fréquence en fonction du nombre
de coeurs’ qui travaillent, comme indiqué Table 3.3.

Nombre de coeurs actifs 1-2 3-4 5-12 13-16 17-18

Intel Core i9-7980XE 44 4,0 3,9 3,5 3,4
Intel Core i9-9980XE 45 42 4,1 3,9 3,8

TABLE 3.3 — Modification de la fréquence en GHz en fonction du nombre de coeurs actifs

L’objectif est de repousser les limites de la fréquence de fonctionnement tout
en restant dans I'enveloppe thermique du microprocesseur appelée TDP pour
Thermal Design Power . Le TDP caractérise 'énergie (chaleur) dégagée par un circuit

7. Cette technologie est appelée Precision Boost 2 chez AMD.
8. On parle également parfois de Thermal Dissipation Power.

102 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

intégré. Si la chaleur est trop forte le circuit risque d’étre endommagé. Il risque de
fondre ou d’étre soumis a des phénomenes d’électro-migration qui consistent en
un déplacement d’atomes des parties conductrices du courant électrique vers les
parties isolantes.

Il semble que la valeur du TDP soit calculée différemment suivant les fabricants
et les gammes de processeurs. Elle sert d’indicateur afin de prévoir un circuit de
refroidissement proportionné a la chaleur dégagée °.

3.3.2 Architectures RISC et CISC

Le microprocesseur n’est en fait capable de réaliser que 3 types d’opérations :

e LOAD r,[mem], c’est a dire, charger dans un registre r une donnée située en
mémoire a une adresse fournie en parametre

e STORE [mem],r qui permet de stocker une donnée contenue dans un registre
r dans la mémoire a une adresse fournie en parametre

e OP r3, r2, r1ouOP est une opération arithmétique ou logique et qui signifie
mettre dans le registre r3 le résultat de r1 OP r2

En prévision de ce que nous verrons dans le prochain chapitre, nous indiquons
que pour les microprocesseurs de type x86, on utilise seulement deux opérandes
dans la plupart des instructions. On note donc OP r1,r2 ce qui correspond a r1 =
r1 OP r2. Dans ce cas 'opérande r1 est appelée destination et 'opérande r2 est
qualifiée de source.

Architecture Signe Description
RISC MIPS Microprocessor without Interlocked Pipeline Stage
RISC ARM Acorn Risc Machine (1987) ou Advanced Risc Machine
RISC POWER Performance Optimization With Enhanced RISC 1-8
CISC x86 Intel, AMD
CISC 680x0 Motorola

TABLE 3.4 — Exemples d’architectures CISC er RISC

On distingue historiquement deux classes d’architectures (cf. Table 3.4) pour
les microprocesseurs :

RISC (Reduced '° Instruction Set Computer) : dans ce type d’architecture, on utilise

9. On pourra consulter le site https://www.anandtech.com et notamment I’article Intel Core i7
10700 vs Intel Core i7 10700k, is 65 W Comet Lake an option ? afin d’en savoir plus sur le TDP.
10. Notons que le terme Reduced c’est a dire réduit en francais est mal choisi, on devrait plutot
dire simplifié.

https://www.anandtech.com

3.3. LE MICROPROCESSEUR 103

le format d’instruction précédent et 'adressage mémoire reste simple (i.e. il
n’existe que peu de manieres différentes d’acceder a la mémoire)

CISC (Complex Instruction Set Computer) pour ce type d’architecture on a tendance
a combiner une instruction de chargement ou de stockage avec un calcul et
I'adressage mémoire peut étre complexe

Prenons un exemple CISC issu du jeux d’instruction x86 :

add [ebx + ecx * 4 + 8], eax

Cette instruction réalise plusieurs opérations, a savoir :

e le calcul de 'adresse mémoire A = ebx + ecx * 4 + 8

e le chargement de la donnée D stockée sur 4 octets a 'adresse Mem[A] dans un
registre temporaire R, soit R = Mem[A]

e l'addition de la donnée D stockée dans R avec le registre eax : R = R + eax

e I’écriture du résultat a 'adresse A, Mem[A] = R

Ce qui rend cette instruction complexe est le fait qu’elle combine plusieurs choses
a réaliser dont un calcul d’adresse, un chargement de donnée depuis la mémoire,
un calcul et un stockage du résultat en mémoire.

Les microprocesseurs RISC vont, quant a eux, éviter ce genre d’instruction com-
plexe en ne permettant par exemple que de lire une donnée depuis la mémoire pour
la stocker dans un registre. On n’autorise alors que 'addition entre deux registres.
L’instruction CISC précédente sera traduite en RISC par quatre instructions.

Acutellement beaucoup de processeurs RISC sont utilisés dans les systémes dits
embarqués (téléphones, tablettes, robots) en raison de leur efficacité énergétique,
les processeurs RISC consomment en général moins d’énergie que les CISC.

La conception d’un microprocesseur pose de nombreux problemes. Plus sa
structure est complexe, plus les procédures de test sont longues et plus il est
difficile de déterminer d’éventuels défauts de conception. Un processeur RISC, de
structure moins complexe qu'un processeur CISC, est donc plus simple a concevoir
et tester.

Plusieurs facteurs ont encouragé par le passé la conception de machines a jeu
d’instruction complexe (CISC) :

e premierement, la lenteur de la mémoire par rapport au processeur laissait
a penser qu’il était plus intéressant de soumettre au CPU des instructions
complexes. Pour réaliser un traitement donné, il était préférable de définir
une instruction complexe plutot que plusieurs instructions élémentaires. De
plus une instruction complexe prend alors moins de temps de chargement
depuis la mémoire qu'une série d’instructions simples. Dans les années 70
les ordinateurs utilisaient de la mémoire magnétique (concue a partir de

104 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

tores) pour stocker les programmes. Ce type de mémoire était cher et lent.
Un premier changement s’opéra avec I'arrivée des DRAM plus rapides mais
restait I'épineux probléme du prix des DRAM. Par exemple en 1977, 1 Mo de
DRAM cofitait environ $5000 alors qu’il ne valait plus que $6 en 1994

e deuxiémement, le développement des langages de haut niveau (Fortran, Pas-
cal, Ada) a posé quelques difficultés quant a la conception de compilateurs
capables de traduire efficacement des programmes d’'un langage évolué vers
I'assembleur. On a donc eu tendance a incorporer au niveau processeur des
instructions plus proches de la structure de ces langages. Le processus de com-
pilation des langages de haut niveau comme Pascal et C était lent et le code
assembleur obtenu n’était pas toujours optimisé : mieux valait coder a la main.
Certains ont proposé de combler le fossé sémantique entre langage de haut
niveau et assembleur afin de faciliter la tache des programmeurs : en d’autres
termes ils proposaient de faire en sorte que les instructions assembleur soient
adaptées aux instructions des langages de haut niveau.

A partir de la fin des années 70, deux facteurs sont venus ébranler les idées
ancrées dans les esprits par les décennies précédentes et qui tendaient a favoriser
I'approche CISC. D’une part, les mémoires sont devenues plus rapides, moins cheres
et de plus grande capacité qu’elles ne I'étaient auparavant et, d’autre part, des
études conduites sur des langages de haut niveau montrerent ([18, 22]) que les
programmes sont constitués a 85% d’affectations, d’instructions if et d’appels de
procédures et que 80% des affectations sont de la forme variable = valeur.

Les résultats précédents ont été résumés par la phrase suivante : 80% des
traitements des langages de haut niveau font appel a 20% des instructions du CPU.
D’ou I'idée d’améliorer la vitesse de traitement des instructions les plus souvent
utilisées ce qui a conduit a l'architecture RISC.

Aujourd’hui les processeurs modernes de type CISC (comme les processeurs de
la famille x86) possedent des instructions CISC qui, comme nous le verrons plus
tard, sont ensuite traduites en une série d’instructions de type RISC (que I'on qualifie
de micro-opérations). On peut donc considérer que le coeur de fonctionnement
d’un microprocesseur de type CISC est de type RISC.

3.3.3 Architecture x86

Si la fréquence de fonctionnement est un facteur important qui permet de
caractériser la puissance d'un microprocesseur un autre facteur primordial est son
architecture. Le terme architecture est a différencier de ce que nous venons de
voir pour les architectures CISC et RISC. Quand nous parlerons d’architecture d’'un
processeur nous évoquerons les caractéristiques et I'organisation des éléments qui
le constituent. L’architecture détermine la taille des caches, leur organisation mais
également toute la partie liée au traitement des instructions. I’acces a la mémoire
et le type de mémoire qui pourra étre utilisé est généralement déterminé par le

3.3. LE MICROPROCESSEUR 105

chipset *' de la carte mére qui définit entre autres choses comment les données sont
échangées entre le microprocesseur, la mémoire et les périphériques. Cependant
les deux composants (microprocesseur et chipset) étant li€s, on peut se demander
lequel influe le plus sur l'autre.

La finesse de gravure détermine grosso-modo la taille des transistors. Plus la
finesse de gravure est petite, plus les transistors sont petits. Si un transistor est
gravé plus finement il est plus rapide, consomme moins d’énergie et possede une
plus grande densité d’intégration, c’est a dire qu’on peut en mettre plus sur la méme
surface, ce qui économiquement est plus intéressant.

Une architecture est aujourd’hui identifiée par un nom (cf. Table 3.5) qui
détermine sa finesse de gravure ainsi que I'étape de production et la génération du
processeutr.

Année Etape Architecture Génération Finesse
2008 Tock Nehalem 1 45 nm
2010 Tick Westmere 1 32 nm
2011 Tock Sandy Bridge 2 32 nm
2012 Tick Ivy Bridge 3 22 nm
2013 Tock Haswell 4 22 nm
2014 Optimization = Haswell Refresh 4 22 nm
2014 Tick Broadwell 5 14 nm
2015 Tock Skylake 6 14 nm
2017 Optimization Kaby Lake 7 14 nm
2017 Optimization Kaby Lake Refresh 8 14 nm
2017 Optimization Coffee Lake 8,9 14 nm
2018 Optimization Whiskey Lake 8 14 nm
20197? Process Canon Lake ? 10 nm

TABLE 3.5 — Nom des architectures Intel en fonction des années

La société Intel s’est engagée en 2007 sur la voie d'un mode de production de
ses microprocesseurs en deux temps appelés tick-tock '? :

e un tick correspond a une diminution de la finesse de gravure

e un tock correspond a la création d’'une nouvelle architecture

Puis, entre 2014 et 2016, ce modele a été amendé en raison du retard pris
par Intel sur la gravure en 10 nm pour inclure une troisieme étape qui consiste a
améliorer une architecture existante et le modele a été rebaptisé PAO pour Process

11. Un chipset est un ensemble de composants électroniques qui permet la communication entre
microprocesseur, mémoire et périphériques.
12. Ce qui en francais correspond au tic-tac d'une montre.

106 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

- Architecture - Optimization. Tout cela préte a confusion car il faut également
prendre en compte la génération du microprocesseur (cf. Table 3.5).

Il est préférable de consulter la base de données des microprocesseurs Intel
afin d’obtenir des informations adéquates.

3.3.3.1 Les lois de Moore

En 1965, Gordon Moore (I'un des fondateurs d’Intel) alors ingénieur chez Fair-
child Semiconductor, postule le doublement de la complexité des semi-conducteurs
tous les ans a cofit constant en se basant sur des données depuis 1959, date de leur
invention.

Une dizaine d’années plus tard, Moore révisera sa prédiction pour un double-
ment tous les deux ans du nombres de transistors dans un microprocesseur. C’est
cette seconde prédiction que I'on qualifie de loi de Moore mais qui n’est pas une loi
au sens strict du terme, c’est a dire toujours vraie, mais définit une tendance que
les fabricants de circuits intégrés et de microprocesseurs en particulier, tendent a
suivre, plus ou moins bien.

Enfin une troisiéme version postule le doublement de quoi que ce soit tous les
dix-huit mois. Elle est attribuée a David House, travaillant chez Intel qui aurait
combiné la multiplication du nombre de transistors et 'augmentation de leur vitesse
ou de la fréquence de fonctionnement des microprocesseurs.

3.3.4 Les Registres

Le microprocesseur posséde plusieurs variables, appelées registres, qui per-
mettent de stocker de maniére temporaire des valeurs qui serviront pour des calculs
ultérieurs. En architecture 32 bits, les registres utilisés pour faire des calculs sont
au nombre de 8 et stockent des valeurs entieres de 32 bits (entier signé, non signé,
adresse mémoire).

IIs sont qualifiés de registres généraux (General Purpose Registers) ou registres
a usage général identifiés par les noms eax, ebx, ecx, edx ainsi que les registres
d’index edi (Destination Index) et esi (Source Index). Il existe également des
registres qui servent a gérer la pile et a accéder aux parametres des fonctions et
aux variables locales. Ce sont esp (Stack Pointer) et ebp (Base Pointer) '“.

On dénombre également plusieurs autres registres comme les registres de
segment (cs, ds, ss, es), le registre eflags qui stocke les effets des opérations
(retenue, résultat a 0, débordement, ...) ainsi que le registre eip (Instruction
Pointer) qui stocke 'adresse mémoire de la prochaine instruction a exécuter. Pour
plus d’information sur les registres, on consultera le Chapitre 5.

13. https://ark.intel.com/fr
14. ESP et EBP sont généralement décrits comme faisant partie des registres d’index mais je
préfere les distinguer des autres registres car ils ont un usage spécifique lié a la pile.

https://ark.intel.com/fr

3.3. LE MICROPROCESSEUR 107

3.3.5 Adressage mémoire

Une adresse mémoire est définie soit par une valeur constante, soit par la valeur
d’un registre, soit par une combinaison de registres qui permet une correspondance
avec les expressions liées aux tableaux ou aux structures de données (cf. Figure 3.5).
Une adresse a donc la forme suivante :

adresse = [base + index x scale + offset |

e base et index sont des registres avec une restriction concernant index qui ne
peut étre le registre esp

e scale est un facteur d’échelle et peut prendre les valeurs 1, 2, 4 ou 8 qui
vont correspondre a la taille d'un octet, d'un mot, d'un double mot ou d’un
quadruple mot

e offset est une constante entiere positive, négative ou nulle qualifiée de déca-
lage ou de déplacement

Chacun de ces termes est optionnel. Par exemple si on désire accéder au iéme
élément d’'un tableau d’entiers ¢ on pourra choisir de stocker I'adresse de ¢ dans le
registre ebx, stocker i dans le registre ecx, utiliser eax pour lire la valeur t[i] et
ainsi écrire mov eax,[ebx + ecx * 4]. Le facteur d’échelle utilisé ici est 4 car un
entier occupe 4 octets en mémoire.

base index facteur décalage
[[

EAX EAX 1 / 0 \

EBX EBX

ECX ECX 2 8 bits

EDX | .| EDX | +

ESI ESI 4 16 bits

EDI EDI

EBP EBP 8 32 bits

ESP :Es(\ /

FIGURE 3.5 — Adressage mémoire

Les registres de segment ont été introduits sur I'Intel 8086, un microprocesseur
16 bits, afin de pouvoir gérer 1 Mo de mémoire, alors que 16 bits ne permettent de
gérer que 64 ko '°. Chacun de ces segments est lié a la structure d’'un programme :
cs correspond au segment de code (Code Segment), ds au segment de données

15. 216 = 65536 = 26 x 210 = 64 x 1024 = 64 ko.

108 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

(Data Segment), ss a la pile (Stack Segment) et es (Extra Segment) peut étre utilisé
pour pointer sur une adresse quelconque de la mémoire.

Grace a ce mécanisme une adresse mémoire est définie par une combinaison
registre de segment et registre général ou registre d’index. Par exemple, eip est
associé a cs. Le registre edi est associé a es et esi est associé a ds. Les registres esp
et ebp sont liés au segment de pile ss. Lorsque 'on accede a la prochaine instruction
au travers de ip (ou eip en 32 bits), on fait implicitement référence au segment cs,
I'adresse que I'on accede est donc calculée par :

address = segment x16 + offset
cs x16 + ip

Le fait de multiplier par 16 le registre cs consiste a réaliser un décalage a gauche
de 4 bits du registre cs car 16 = 2%, ce qui donne une adresse sur 16 + 4 = 20 bits.

Notons que les programmes que nous allons écrire par la suite feront référence a
ces registres implicitement et nous n’aurons pas a les spécifier car nous fonctionne-
rons dans une architecture 32 ou 64 bits. Cela permettra de simplifier 'écriture des

programmes et les segments seront gérés par I'assembleur nasm et le compilateur C
++

3.4 Amélioration des microprocesseurs

Le temps d’exécution d’'un programme est donné par les deux formules sui-
vantes :

N
T, = Z CPI; xT,= N x CPI,, x T, (3.2)

=1

La premiere exprime que le temps d’exécution en secondes (7.) d’'un programme
de N instructions est donné par la somme du nombre de cycles que nécessite chaque
instruction (C'P1; = Cycles Per Instruction) pour s’exécuter multiplié par le temps de
cycle (7.) qui est I'inverse de la fréquence de fonctionnement du microprocesseur.

La seconde est une version synthétique pour laquelle on calcule un nombre
moyen de cycles par instruction (C'P1,,) pour N instructions :

1 n
CPI,=—) CPI,
22
Par exemple, si un sous-programme est composé de :

e 3 instructions qui s’exécutent en 2 cycles

e 1 instruction de 4 cycles

3.4. AMELIORATION DES MICROPROCESSEURS 109

e 1 instruction de 10 cycles

On a alors au total 3 x 2+ 1 x 4+ 1 x 10 = 20 cycles, soit un CPI moyen de 20/5
instructions et donc une moyenne de 4 cycles par instruction.

Les différentes évolutions des microprocesseurs ont pour but de diminuer le
temps d’exécution des programmes. D’apres la formule 3.2, étant donné que le
temps d’exécution est un produit de facteurs, il suffit de diminuer 'un des facteurs
pour diminuer le temps total d’exécution du programme.

La premiére amélioration consiste a diminuer le temps de cycle. Pour cela il suffit
d’augmenter la fréquence des processeurs. Un processeur doté d’'une fréquence de
3 Ghz fonctionne 3 fois plus vite qu'un processeur a 1 Ghz. Cependant augmenter
la fréquence pose de nombreux problemes a résoudre notamment I’élévation de la
température dégagée par le circuit électronique.

On peut ensuite diminuer le nombre d’instructions N ou le nombre moyen de
cycles par instructions (C'PI,,). Or dans ce cas, il semble que le produit N x CPI,,
reste constant, en effet :

e sion diminue le nombre d’instructions on crée des instructions plus complexes
(de type CISC) qui nécessitent plus de cycles pour étre exécutées, on augmente
donc CPI,,

e par contre, si on diminue le nombre moyen de cycles par instructions on crée
des instructions simples (de type RISC) et il faut utiliser plusieurs instructions
pour réaliser le méme traitement qu’une instruction CISC, on augmente donc
N

I1 a donc fallu élaborer des solutions capables de diminuer le temps nécessaire
au traitement des instructions qu’elles soient CISC ou RISC.

Les architectures des processeurs modernes jouent sur plusieurs plans, en tentant
de maximiser :

e I'ILP (Instruction Level Parallelism) d’un flux d’instructions, c’est a dire, tenter
d’exécuter le plus possible d’instructions en parallele

e le DLP (Data Level Parallelism) qui consiste a exécuter la méme instructions
sur plusieurs données différentes en paralléle

e le TLP (Thread Level Parallelism) qui consiste a disposer de plusieurs coeurs
d’exécution, c’est ce que 'on appelle les processeurs multi-coeurs

La Table 3.6 indique pour chacun de ces niveaux de parallelisme quelles tech-
niques peuvent étre mises en oeuvre.

Nous allons donc passer en revue ces techniques dans la suite de ce chapitre.

110 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

Amélioration Technique

ILP pipeline, super-scalaire, exécution dans le désordre, coprocesseur
DLP registres et calcul vectoriel (unités MMX, SSE, AVX)
TLP multi-coeurs, SMT, HyperThreading

TABLE 3.6 — Techniques d’amélioration des microprocesseurs

3.5 Traitement des instructions

Afin de simplifier la compréhension du traitement des instructions par le mi-
croprocesseur, on peut dire que traiter une instruction consiste a passer par cing
étapes principales (cf. Figure 3.6) :

1. le chargement de I'instruction depuis la mémoire (Fetch Instruction)

2. le décodage de I'instruction afin de connaitre les opérations a réaliser lors de
son exécution (Decode Instruction)

3. le chargement des opérandes de I'instruction (Load Operand)
4. l'exécution de l'instruction a propement parler (Execute Instruction)

5. Pécriture du résultat (Write Result)

Le programme a éxécuter réside en mémoire centrale et il se décompose en
plusieurs parties :

e le code, C’est a dire les instructions a exécuter
e les données qui peuvent étre initialisées, non initialisées ou en lecture seule
e la pile des appels de sous-programmes

e le tas (heap en anglais) qui représente le reste de la mémoire et c’est notam-
ment dans cette zone que 'on allouera les données grace a malloc en C ou
new en C++

L’ensemble des données en mémoire (attention, ici le terme donnée signifie tout
octet de la mémoire centrale), s’il est accédé par le processeur au travers d'une
adresse, va transiter par les différents niveaux de cache.

Les deux premieres étapes de traitement (chargement et décodage) représentent
ce que 'on appelle le frontal (ot front-end en anglais), c’est a dire la partie émergée,
donc visible de I'iceberg. Les trois dernieres sont qualifiées de back-end en anglais,
que l'on trouve parfois traduit par dorsal '°, c’est la partie immergée et la plus
complexe.

16. Terme proposé par I'Office québécois de la langue francaise.

3.6. PIPELINE D’INSTRUCTIONS 111

Charge Instruction

Décode Instruction

Iyl

Charge Opérande

Exécute Instruction

(2]
)
(7]
>
(]
-
N

Ecriture Résultat

Cache L3

MEMOIRE CENTRALE

Programme

CODE DONNEES TAS

FIGURE 3.6 — Etapes de traitement d’une instruction

Imaginons, de maniére grossiere que chacune de ces étapes prend une nano
seconde (107Y s). Le traitement de chaque instruction demande 5 étapes d’'une
nano seconde donc 5 ns. En d’autres termes, on traite une instruction toutes les 5
ns.

C’est ce que nous avons représenté sur la partie haute de la Figure 3.7. La
premiere instruction i1 passe successivement par les 5 étapes de traitement avant
que l'instruction suivante 2 puisse étre traitée.

3.6 Pipeline d’instructions

Afin d’améliorer la vitesse de traitement des instructions un mécanisme de
pipeline a été mis en place. Il consiste a ne pas attendre que 'ensemble des étapes
de traitement aient été réalisées avant de passer a l'instruction suivante. Pour
cela on rend chaque étape de traitement indépendante. Une premiere instruction
passe dans I'étape de chargement au temps ¢ = 0, puis au temps ¢ + 1, elle passe
dans I'étape de décodage, pendant que I'instruction suivante passe dans I'étape de
chargement et ainsi de suite. C’est le méme principe qui est utilisé sur les chaines
de montage dans les usines. On qualifie généralement le pipeline de mécanisme
d’amélioration en longueur.

Ce mécanisme général est utilisé a plusieurs niveaux du traitement des instruc-
tions, notamment lorsqu’une instruction est exécutée par une Unité de Traitement
(cf. ci-apres).

112 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

F i1 i2 i3
D i i2 i3
L i1 i2 i3
E i i2 i3
w i1 i2 i3

5§ns 10§ns temps >
F|[in]i2]i3 |5 [ie[i7]i3 [id]i5[i6[i7] & o e e
D i1 |i2|i3ia]i5]ie|i7]i3[ia]is]ie| i ;o oe oo
L T2l a5 e |73 ialis| B 9 e
E i1 (12|13 []i5|i6 |7 |i3 [1@] & et bori "
w iz |3 iali5]i6 |73 nov ebx 1

FIGURE 3.7 — Pipeline d’instructions

La question que l'on peut légitimement se poser est : quel gain apporte le
pipeline ? Pour répondre a cette question il suffit de comparer les temps d’exécution
avec et sans pipeline pour traiter n instructions :

e sans pipeline une instruction est exécutée toutes les 5 ns, si on a n instructions
a exécuter il faut donc 5 x n ns.

e avec pipeline, il faut 5 ns pour que la premiere instruction soit exécutée, puis
n — 1 ns pour exécuter les n — 1 instructions restantes

Le gain obtenu est donné par le rapport du temps d’exécution sans pipeline par
le temps d’exécution avec pipeline :

ain = lim on ~ on ~5
& S \b+n—1/) n

Un pipeline de k étapes (on parle également d’étages ou stages en anglais),
permet théoriquement de diviser le temps de traitement par k. Cependant, le
nombre d’étages de traitement est limité par le nombre d’étapes élémentaires a
réaliser mais et est influencé par les acces a la mémoire et le nombre d’unités de
traitement (cf. sections suivantes). Plus le pipeline est long, plus il est coliteux de
le vider et le réalimenter, c’est ce qui arrive lors de I'exécution des instructions

3.7. FRONTAL : CHARGEMENT ET DECODAGE 113

Micro architecture Pipeline
P5 (Pentium) 5
P6 (Pentium 3) 10
P6 (Pentium Pro) 14
NetBurst (Willamette) 20
NetBurst (Northwood) 20
NetBurst (Prescott) 31

Micro architecture Pipeline

NetBurst (Cedar Mill) 31
Core 14
Sandy Bridge 14
Haswell 14
Skylake 14
Kabylake 14

TABLE 3.7 — Nombre d’étages de pipeline pour différentes architectures Intel

conditionnelles ou lors du traitement des boucles. Il se limite a une quinzaine
d’étages sur la plupart des microprocesseurs actuels (cf. Table 3.7).

Voyons a présent comment les différentes étapes de traitement des instructions

s’enchainent.

3.7 Frontal : chargement et décodage

Sur le schéma de la Figure 3.8 on a fait apparaitre les différentes étapes liées au

frontal.

Charge Instruction

Frontal

JOR T .

Prédiction de B = = |
branchement %:ﬂ

file
d'instructions
Xx86

Décode Instruction

u

Unité de
décodage

Unité de

décodage

Unité de
décodage

micro-instructions

FIGURE 3.8 — Chargement et décodage

A partir de cs:eip on obtient 'adresse de la prochaine instruction a exécuter.

114 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

Cependant comme nous allons le voir et comme cela a déja été évoqué, certaines
instructions assembleur modifient eip et il est nécessaire d’utiliser un mécanisme de
prédiction de branchement, représenté sur la figure par BPU pour Branch Prediction
Unit, afin de savoir si 'on devra lire I'instruction suivante ou si on devra se déplacer
a une autre adresse du code.

Une fois que l'on dispose de la bonne adresse, on récupere l'instruction a
exécuter dans le cache L1 d’instructions (L1i). Il se peut que I'instruction ne soit pas
présente dans le cache L1i, il faudra alors chercher si elle est dans le cache L2, puis
dans le cache L3 et finalement, si elle n’est présente dans aucun cache, il faudra
lancer une requéte d’accés en mémoire pour récupérer les octets situés a 'adresse a
lire et les charger dans les différents caches ou dans le cache L1i uniquement.

3.7.1 Chargement et prédiction de branchement

Comme nous venons de le dire, le chargement d’une instruction fait appel a
plusieurs mécanismes dits de prédiction de branchement qui permettent de prédire
a quelle adresse le pointeur d’instruction (eip) doit se placer. Généralement il s’agit
de l'instruction suivante. Mais dans le cas de branchements, d'une boucle par
exemple, il faut revenir au début de la boucle apres avoir exécuté son corps ou
sortir de la boucle lorsque la condition d’arrét est atteinte. On dit alors qu’il existe
plusieurs chemins d’exécution.

Considérons le code C de la Figure 3.9 pour lequel on calcule la somme des
entiers de 1 a 10. On voit sur 'organigramme de gauche qu’il exite deux chemins :
le premier est pris lorsque i < 10 et le second lorsque i > 10. En prévision de ce
que nous verrons dans le Chapitre 5, nous avons fait figurer le code assembleur
sur la méme figure. Le registre eax contient la somme des valeurs et le registre ecx
représente la variable de boucle (i).

Apres I'utilisation de I'instruction cmp ecx, 10 qui compare le registre ecx a la
constante 10, on place une instruction de branchement conditionnel jg .end_for,
qui signifie jump on greater.

Ces instructions de branchement conditionnel sont source de ralentissement au
sein du pipeline puisqu’il est nécessaire de vider le pipeline si le chemin d’exécution
suivi n’est pas le bon. Si ecx est supérieur a 10 il faut sortir de la boucle et
modifier eip pour qu’il pointe sur l'instruction apres le label .end_for, c’est a
dire I'instruction i8. Cependant les instructions suivant la comparaison (i5, i6, i7)
ont déja été chargées dans le pipeline pendant le traitement de i3 et i4. On doit
donc invalider leur traitement en vidant le pipeline et recommencer a partir de
l'instruction i8.

Afin d’éviter le plus possible de vider le pipeline, la prédiction de branchment,
comme son nom l'indique, permet de prédire des lors quune instruction de type
branchement est présente, si le branchement sera emprunté ou non. De son effica-
cité découle une vitesse de traitement accrue.

3.7. FRONTAL : CHARGEMENT ET DECODAGE 115

somme =0 Code C
+ int 1, somme = 0;
P21 for (i=1; 1<=10; ++1) {
condition d‘arrét 1=) sonne = somne + 13
\ + printf(“%d”,somme);
» Code Assembleur
% Xor eax, eax ;i1
S mov ecx, 1 ;12
8 somme = somme + i for:
£
() add eax, ecx g5
E inc ecx ;16
Q jmp .for ;17
S .end_for:
(& push eax ;18
. push dword msg ;19
p”nt somme < call printf ;110

FIGURE 3.9 — Exemple de boucle for

Notons également que les conditionnelles de type if then ou if then else a
l'intérieur d’'une boucle (for ou) sont les plus pénalisantes et le sont d’autant
plus qu’on ne peut prédire la condition du if (cf. Section 5.4.11.3).

3.7.2 Décodage d’instructions

Les instructions assembleur peuvent étre qualifiées de macro-instructions car
elles définissent des traitements parfois trés complexes. Au sein du microprocesseur,
ces macro-instructions sont décomposées en une série d’instructions plus simples
appelées micro-opérations et notées y-ops.

Nous avons vu Section 3.3.2, I'instruction add [ebx + ecx * 4 + 8], eax. Cette
instruction sera décomposée en plusieurs micro-opérations beaucoup plus simples
afin d’étre exécutée :
p-opl : calul de 'adresse A = ebx + ecx * 4 + 8
pu-op2 : chargement de la donnée a 'adresse mémoire A dans le registre R

pu-op3 : exécution de 'addition R + eax et stockage dans R

H W=

p-op4 : stockage de R a 'adresse mémoire A

De retour a la Figure 3.8, nous voyons qu’une fois chargée dans une file d’ins-
tructions x86, la prochaine instruction a exécuter doit étre décodée en micro-
instructions. Généralement, il existe un mécanisme de cache de traduction repré-
senté sur la figure par le ;-Ops Cache. Ce cache a pour objectif de stocker la série de

116 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

micro-instructions générées par le décodage dune instruction x86 précédemment
décodée. Si I'instruction x86 est présente dans ce cache, on approvisionnera la file
de u-ops avec les données du cache, sinon on utilisera le décodeur qui est le circuit
dédié a la traduction d’une instruction x86 en p-ops.

De nos jours la partie décodage est capable de décoder plusieurs instructions a
la fois, généralement de I'ordre de 3 a 5 sur les microprocesseurs récents.

3.8 Exécution des instructions

CS:EIP Frontal
instructions x86

‘ File d'instructions x86 ‘

Dorsal

micro-instructions

?‘ }
vy v

ALUT ALU2 | FPUT = FPUT VPU1 VPU1 LSU
| |
| | -

FIGURE 3.10 — Traitement instruction

3.8.1 Exécution dans le désordre

Au niveau du dorsal (voir Figure 3.10), c’est un ensemble de p-ops associées a
des instructions x86 que I'on doit traiter. Afin de diminer les temps d’attentes et ne
pas ralentir 'exécution du traitement on utilise un mécanisme d’exécution dans le
désordre (Out Of Order) qui consiste a traiter les u-ops dés lors qu’elles disposent
de toutes les ressources nécessaires pour étre traitées.

Cependant, cette exécution dans le désordre pose un probleme crucial a ré-
soudre : faire en sorte qu’au final les instructions x86 soient traitées dans l'ordre
dans lequel elles sont entrées dans le pipeline de traitement.

Pour ce faire, on utilise deux tampons (buffers) appelés Reservation Station et
ReOrder Buffer notés respectivement RS et ROB. Nous ne détaillerons pas leur

3.8. EXECUTION DES INSTRUCTIONS 117

fonctionnement afin de rester le plus concis possible et ne pas désorienter le lecteur,
mais ces deux tampons assurent les fonctionnalités suivantes :

e ROB, comme son nom l'indique est chargé de garder la cohérence et maintenir
I'ordre d’exécution, il est également chargé de l'allocation de registres

e RS est chargé de stocker les instructions et de les garder jusqu’a ce qu’elles
soient exécutées

L’allocation avec renommage de registres est une technique essentielle pour traiter
les instructions dans le désordre. En interne le microprocesseur dispose de plusieurs
registres et lorsqu'’il traite une instruction x86 il établit une correspondance entre
les registres visibles par le programmeur (eax, ebx, etc...) et ses registres internes
de maniere a pouvoir traiter chaque instruction de maniere indépendante.

3.8.2 Microprocesseur super scalaire

Dés qu’une instruction est préte a étre traitée au niveau de la RS elle est envoyée
a une unité de traitement dédiée. Les différentes unités sont de type entier, flottant,
vectoriel et chargement / stockage de donnée. On les qualifie respectivement d’ALU,
FPU, VPU et LSU :

e ALU (Arithmetic and Logic Unit) ou unité de traitement arithmétique et logique
traite les opérations sur les valeurs entieres et travaille avec les registres
généraux

e FPU (Floating Point Unit) ou unité de traitement des nombres a virgule
flottante traite les opérations sur les réels, cette unité s’appelait auparavant
coprocesseur

e VPU (Vector Processing Unit) ou unité de traitement vectorielle s’intéresse aux
vecteurs, ce sont les instructions de type MMX, SSE ou AVX

e LSU (Load and Store Unit) ou unité d’accés a la mémoire traite le chargement
et le stockage des données ainsi que le calcul des adresses mémoire

La encore, afin d’améliorer 'efficacité du traitement des instructions on a
introduit une technologie qualifiée de super-scalaire (Superscalar) qui consiste a
disposer de plusieurs unités de traitement de méme type afin de mieux répartir
la charge de travail. On qualifie cette technique d’amélioration en largeur du
microprocesseur. Les instructions sont réparties (dispatch) sur les différentes unités
de traitement des qu’elles sont prétes a étre exécutées. Le principe est le méme
que la caisse du supermarché. Si on a une file de dix clients qui attendent pour
payer leurs achats et qu’il n’y a qu'une seule caisse d’ouverte, on peut diminuer leur
temps d’attente, notamment le temps d’attente des derniers clients en ouvrant une
deuxiéme caisse. Les dix clients vont alors idéalement se répartir en deux files de
cing clients.

118 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

3.8.3 Ecriture du résultat

Apreés son exécution une instruction est finalement traitées par le ROB de ma-
niere a propager son résultat dans I'ordre de traitement du flux d’instructions
soumis au microprocesseur. Il peut s’agir d’'une écriture en mémoire, de la modifica-
tion de la valeur d’un registre suivie éventuellement par la mise a jour du registre
eflags.

3.8.4 Amélioration en longueur et en largeur

Nous avons vu que l'utilisation d’un pipeline était qualifiée d’amélioration en
longueur et que 'amélioration en largeur consistait a avoir plusieurs unités de
traitement. On peut combiner ces deux techniques afin de tirer profit des deux types
d’améliorations mais il faut trouver un équilibre entre elles. Un pipeline trop long
ou trop court aura un effet de ralentissement. Disposer de nombreuses unités de
traitement mais les sous utiliser affecte la rentabilité. Une analogie appropriée pour
comprendre 'interaction de ces deux techniques est celle du fast food qui est un
restaurant dont le but est de servir rapidement ses clients. Lorsque 'on entre dans
un fast food on dispose de plusieurs files d’attentes pour lesquelles une personne
traite votre commande, va chercher les produits que vous avez commandés et prend
en compte votre réglement. Il s’agit d’'un systeme avec de nombreuses unités de
traitement mais un pipeline court (une personne pour traiter un client).

L’autre alternative qui s’offre a vous et d’aller au drive ot se trouve une longue
file de clients en voiture qui seront servis par trois personnes différentes : 'une va
prendre votre commande, la seconde s’occupe de votre réglement et la troisiéme
vous livre votre commande. Il s’agit d’'un systeme avec peu d’unité de traitement
(une seule file de traitement) mais un long pipeline (plusieurs personnes pour
traiter un client).

3.8.5 Multi-coeur et SMT

Le Simultaneous MultiThreading (SMT) est une technique qui permet le partage
d’un coeur de processeur superscalaire entre plusieurs threads dans le but d’opti-
miser 'utilisation des ressources. Généralement il s’agit d'un seul autre thread, un
processeur qui possede le SMT apparait alors comme ayant le double de coeurs de
calculs. Il ne faut cependant pas se laisser leurrer et croire que le microprocesseur
possede deux fois plus de coeurs et donc deux fois plus de puissance de calcul
puisque comme indiqué, on partage les ressources d'un coeur entre deux threads.

Cette technologie qui date des années 60 a été réintroduite sur le Pentium 4 7
d’Intel en 2003 et a été qualifiée de technologie Hyper-Threading (HT). A cette

17. 1l faut noter que le Pentium 4 d’architecture Willamette date de Novembre 2000, c’est
seulement a partir de I'architecture Northwood et pour une fréquence de 3.06 GHz que le Pentium
4 posseéde 'Hyper-Threading.

3.9. APPRENDRE A CONNAITRE SON ORDINATEUR SOUS LINUX 119

époque Intel évoque un gain de 30 % par rapport a un méme processeur sans HT.

Pour certains traitements paralleles, utiliser 4 coeurs doté du SMT, c’est a dire
8 threads, peut se révéler un atout. Dans d’autres cas, il sera préférable de se
cantonner a utiliser les 4 coeurs sans le SMT.

Apreés ce bref apercu des technologies mises en oeuvre afin de diminuer le temps
d’exécution des instructions, nous allons nous intéresser au matériel et en découvrir
les caractéristiques.

3.9 Apprendre a connaitre son ordinateur sous Li-
nux

3.9.1 Le microprocesseur

Si vous utilisez Windows comme systeme d’exploitation vous trouverez de
nombreux outils professionnels pour obtenir des informations sur votre machine.
L’un des plus connus et les plus intéressants est CPU-Z %, il est doté d’une interface
graphique et donne de nombreux détails sur le matériel. Il existe également GPU-
Z ' pour les cartes graphiques.

Sous Linux l'offre est plus restreinte et les outils comme hardinfo et sysinfo
sont tres rudimentaires. On trouve néanmois l'utilitaire graphique I-Nex qui est un
clone de CPU-Z mais son installation est assez difficile et il n’est plus maintenu. Un
autre outil plus récent, appelé CPU-X, est I’équivalent de CPU-Z.

Il existe différentes maniéres de récupérer I'information sous Linux par l'inter-
médiaire d’utilitaires en ligne de commande ou de simples commandes shell :
e 1shw (list hardware)

e dmidecode décode une table DMI (Desktop Management Interface)

1scpu (list cpu)

cat /proc/cpuinfo (informations sur le microprocesseur)

1stopo du package hwloc

Par exemple pour obtenir des informations sur le microprocesseur, on peut
utiliser la commande 1scpu ou, de maniere équivalente, la commande 1shw avec
les arguments suivants :

sudo lshw -C processor
*-cpu
description: CPU

18. https://www.cpuid.com/softwares/cpu-z.html
19. https://www.techpowerup.com/gpuz/

https://www.cpuid.com/softwares/cpu-z.html
https://www.techpowerup.com/gpuz/

120 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

produit: AMD Ryzen 5 3600 6-Core Processor

fabricant: Advanced Micro Devices [AMD]

identifiant matériel: 15

information bus: cpu@@

version: AMD Ryzen 5 3600 6-Core Processor

numéro de série: Unknown

emplacement: AM4

taille: 2166MHz

capacité: 4200MHz

bits: 64 bits

horloge: 100MHz

fonctionnalités: 1m fpu fpu_exception wp vme de pse tsc msr pae
mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse
sse2 ht syscall nx mmxext fxsr_opt pdpelgb rdtscp x86-64
constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid
aperfmperf pni pclmulgdq monitor ssse3 fma cx16 sse4_1 sse4_2
movbe popcnt aes xsave avx f16c¢c rdrand lahf_1lm cmp_legacy svm
extapic cr8_legacy abm ssed4a misalignsse 3dnowprefetch osvw ibs
skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc
mwaitx cpb cat_13 cdp_13 hw_pstate sme ssbd mba sev ibpb stibp
vmmcall fsgsbase bmil avx2 smep bmi2 cgm rdt_a rdseed adx smap
clflushopt clwb sha_ni xsaveopt xsavec xgetbvl xsaves cgm_llc
cgm_occup_llc cgm_mbm_total cgm_mbm_local clzero irperf xsaveerptr
wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean
flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload
vgif umip rdpid overflow_recov succor smca cpufreq

configuration : cores=6 enabledcores=6 threads=12

On obtient le nom du microprocesseur, sa fréquence maximale de fonctionne-
ment de 4200 Mhz (capacité) ainsi que les différentes technologies implantées
(fonctionnalités) comme avx2, bmi2 et popcnt pour celles qui nous intéresseront
par la suite. On trouve également le nombre de coeurs (cores=6) et le nombre de
threads (threads=12).

La ligne taille ne correspond en fait a une fréquence et varie si on relance la
commande plusieurs fois. Il s’agit probablement de la fréquence de I'un des coeurs.

3.9.1.1 inxi

Un petit utilitaire intéressant sous Linux est inxi. Il permet d’afficher dans
le terminal les informations principales de la configuration d’'une machine. Pour
obtenir toutes les informations relatives a une machine, on peut par exemple saisir
dans le terminal, la commande :

1 \inxi -F -c 18

3.9. APPRENDRE A CONNAITRE SON ORDINATEUR SOUS LINUX 121

L’option -F signifie full et 'option -c permet de choisir un mode de coloration.
On obtient alors le compte rendu suivant que nous avons pas affiché en totalité :

1 |System:
2 Host: zentopia Kernel: 5.4.0-40-generic x86_64 bits: 64
3 Desktop: Gnome 3.36.2 Distro: Ubuntu 20.04 LTS (Focal Fossa)

4 |Machine:
5 Type: Desktop Mobo: Micro-Star model: MPG X570 GAMING EDGE WIFI (MS-7C37)

6 v: 1.0 serial: <superuser/root required> UEFI: American Megatrends v: 1.50
7 date: 10/29/2019
s |CPU:

9 Topology: 6-Core model: AMD Ryzen 5 3600 bits: 64 type: MT MCP

10 L2 cache: 3072 KiB

11 Speed: 2200 MHz min/max: 2200/3600 MHz Core speeds (MHz): 1: 2209 2: 2200
12 3: 2200 4: 2199 5: 2200 6: 2199 7: 2200 8: 2198 9: 2199 10: 2200 11: 2199
13 12: 2200

14 | Graphics:

15 Device-1: NVIDIA GP104 [GeForce GTX 1070] driver: nvidia v: 440.100

16

3.9.1.2 Istopo

Pour utiliser 1stopo il faut installer le paquet hwloc sous Ubuntu :
1 ‘sudo apt install hwloc
On utilise ensuite la commande 1stopo ou 1stopo-no-graphics comme suit :

1 |1lstopo
2> |lstopo --no-io file.png
3 |lstopo-no-graphics -.ascii --no-io

La premiere commande (ligne 1) ouvre une fenétre qui donne la topologie du
processeur (Figure 3.11) avec les informations des coeurs, 'organisation des caches
et la partie concernant les interfaces entrées et sorties. Cette derniére partie peut
étre supprimées en utilisant 'option —no-io (ligne 2). Enfin, la ligne 3 affiche les
informations au format ASCII dans un terminal.

Sur la Figure 3.11 on obtient une information détaillée sur un AMD Ryzen
7 1700X. On voit clairement comment sont répartis et numérotés les coeurs (cf.
ci-apres) ainsi que la taille et la répartition des mémoires caches. Ce processeur
d’architecture Summit Ridge est décrit comme possédant 8 coeurs, 16 threads et est
doté de 4 Mo de cache L2 ainsi que 16 Mo de cache L3. Cependant, sur la figure,
on voit que le cache L3 est scindé en deux fois 8 Mo chacun associé a 4 coeurs SMT,

122 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

Machine (7988MB)
Package P#0
L3 (B192KB)
L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)
L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
L1i (B4KE) L1i (B4KE) L1i (B4KE) L1i (B4KE)
Core P#0 Core P#1 Core P#2 Core P#3
PU P#D PU P#2 PU P#4 PU P#6
PU P#1 PU P#3 PU P#5 PU P#T7
L3 (B192KB)
L2 (512KB) L2 (512KB) L2 (512KB) L2 (512KB)
L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
L1i (B4KE) L1i (B4KE) L1i (B4KE) L1i (B4KE)
Core P#4 Core P#5 Core P#6 Core P#7
PU P#8 PU P#10 PU P#12 PU P#14
PU P#93 PU P#11 PU P#13 PU P#15
Hast: universe
Indexes: physical
Date: sam. 18 mai 2019 17:15:04 CEST

FIGURE 3.11 — Résultat de la commande Istopo sur AMD Ryzen 7 1700X

ce qui fait 8 Mo pour 8 threads. Chaque groupe de 2 threads dispose de 512 ko de
cache L2, 64 ko de cache L1i et 32 ko de cache L1d.

Ce schéma indique également la numérotation des threads (P#@ a P#15 sur fond
gris) :
e les coeurs ont donc un numéro d’identification pair (P#0, P#2 a P#14)

e les coeurs SMT ont des numéros impairs (P#1, P#3, a P#15)

Quant a la mémoire cache, on peut obtenir beaucoup d’informations en listant
le contenu du répertoire :

1 ‘ls /sys/devices/system/cpu/cpu@/cache/indexx*

3.9. APPRENDRE A CONNAITRE SON ORDINATEUR SOUS LINUX 123

Chaque index correspond a un cache, I'index O est le cache L1 de données, I'in-
dex 1 est le cache L1 d’instructions, I'index 2 est le cache L2 et I'index 3 correspond
au cache L3. Voici un petit script bash qui permet d’afficher ces informations :

1 |#!/bin/sh
2 |input_dir="/sys/devices/system/cpu/cpu@/cache
3 |levels="1s -d ${input_dir}/index[0-9]"

n

4 |levels="echo $levels | tr " ' '\n' | wc -1

s |level=0

6 |while [$level -1t $levels] ; do

7 size="cat ${input_dir}/index${level}/size | awk '{ printf("%6s",$1);}'"
8 type="cat ${input_dir}/index${level}/type | awk '{ printf("%12s”,$1);}"'"
9 levl="cat ${input_dir}/index${level}/level”

10 assc="cat ${input_dir}/index${level}/ways_of_associativity"

1 Insz="cat ${input_dir}/index${level}/coherency_line_size"

12 echo "L$levl $type $size ${assc}-way-set-associative ${1lnsz} bytes”

13 level="expr $level + 1°

14 | done

On peut également utiliser la commande sudo 1shw -short -C memory, (voir
ci-apres pour la mémoire).

3.9.2 La carte mere

Le framework logiciel DMI pour Desktop Management Interface fournit un stan-
dard afin de gérer et de suivre les modifications de composants sur un ordinateur.
L'utilitaire dmidecode permet de lire les informations DMI de 'ordinateur et de les
afficher au format binaire ou dans un format texte compréhensible par un humain.
Pour obtenir des informations sur la carte mere, on peut utiliser la commande
suivante :

1 ‘sudo dmidecode -t baseboard

1 |# dmidecode 3.2
2 |Getting SMBIOS data from sysfs.
3 |SMBIOS 2.8 present.

s |Handle ©0x0002, DMI type 2, 15 bytes
6 |Base Board Information

7 Manufacturer: Micro-Star International Co., Ltd.
8 Product Name: MPG X570 GAMING EDGE WIFI (MS-7C37)
9 Version: 1.0

10 Serial Number: J816453611

1 Asset Tag: To be filled by 0.E.M.

124

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Features:

CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

Board is a hosting board
Board is replaceable

Location In Chassis: To be filled by 0.E.M.
e: 0x0003

Chassis Handl
Type: Motherb

oard

Contained Object Handles: @

Handle 0x0039, DMI type 41, 11 bytes

Onboard Device

Reference Designation: RTL8111EPV

Type: Etherne
Status: Disab
Type Instance

t
led
1

26 Bus Address: 0000:03:00.0

Ici, il s’agit d’une carte MSI X570 GAMING EDGE WIFI.

3.9.3 La mémoire

De la méme maniére, pour obtenir des informations concernant le sous-systéme
mémoire, il suffit d’utiliser dmidecode :

10

11

12

13

14

15

16

17

18

19

20

21

22

23

sudo dmidecode -t mem
dmidecode 3.2

Getting SMBIOS data from sysfs.

SMBIOS 2.8 present.

ory

Handle 0xQ00F, DMI type 16, 23 bytes

Physical Memory Array

Location: System Board Or Motherboard
Use: System Memory

Error Correction Type: None

Maximum Capacity: 128 GB
Error Information Handle:
Number Of Devices:

4

0x000E

Handle 0x0017, DMI type 17, 40 bytes

Memory Device

Array Handle: 0x0Q00F

Error Information Handle:

Total Width: 64 bits

Data Width: 64 bits

Size: 8192 MB
Form Factor:
Set: None

DIMM

0x0016

3.9. APPRENDRE A CONNAITRE SON ORDINATEUR SOUS LINUX 125

24 Locator: DIMM @

25 Bank Locator: P@ CHANNEL A

26 Type: DDR4

27 Type Detail: Synchronous Unbuffered (Unregistered)
28 Speed: 3200 MT/s

29 Manufacturer: Unknown

30 Serial Number: 00000000

31 Asset Tag: Not Specified

32 Part Number: F4-3200C16-8GVKB

33 Rank: 1

34 Configured Memory Speed: 3200 MT/s
35 Minimum Voltage: 1.2 V

36 Maximum Voltage: 1.2 V

37 Configured Voltage: 1.2 V

38

On voit que la carte mere posséde quatre slots de connexion (Number Of Devices,
ligne 13), on peut donc positionner quatre barrettes de mémoires mais il ne faut pas
dépasser 128 Go (Maximum Capacity, ligne 11) , soit par exemple quatre barrettes
de 32 Go, ce qui est déja énorme. Le premier slot mémoire DIMMO est occupé par
une barrette de 8 Go (ligne 21) de PC-3200 (ligne 34), pour laquelle on n’a pu
déterminer le fabriquant (Manufacturer : Unknown, ligne 29). Il s’agit en fait de
barrettes G-Skill dont la référence est F4-3200C16-8GVKB.

On peut également utiliser la commande 1shw pour obtenir un sommaire des
différentes mémoires :

1 |sudo lshw -short -C memory

2 |Chemin ... Classe Description

3

4 [/0/0 memory 64KiB BIOS

s |/0/f memory 32GiB Mémoire Systeme

6 |/0/f/0 memory 8GiB DIMM DDR4 Synchrone Unbuffered (Unregistered)
7 | /0/f/1 memory 8GiB DIMM DDR4 Synchrone Unbuffered (Unregistered)
s [/0/f/2 memory 8GiB DIMM DDR4 Synchrone Unbuffered (Unregistered)
9o |/0/f/3 memory 8GiB DIMM DDR4 Synchrone Unbuffered (Unregistered)
10 [/0/12 memory 384KiB L1 cache

un [/0/13 memory 3MiB L2 cache

12 |/0/14 memory 32MiB L3 cache

13

On voit ici que la mémoire centrale posséde une taille de 32 Go organisée en 4
fois 8 Go. Les mémoires cache de niveau L1 (Données et Instructions) font 32 ko,
le cache L2 posséde une taille de 512 ko et le cache L3 fait 32 Mo (2 x 16 Mo).

Nous avons évoqué la présence d’informations liées au timings mémoires Sec-
tion 3.2. On peut obtenir ces informations en installant i2c-tools :

126

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

sudo apt install i2c-tools
sudo modprode eeprom
decode-dimms

On obtient entre autres informations :

EEPROM CRC of bytes 128-253

---=== Memory Characteristics ===---
Maximum module speed

Size

Banks x Rows x Columns x Bits

SDRAM Device Width

Ranks

AA-RCD-RP-RAS (cycles)

Supported CAS Latencies

---=== Timings at Standard Speeds ===---
AA-RCD-RP-RAS (cycles) as DDR4-1866
AA-RCD-RP-RAS (cycles) as DDR4-1600

---=== Timing Parameters ===---

Minimum Cycle Time (tCKmin)

Maximum Cycle Time (tCKmax)

Minimum CAS Latency Time (tAA)

Minimum RAS to CAS Delay (tRCD)

Minimum Row Precharge Delay (tRP)

Minimum Active to Precharge Delay (tRAS)
Minimum Active to Auto-Refresh Delay (tRC)
Minimum Recovery Delay (tRFC1)

Minimum Recovery Delay (tRFC2)

Minimum Recovery Delay (tRFC4)

Minimum Four Activate Window Delay (tFAW)
Minimum Row Active to Row Active Delay (tRRD_S)
Minimum Row Active to Row Active Delay (tRRD_L)
Minimum CAS to CAS Delay (tCCD_L)

Minimum Write Recovery Time (tWR)

Minimum Write to Read Time (tWTR_S)

Minimum Write to Read Time (tWTR_L)

---=== Qther Information ===---
Package Type

Maximum Activate Count

Post Package Repair

Soft PPR

Module Nominal Voltage

Thermal Sensor

CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

0K (0xAQ1C)

2132 MHz (PC4-17000)

8192 MB

16 x 16 x 10 x 64
8 bits

1

15-15-15-36

16T, 15T, 14T, 13T, 12T, 11T, 10T

13-13-13-31
11-11-11-27

0.938 ns
1.600 ns
13.750 ns
13.750 ns
13.750 ns
33.000 ns
46.750 ns
350.000 ns
260.000 ns
160.000 ns
21.000 ns
3.700 ns
5.300 ns
5.625 ns
15.000 ns
2.500 ns
7.500 ns

Monolithic

Unlimited

One row per bank group
Supported

1.2V

No

3.9. APPRENDRE A CONNAITRE SON ORDINATEUR SOUS LINUX 127

42

43

44

45

46

47

48

49

50

51

---=== Physical Characteristics ===---
Module Height 32 mm

Module Thickness 2 mm front, 2 mm back
Module Reference Card A revision 1

---=== Manufacturer Data ===---
Module Manufacturer Undefined
Part Number Undefined

Malheureusement, on n’obtient pas toutes les informations, comme par exemple

le fabricant (Module Manufacturer).

Il s’agit ici de barrettes de DDR4-SDRAM au format UDIMM, PC4-17000 de 8

Go qui posséde plusieurs fréquences de fonctionnement.

3.9.4 CPUX

Enfin, on dispose a présent d’'un outil qui s’appelle CPU-X?° qui est '’équivalent

de CPU-Z. Sur le site du logiciel on trouvera des packages pour Linux pour Debian,
OpenSUSE et Ubuntu qui pour la version 4.0 de CPU-X gere les versions 16.04,
18.04, 19.04, 19.10 et 20.04 de Ubuntu (voir Figure 3.12).

Pour installer CPU-X, il suffit de télécharger I'archive correspondant a Ubuntu

sur le site du logiciel, puis de lancer les commandes suivantes :

mkdir install

cd install

mv ~/Téléchargements/CPU-X_v4.0.1_Ubuntu.tar.gz .

tar -xzf CPU-X_v4.0.1_Ubuntu.tar.gz

cd xUbuntu_20.04

sudo dpkg -i libcpuid15_0.5.0_amd64.deb cpuidtool_0.5.0_amd64.deb cpu-x_4.0.1_amd64.deb
cpu-x

On peut également obtenir I'information dans le terminal en utilisant 'option

en ligne de commande —-ncurses :

1

‘ Cpu—-X —-ncurses

20. https://x0rg.github.io/CPU-X/

https://x0rg.github.io/CPU-X/

128 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR
CPU-X - 9
K 4« cCpPU Caches Carte-mere Systéme Graphiques »
Processeur
Vendeur AMD)
Nom de code Ryzen 5 (Matisse) ‘
Socket AM4 (PGA-1331)
Technologie| 7 nm Tension AMD
Spécification AMD Ryzen 5 3600 6-Core Processor
Famille| OXF Modéle 0X1 Temp. |34,38°C
Famille ét.| 0X17 Modéle ét. | 0X71 Révision 0
Instructions | HT, MMX(+), SSE(1, 2, 3, 3S, 4.1, 4.2, 4A), AVX(1, 2),
FMA(3), AES, CLMUL, RdRand, SHA, AMD-V, x86-64
Fréquences Cache
Vitesse ducoeur 2200 MHz Données L1 6x32ko, 8voies
Multiplicateur Instr.L1| 6x32ko, 8voies
Vitesse du bus Niveaul2 6x512ko, 8voies
Utilisation 0,33% Niveau L3 32 Mo, 16 voies
Coeur #0 ¥ Socket(s) 1 Coeur(s) 6 Thread(s) 12

Démarrer le démon

FIGURE 3.12 - Interface de CPU-X

3.10 Outils de tests

3.10.1 Phoronix

Phoronix ?! est un logiciel qui permet d’installer et exécuter une série de bench-
marks assez fournie.

1 |sudo apt-get install phoronix-test-suite
2 | phoronix-test-suite list-available-tests

La premiére commande installe le logiciel Phoronix et la seconde donne la liste
des tests disponibles. Il en existe plus de 300 dans la version 5.2.1. On peut ensuite
installer les tests qui nous intéressent comme celui des n reines :

1 |phoronix-test-suite install n-queens
2 |phoronix-test-suite run n-queens

21. On pourra consulter http://www.phoronix-test-suite.com/ pour de plus amples informa-
tions.

http://www.phoronix-test-suite.com/

3.10. OUTILS DE TESTS 129

Le programme demande un identifiant pour le test a réaliser qui pourra étre

utilisé par la suite pour afficher les résultats :

1

phoronix-test-suite info n-queens-results
phoronix-test-suite result-file-to-csv n-queens-results

"N-Queens - Elapsed Time”,16.13

3.10.2 Sysbench

1 ‘sudo apt-get install sysbench

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Pour tester le CPU, on exécute le test adéquat qui calcule des décimales de 7 :

sysbench cpu --cpu-max-prime=20000 run
sysbench 1.0.11 (using system LuaJIT 2.1.0-beta3)

Running the test with following options:

Number of threads: 1

Initializing random number generator from current time
Prime numbers limit: 20000

Initializing worker threads...

Threads started!

CPU speed:
events per second: 182.73

General statistics:
total time: 10.0016s

total number of events: 1828

Latency (ms):

min: 5.37
avg: 5.47
max: 10.31
95th percentile: 5.99
sum: 9997.81

Threads fairness:
events (avg/stddev): 1828.0000/0.00
execution time (avg/stddev): 9.9978/0.00

130 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

1 |sysbench memory --memory-block-size=256K run
2 |sysbench 1.0.11 (using system LuaJIT 2.1.0-beta3)

4 |Running the test with following options:
5 |Number of threads: 1
¢ |Initializing random number generator from current time

9 |Running memory speed test with the following options:
10 block size: 256KiB

11 total size: 102400MiB
12 operation: write
13 scope: global

14
15 |[Initializing worker threads...
16
17 |Threads started!
18
19 |Total operations: 199824 (19977.75 per second)
20
21 | 49956.00 MiB transferred (4994.44 MiB/sec)
22
23
24 | General statistics:

25 total time: 10.0002s
26 total number of events: 199824
27
28 |Latency (ms):

29 min: 0.05
30 avg: 0.05
31 max: 5.53
32 95th percentile: 0.05
33 sum: 9875.07
34

35 | Threads fairness:

36 events (avg/stddev): 199824.0000/0.00

37 execution time (avg/stddev): 9.8751/0.00

3.10.3 Geekbench

Geekbench est une suite de test disponible pour Windows, Linux et MacOS qui
permet d’évaluer la puissance de calcul du microprocesseur que ce soit en mono
core ou en multi-core. La version 4 compare les scores obtenus lors des tests par
rapport a un microprocesseur de référence qui est un Intel Core i7-6600U tournant
a 2,6 GHz. Pour la version 5, il s’agit d’un Intel Core i3-8100.

3.10. OUTILS DE TESTS 131

Microprocesseur SC 32 bits MP 32 bits SC 64 bits MC 64 bits

Intel i5-7400 4106 11252

Intel i7 8700 5153 22744
AMD Ryzen 7 1700X 4029 25046 4507 27207
AMD Ryzen 5 5600g 5627 30348 6677 34098
Intel i7 10850H 5705 26103 6443 28378

TABLE 3.8 — Résultats GeekBench 4.x.x en 32 et 64 bits SC (mono core) et MC (multi core)

Microprocesseur SC 64 bits MC 64 bits

Intel i5-7400 990 3200
Intel i3-6100 1014 2269
Intel i7 8700 1230 6448
AMD Ryzen 7 1700X 967 6261
AMD Ryzen 5 3600 1333 7705
AMD Ryzen 5 5600g 1493 8313
Intel i7 10850H 1367 6923

TABLE 3.9 — Résultats GeekBench 5 en 64 bits SC (mono core) et MC (multi core)

Les tests sont liés au calcul sur les entiers, calculs sur les réels, la cryptographie
et 'acces mémoire. Pour exécuter les tests il suffit de récupérer une archive sur le
site Geekbench ??, de la décompresser et lancer les deux programmes de tests en
32 et 64 bits.

1 |tar -xvzf ~/Downloads/Geekbench-4.3.4-Linux.tar.gz
2 |cd Geekbench-4.3.4-Linux

3 | ./geekbench4_x86_32

4 |./geekbench4_x86_64

Apres exécution des tests un lien vers le web est fourni qui permet d’obtenir le
détail des résultats. Nous présentons Table 3.8 les résultats obtenus pour plusieurs
microprocesseurs en 32 et 64 bits pour une exécution des tests en mono core (SC
= Single Core) et multi core (MC = Multi Core).

La Table 3.9 présente des résultats pour Geekbench dans sa version 5.

22. https://www.geekbench.com/download/1linux/

https://www.geekbench.com/download/linux/

132 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

3.11 Comparaison de microprocesseurs

A titre d’exercice, nous allons comparer deux microprocesseurs de la famille
Intel. Le premier est un Core i3-6100 et le second un Core i5-7400.

Sur le papier, le Core i5 est plus performant que le Core i3 pour plusieurs
raisons :

e cest un Core i5 qui dispose de plus de mémoire cache et plus de coeurs qu'un
Core i3

e le Core i5 est de génération plus récente (7XXX) que le Core i3 (6XXX)

e les trois derniers chiffres de 7400 sont un indicateur de fréquence, donc
normalement 400 étant supérieur a 100 (6100), le Core i5 devrait avoir une
fréquence de fonctionnement supérieure au Core i3

En pratique, il faut aller sur le site ark.intel.com pour obtenir les informations
de ces deux microprocesseurs. Nous avons résumé Table 3.10 les caractéristiques
comparées de ces microprocesseurs.

Génération 7 / Kaby Lake 6 / Skylake
Date de lancement Q12017 Q32015
Finesse de gravure (nm) 14 14
Prix (dollars) 182 117
Coeurs/Threads 4/4 2/4
Cache L3 (Mo) 6 3
Fréquence de base (GHz) 3,00 3,70
Fréquence turbo (GHz) 3,50 3,70
Technologie vectorielle AVX2 AVX2

TABLE 3.10 — Caractéristiques des Core i5-7400 et Core i3-6100

Nous voyons donc que le Core i5 comprend quatre coeurs et 6 Mo de cache L3
alors que le Core i3 comprend deux coeurs dotés de I'HyperThreading et moitié
moins de cache L3. Les deux architectures sont présentées Figure 3.13.

Cependant, un détail change beaucoup de chose, c’est la fréquence de fonction-
nement qui plafonne a 3,5 GHz pour le Core i5 alors que le Core i3 fonctionne avec
200 MHz de plus.

Il en résulte que pour les programmes monothreads c’est le Core i3 qui sera
généralement le plus performant, alors que le Core i5 prendra 'avantage sur les
programmes multithreads ou pour lesquels 'acces a la mémoire cache est important,
comme indiqué Table 3.11.

ark.intel.com

3.11. COMPARAISON DE MICROPROCESSEURS 133

Machine (7B75MB total)
Package L#0
Sl Machine (7927MB)
| NUMANcde L#0 P#0 (TBT5MB) |
Package P#0
L3 (3072KEB)		L3 (6144KE)								
L2 (256KE) ” L2 (256KE)		L2 (256KB)		L2 (256KB)		L2 (256KB)		L2 (256KB)		
L1d (32KB) ” L1d (32KE)		L1d (32KB)		L1d (32KB)		L1d (32KB)		L1d (32KB)		
L1i (32KE)		L1i (32KE)		L1i (32KB)		L1i (32KB)		L1i (32KB)		L1i (32KB)
Core L#0 Core L#1 Core P#0 Core P#1 Core P#2 Core P#3
PU L#0 PUL#2 | PU P#0 | | PU P#1 | | PU P#2 | | PU P#3 |
P#0 P#1
PU L#1 PUL#3 -
P2 pa3 Host: richer
Indexes: physical
Date: mar. 21 mai 2019 08:35:42 CEST
Haost: nodei3s100 .
Date: jeu. 25 juin 2020 09:21:01 (b) Intel Core i5 7400

(a) Intel Core i3 6100
FIGURE 3.13 — Comparaison des architectures Intel Core i3 6100 et i5 7400

Par exemple, pour les tests 3 a 7, la fréquence du CPU est un facteur déterminant,
le Core i3 sera donc plus performant que le Core i5. Cependant, pour le test 4 le
Core i5 sort grand gagnant car le traitement des instructions AVX a probablement
été amélioré sur le Core i5, les deux processeurs ayant 2 ans de différence.

Test No Description Core i5-7400 Core i3-6100

1 Produit de matrices 2048x2048 50,35 61,84
2 Produit de matrices 2060x2060 36,83 34,40
3 SAXPY 524417 FPU 45,20 43,52
4 SAXPY 524417 AVX 10,00 14,43
5 Popent 512333 réf. 8,05 7,54
6 Compte Voyelles 524288 (if) 15,50 14,47
7 Compte Voyelles 524288 AVX 0,85 0,79

TABLE 3.11 — Temps d’exécution en secondes de certaines études de cas pour Core i5-7400
et Core i3-6100

134 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

3.12 Conclusion

3.12.1 Que retenir?

>> la mémoire possede une influence non négligeable lors de certains traitements
et notamment le fait que les données a traiter soient présentes ou absentes
dans la mémoire cache

> l'alignement mémoire, c’est a dire le fait que les données soient positionnées
en mémoire a des adresses multiples de 8, 16 ou 32 peut influer sur la durée
de leur traitement

> les améliorations liées aux microprocesseurs tentent de maximiser le nombre
de traitements que I'on peut réaliser en parallele que ce soit au niveau du
décodage ou du traitement des instructions (pipeline, superscalaire) ou au
niveau du traitement des données (vectorisation)

> les instructions si elles sont traitées dans 'ordre ou elles arrivent depuis
I'extérieur du microprocesseur sont en fait exécutées dans un mode dit dans
le désordre (Out Of Order)au sein du microprocesseur, ceci afin d’augmenter
l'efficacité de leur traitement

3.12.2 Compétence a acquérir

[étre en mesure d’obtenir les informations concernant un microprocesseur
(architecture, taille des mémoires cache, technologies disponibles)

[J étre en mesure de comparer plusieurs microprocesseurs

3.13 Questions
3.14 Exercices

Exercice 18 - Quelle est la bande passante :
1. d’'une mémoire DDR3 fonctionnant a 150 MHz?
2. d’une mémoire DDR4 fonctionnant a 200 MHz ?

3. d’'une mémoire DDR4 fonctionnant a 325 MHz?

Exercice 19 - Quelle est la fréquence de fonctionnement :
1. d’'une mémoire PC3-12800?
2. d’'une mémoire PC3-17000°?
3. d'une mémoire PC4-17000?

3.14. EXERCICES 135

4. d’'une mémoire PC4-25600 ?

Exercice 20 - Comparer 'Intel i9 10900K avec I'Intel i9 10850K. En novembre
2020, le 10850K peut étre trouvé au prix de 506 €, alors que le 10900K cofite
environ 600 €. En général le 10850K cofite entre 50 et 150 € de moins que le
10900K.

136 CHAPITRE 3. LE FONCTIONNEMENT DU MICROPROCESSEUR

Chapitre 4

Outils pour la Programmation
Assembleur

Some people relax with a nice drink by the pool,
I relax by playing around with inline assembly code

Linus Torvalds

4.1 Introduction

Dans ce chapitre nous allons installer et découvrir les logiciels qui nous permet-
tront de développer en assembleur. Nous prenons comme plateforme de développe-
ment une machine sous Linux Ubuntu 18.10 et suivantes.

Nous aurons besoin de plusieurs types d’outils :

e un éditeur qui nous permettra de saisir du code assembleur avec par exemple
une coloration syntaxique et une indentation automatique afin de faciliter
’écriture et la relecture du code

e un assembleur qui compile le code assembleur et le transforme en fichier
objet

e un compilateur C/C++ qui permet de faire 1’édition de lien avec la biblio-
theque C/C++

e un débogueur qui permet d’examiner le code généré et de 'exécuter pas a
pas afin de détecter des erreurs d’acces a la mémoire par exemple ou vérifier
le résultat produit par les instructions

L’édition de lien sera réalisée grace a g++ le GNU C++ Compiler ou gcc la version
C du compilateur GNU. Il est bien évidemment possible d’utiliser d’autres compila-
teurs comme clang++ de LIVM (Low Level Virtual Machine), icpc le compilateur
Intel ou pgi++ de PGI (Portlang Group, Inc). L'intérét d’utiliser un compilateur

137

138 CHAPITRE 4. OUTILS POUR LA PROGRAMMATION ASSEMBLEUR

C pour réaliser I’édition de lien est que I'on a acces aux fonctions de la librairie
C, il suffira de déclarer les fonctions C comme externes au niveau des fichiers
assembleur.

4.2 Les éditeurs

Il existe de nombreux éditeurs sous Linux mais ils ne sont pas tous forcément
adaptés a la structure des programmes assembleurs. En effet, un programme
assembleur se compose de trois parties : les étiquettes (ou labels), les instructions
assembleur et les commentaires. Il est pratique de pouvoir écrire les étiquettes a
gauche, les instructions au centre et les commentaires a droite. Malheureusement
les éditeurs sont généralistes et ne permettent pas ce genre d’organisation, il faut
donc utiliser les tabulations.

; label -—- instruction ——————— commentaire

label: mov ecx, 1 ;01 =1

Choisir un éditeur est toujours une question de gotit personnel. Certains pré-
ferent les environnements de développement cossus avec une interface graphique
fournie du type IDE comme Eclipse alors que d’autres chérissent les éditeurs épu-
rés comme nano, vim, emacs. Personnellement jutilise jedit qui est intéressant car
on peut le configurer simplement et est installable sous Ubuntu sous forme d’'un
paquet du méme nom.

4.2.1 jEdit

jEdit est un éditeur de texte qui a pour particularité d’étre codé en Java. Il
faudra donc installer une machine virtuelle Java afin de pouvoir I'utiliser. jEdit
gere différents langages (Ada, Python, Java, C, ...) ainsi que 'assembleur x86. Son
principal intérét et qu’il peut étre configuré simplement et permet d’ajouter de
nouveaux modes d’édition pour d’autres langages.

En me basant sur le mode d’édition assembly-x86, j’ai créé un fichier nommé :
assembly_x86_2020.1lang

qui intégre a priori toutes les instructions x86 décrites sur le site http://
nasm.us en 2019 ainsi que les instructions conditionnelles (cmovCC, setCC, cf.
Section 5.4.12) et les instructions de saut conditionnel. Cela représente au total
1685 instructions. Pour configurer jEdit, il suffit de consulter la page internet dédiée
a Passembleur sur le site de 'auteur .

1. http://leria-info.univ-angers.fr/~jeanmichel.richer/assembleur.php

http://nasm.us
http://nasm.us
http://leria-info.univ-angers.fr/~jeanmichel.richer/assembleur.php

4.2. LES EDITEURS 139

4.2.2 gedit

gedit est un éditeur de texte libre fourni par défaut avec I'environnement gra-
phique GNOME 2. 11 supporte 'encodage UTF-8 et gere la coloration syntaxique de
nombreux langages de programmation mais malheureusement pas de ’'assembleur.
On peut néanmoins ajouter un fichier .lang dans le répertoire adéquat afin de
donner les régles de coloration syntaxique de I'assembleur x86.

Téléchargez le fichier suivant et copiez le dans le répertoire de gedit :

1 |wget http://www.info.univ-angers.fr/~richer/assembly/gedit/assembly_x86_2020.lang
2 |sudo cp assembler.lang /usr/share/gtksourceview-*.0/language-specs/

4.2.3 kate

Kate est un éditeur de texte spécialement adapté a la programmation issu de
I'environnement de bureau KDE. Pour disposer de la coloration syntaxique il faut
utiliser le menu Tools > Higlighting > Assembler > Intel x86 (NASM).

4.2.4 emacs

emacs (Editor MACroS) est a la base un éditeur de texte extensible basé sur le
langage LISP. Il a été popularisé avec la version GNU écrite par Richard Stallman °.
Il faudra par exemple installer les paquets nasm-mode et x86-1ookup afin de pouvoir
disposer respectivement de la coloration syntaxique et de l'aide en ligne.

4.2.5 Autres éditeurs

Le concurrent d’emacs, la fameux vi ou sa version améliorée vim peut également
étre utilisé pour écrire des programmes en assembleur. Il faudra le configurer pour
pouvoir utiliser un mode assembleur.

Eclipse dispose d’un plugin appelé ASM Plugin disponible sur sourceforge.net *
et qui permet d’utiliser différents assembleurs comme nasm, tasm, masm. Cependant
il n’est plus maintenu depuis 2006.

On pourra utiliser Sublime Text qui posséde un mode nasm mais j’ai rencontré
beaucoup de problémes pour installer Package Control qui est censé gérer les
packages et celui-ci ne fonctionnait pas pour installer de nouveaux packages.

De ce point de vue, Atom” se montre plus convivial et fonctionnel, il suffit

2. Acronyme de GNU Network Object Model Environment, il s’agit d'un environnement de bureau
libre convivial utilisé sous Linux/UNIX.

3. Fondateur du projet GNU et initiateur du mouvement Logiciel Libre.

4. http://asmplugin.sourceforge.net/

5. https://atom.io/

sourceforge.net
http://asmplugin.sourceforge.net/
https://atom.io/

14

15

16

17

18

19

20

21

22

23

24

25

140 CHAPITRE 4. OUTILS POUR LA PROGRAMMATION ASSEMBLEUR

d’installer le paquet 1language-nasmx86.

4.3 L’assembleur nasm

Le choix de nasm (The Netwide Assembler) semble assez naturel car il est trés
simple a utiliser. Nous verrons que la structure des programmes nasm liée a 1'utilisa-
tion du compilateur gcc permet une interaction rapide et peu complexe a mettre en
oeuvre entre code en C/C++ et code assembleur. nasm dispose en outre d’une large
documentation sous forme de site web ou de fichier PDF téléchargeable depuis le
site http://nasm.us et d'une communauté active.

La structure d'un programme nasm est également tres simple, voici par exemple
le fameux programme hello world! présenté Listing 4.3.1. Il s’agit de la version en
architecture 32 bits. On notera que les commentaires sont introduits par le symbole
point virgule (;) et tout ce qui suit ce symbole jusqu’a la fin de la ligne fait partie
du commentaire.

main ; definition de la fonction main
printf ; utilisation de printf
; ==== DATA ====
.data

; declaration d'une chaine
msg: db "hello world!”, 10, 0

; ==== CODE ====
.text

; fonction main

main:
push ebp ; entree dans la fonction
mov esp, esp
push dword msg ; affichage de la chaine
call printf
add esp, 4
xor eax, eax
mov esp, ebp ; sortie de la fonction
pop ebp
ret

Listing 4.3.1 — Hello world en nasm

Dans la forme la plus épurée d’'un programme, il suffit d’utiliser deux sections :

http://nasm.us

N o A W =

4.3. L’ASSEMBLEUR NASM 141

e la section de données (.data) qui est une section de données initialisées

e la section de code (.text) qui contient les instructions

Il existe bien entendu d’autres sections que 'on retrouve en C comme la section
.rodata pour les données en lecture seule et la section .bss pour Block Started by
Symbol qui contient des données non initialisées.

.bss .data Type Bits Type C
resb db byte 8 bits char
resw dw word 16 bits short
resd dd double word 32 bits int, float

resq dq double précision 64 bits double

TABLE 4.1 — Définition de variable dans la section .bss ou .data

On utilise le mot clé global (ligne 1) suivi d’un identifiant pour indiquer que
cet identifiant sera visible par les autres fichiers objets. En général cet identifiant
est le nom d’un sous-programme, en particulier ici il s’agit de la méthode main que
I'on retrouve dans un programme C.

Le mot clé extern (ligne 2) indique, quant a lui les noms de symboles définis
dans d’autres fichiers assembleur ou C. On déclarera en externe toute fonction de
la bibliotheque C que l'on utilisera.

On remarque que la déclaration d'une chaine de caracteres est réalisée en
utilisant le mot clé db pour do byte. Nous avons fait figurer Table 4.1 les mots clés
qui permettent de définir les données en fonction du segment de données (.data
ou .bss). Par exemple pour créer un tableau de 8 octets, il faudra I'initialiser dans
la partie .data alors que dans la section .bss, il suffit d’indiquer le nombre d’octets
que l'on utilisera :

.data
; tableau initialisé de 8 octets
tabl: d 0, 1, 2, 3, 4, 6, 7

.bss
; réserve 8 octets
tab2: resb 8

On note que le caractere qui correspond au passage a la ligne en C, le fameux
’\n’ n’existe pas en nasm si on définit la chalne par des guillemets simples ou
doubles, il est donc nécessaire de le déclarer en utilisant son code ASCII qui vaut
10. Pour rappel (cf. Section 2.5.1), le dernier caractére qui est 0 marque la fin de la
chalne en langage C. Si on désire utiliser ’\n’ il faut définir la chalne entre deux
symboles backquote qui correspond a I'accent grave en frangais : ‘hello world\n‘.

142 CHAPITRE 4. OUTILS POUR LA PROGRAMMATION ASSEMBLEUR

Le reste du code implante le sous-programme main comme une fonction (voir le
Chapitre 6) qui appelle la fonction printf de la librairie C pour afficher une chaine
de caracteres.

4.3.1 Compilation

La compilation d’'un programme en assembleur est réalisée en utilisant sous
Linux la commande nasm :

nasm [arguments] [-o ficher_objet.o] source.asm

La partie -o fichier_objet.o est optionnelle et permet de modifier le fichier de
sortie qui par défaut sera un fichier d’extension .o comportant comme identifiant
le nom du fichier en entrée. En 'occurrence ce serait ici source.o. On peut ajouter
a cette commande des arguments qui définissent le format de sortie du fichier objet
(cf. Table 4.2).

Arguments Description

-f elf compilation en 32 bits au format elf
-f elf64 compilation en 64 bits au format elf64
-g -F dwarf flags de débogage sous Linux

TABLE 4.2 — Arguments du programme nasm

Pour obtenir un fichier assembleur pour une architecture 64 bits sous Linux
avec des options de débogage on utilisera donc :

nasm -f elf64 -g -F dwarf source.asm

Lorsque I'on créera un fichier assembleur sous le format nasm on lui attribuera
I'extension : _nasm.asm.

4.4 Edition de lien avec gcc/g++

Le compilateur C/C++ peut étre utilisé pour réaliser I'édition de liens avec la
bibliotheque standard du C ce qui permet de ne pas réinventer la roue et disposer
de toutes les fonctionnalités du C comme l'affichage (printf), la saisie (scanf), la
conversion (atoi, atof), l'allocation mémoire (malloc), etc.

On pourra bien évidemment utiliser d’autres compilateurs que le compilateur
GNU comme par exemple :

N o AW N =

4.4. EDITION DE LIEN AVEC GCC/G+ + 143

e icpc d’Intel qui est généralement tres performant
e clang++ de LIVM
e pgc++ de PGI

4.4.1 Edition de liens avec un seul fichier assembleur

L’édition de liens qui consiste a regrouper plusieurs fichiers objets compilés
séparément afin d’obtenir un exécutable est réalisée avec le compilateur C grace a
la commande :

g++ -0 executable.exe mon_fichier_assembleur.o

Dans le cas présent comme nous n’avons qu'un seul fichier objet, celui-ci doit
donc contenir une méthode main.

4.4.2 Edition de liens avec plusieurs fichiers

Dans les études de cas qui nous intéresserons plus tard nous considérerons une
fonction de référence écrite en C et en donnerons plusieurs implantations en as-
sembleur en utilisant les instructions vectorielles par exemple. Toute la machinerie
de test sera écrite en C++ dont notamment la récupération et la vérification des
parametres ainsi que l'allocation et I'initialisation des données et leur libération.
Les fonctions optimisées seront écrites en assembleur et il faudra regrouper des
fichiers objets compilés avec le compilateur C ou I'assembleur.

Pour définir et pouvoir appeler dans un fichier C ou C++ une fonction écrite
dans un fichier assembleur il suffit de la déclarer externe au fichier C. Cependant la
déclaration varie suivant que I'on est dans un fichier C ou un fichier C++ :

// dans un fichier .c
int ma_fonction_assembleur (int *t, int size);

// dans un fichier .cpp

Hc" {
int ma_fonction_assembleur (int *t, int size);

On compilera donc les fichiers d’extension .c ou . cpp séparément et on réalisera
’édition de liens avec I'ensemble des fichiers objets comme suit :

g++ -0 mon_binaire.exe x.0 [options de compilation C/C++]

4.4.3 Obtenir le code assembleur d’un fichier C

Il existe deux méthodes pour obtenir le code assembleur d’un fichier C/C++ :

10

11

12

13

14

15

16

17

18

19

144 CHAPITRE 4. OUTILS POUR LA PROGRAMMATION ASSEMBLEUR

e soit on dispose des sources en C/C++, et dans ce cas on utilise le compilateur
C pour traduire le code en assembleur

e soit on dispose de 'exécutable et on peut utiliser 1'utilitaire objdump pour
désassembler le fichier et en obtenir le code

Prenons comme exemple de travail le Listing 4.4.1 qui consiste a afficher la
somme des valeurs d’'un tableau que I'on aura initialisé avec des valeurs aléatoires
comprises entre O et 9.

#include <stdio.h>
#include <stdlib.h>

#define MAXIMUM 100
int tab[MAXIMUMI;

int sum = -1;

int main() {
int i;

srand(1970) ;
(i =0; i < MAXIMUM; ++i) tab[i] = rand() % 10;
(i = @0; i < MAXIMUM; ++i) sum += tab[il];
printf("sum = %d\n", sum);
0;

Listing 4.4.1 — Exemple de traduction

4.4.3.1 utiliser gcc -S

On utilise gcc avec 'option -S pour obtenir le code assembleur. Il faut également
utiliser I'option -masm=intel afin de générer une sortie avec une syntaxe Intel que
je trouve plus lisible que la syntaxe ATT :

gcc -S -masm=intel fichier.cpp

En sortie on obtient un fichier d’extension .s qui contient le code assembleur.

4.4.3.2 utiliser objdump

objdump est un utilitaire qui affiche les informations contenues dans les fichiers
objet ou les exécutables :

4.5. LE DEBOGUEUR DDD 145

objdump -d -r -1 -S -M intel example.exe

Il existe de nombreuses options a passer a l'utilitaire objdump au format court
ou long. Dans I'exemple précédent on a utilisé :

-d pour désassembler I'exécutable, c’est a dire en fournir la traduction assembleur
-r est utilisée pour la relocation des adresses

-1 affiche les numéros de lignes

-S affiche le code source si disponible

-M intel utilisation de la syntaxe Intel

On pourra également consulter le site web godbolt.org qui permet de soumettre
du code C/C++ et d’obtenir la tradution avec différents compilateurs (GNU, Intel,
LIVM, etc.) ainsi que différentes versions de ces compilateurs.

4.5 Le débogueur ddd

ddd (Data Display Debugger) est une interface graphique qui se base sur le
débogueur gdb (GNU debugger). Elle est plus sympatique que xxgdb mais reste
néanmoins tres basique et pas trés ergonomique. On regrettera notamment le fait
que la fenétre de commandes disparait par moment, que I'affichage du contenu des
registres est peu convivial et parfois difficile a lire pour les registres vectoriels SSE
et AVX.

On peut bien entendu utiliser gdb mais cela implique de connaitre les com-
mandes de ce dernier et travailler en mode texte. Il existe également un certains
nombre d’assistants qui peuvent étre chargés lors de I'initialisation de gdb mais ils
sont généralement en mode texte et pas trés conviviaux :

e PEDA (Python Exploit Development Assistance) : https://github.com/longld/
peda

e PWNDBG : https://github.com/pwndbg/pwndb
e Voltron : https://github.com/snare/voltron

On pourra consulter le site BlackArch ® pour découvrir de nombreux autres
outils du méme type. On pourra également consulter la section désassembleur
(disassembler) qui est intéressante.

4.6 Logiciels annexes

Comme évoqué précédemment, lors des études de cas nous comparerons di-
verses implantations d’une fonction de référence et nous générerons des données

6. https://blackarch.org/debugger.html

godbolt.org
https://github.com/longld/peda
https://github.com/longld/peda
https://github.com/pwndbg/pwndb
https://github.com/snare/voltron
https://blackarch.org/debugger.html

146 CHAPITRE 4. OUTILS POUR LA PROGRAMMATION ASSEMBLEUR

relatives au temps d’exécution de ces variantes de la fonction initiale ainsi que des
graphiques.

Pour traiter les résultats, j'utilise le langage PHP (parfois Python) ainsi que des
commandes shell telles que cut, sort, grep. En ce qui concerne les graphiques
nous utiliserons gnuplot qui est un générateur de graphiques en deux ou trois
dimensions a partir de données brutes ou de fonctions. gnuplot est gratuit et
est disponible pour un grand nombre de plateformes dont les principales que
sont Linux, Windows et MacOS. L’intérét de gnuplot et qu’il peut étre utilisé de
maniére interactive, mais en ce qui nous concerne c’est la possibilité de générer des
graphiques a partir de scripts qui sera notre point d’intérét.

Chapitre 5

Traitements de base

If you just spend nearly 30 hours
debugging some assembly

soon you will be glad to

Write in C

Write in C
sur la musique de Let it be (The Beatles)

5.1 Introduction

Dans ce chapitre nous allons découvrir et nous familiariser avec les instructions
de base de I'assembleur x86. Avant de nous diriger dans les chapitres suivants
vers la découverte des instructions du coprocesseur arithmétique et celles des
unités vectorielles. Nous définissons de maniere plus détaillée les registres des
processeurs d’architecture x86 puisque les instructions agissent sur ces registres.
Nous présentons les instructions les plus souvent utilisées car la connaissance de
I'ensemble des instructions assembleurs et tout ce qui s’y rattache représente 10
volumes de documentation Intel [7, 8, 9, 10, 11, 12, 13, 14, 15, 16], soit plus de
4800 pages. Nous verrons également comment traduire les structures de controle
du langage C comme les conditionnelles (if, switch) et les boucles (for; while).

5.2 Registres

Nous avons déja évoqué les registres dans le Chapitre 3. Nous allons revoir, en
fonction de l'architecture (16, 32 ou 64 bits), quels registres sont disponibles.

147

148 CHAPITRE 5. TRAITEMENTS DE BASE

5.2.1 Registres 8 et 16 bits

L’Intel 8086 disposait de 8 registres 16 bits dont certains sont manipulables
en deux fois 8 bits dits partie haute et partie basse. Ces registres d’'usage géné-
ral (General Purpose), comme évoqué antérieurement, sont au nombre de 8 (cf.
Section 3.3.4).

Registre Partie Partie Utilisation
16 bits Haute Basse
bits 15a8 bits7a0
ax ah al accumulateur, multiplication, division
bx bh bl accés mémoire
cX ch cl compteur, repétition (rep), décalage
dx dh dl in, out, multiplication, division
si - - source index, lods, movs
di - - destination index, stos, movs
bp - - base pointer, pile
sp - - stack pointer, sommet de pile

TABLE 5.1 — Registres 16 bits du Intel 8086

IIs sont décrits Table 5.1. Par exemple le registre ax est appelé accumulateur
et permet de réaliser certaines opérations comme la multiplication, la division
mais recoit également le résultat des instructions comme lodsb, lodsw, lodsd (cf.
Section 5.3.7). On est en mesure de manipuler la partie haute nommeée ah ou la
partie basse al.

Les autres registres (qui ne sont pas d’usage général) qui sont également a
prendre en considération sont : le registre ip qui est le pointeur d’instruction
(Instruction Pointer), c’est a dire 'adresse de la prochaine instruction en mémoire,
et le registre flags. Ce dernier est mis a jour apres exécution de la plupart des
instructions et donne des informations sur le résultat obtenu. Il n’est pas accessible
directement (sauf si on utilise l'instruction 1ahf) mais au travers d’instructions de
calcul ou de branchement conditionnel. Chacun de ses bits contient une information
comme par exemple :

e le bit 0, CF (Carry Flag) le bit de retenue

le bit 2, PF (Parity Flag) indique un nombre pair de bits a 1

le bit 4, AF (Adjust Flag)

le bit 6, ZF (Zero Flag) le bit de zéro, indique une valeur nulle

le bit 7, SF (Sign Flag) le bit de signe indique une valeur négative

le bit 10, DF (Direction Flag) utilisé avec les instructions agissant sur les
chaines comme lods, stos, etc

5.2. REGISTRES 149

e le bit 11, OF (Overflow Flag) le bit de débordement pour les calculs signés

Par exemple, le Carry Flag est utilisé lors de I'addition, notamment pour signaler
qu’'une retenue a été produite lors du calcul. Le bit de débordement (Overflow)
indique qu’une opération arithmétique a produit un résultat signé invalide.

Par exemple si al et bl contiennent la valeur 128, I'addition de ces deux re-
gistres :

e met a 1 le Carry Flag puisque le résultat devrait étre 256, mais que cette valeur
ne peut pas étre représentée sur 8 bits

e met a 1 le 'Overflow Flag car si on considere que les données sont signées,
I'addition de deux valeurs négatives (—128 + —128) donne une valeur positive
(0), or on devrait obtenir une valeur négative

Si au contraire on utilise les registres ax et bx alors CF et OF restent a 0 puisque
dans les deux cas (signé ou non signé) les valeurs sont positives, on effectue la
somme 128 + 128.

Il existe d’autres cas de positionnement de I’Overflow Flag : lors de I'addition de
deux valeurs positives (qui donne un résultat négatif) et lors de la soustraction :

e soutraction entre une valeur négative et un nombre positif qui donne un
résultat positif alors que le résultat devrait étre négatif : —128 — 1

e soutraction entre une valeur positive et un nombre négatif qui donne un
résultat négatif alors que le résultat devrait étre positif : 127 — (—1)

Nous avons en outre évoqué, Chapitre 3, les registres de segments qui contiennent
une adresse mémoire qui indique le début du code (cs), des données (ds), de la
pile (ss) et un registre de segment auxiliaire (es pour Extra Segment).

5.2.2 Architecture et registres 32 bits

En architecture 32 bits, les registres généraux ont une taille de 32 bits et les
registres existants du 8086 sont toujours utilisables mais ont été étendus et se
nomment eax, ebx, ... esp, eip, eflags(voir Table 5.2). On peut alors stocker 232
valeurs différentes dans un registre 32 bits ce qui correspond a autant d’adresses
mémoires et a un total de 4 Go. On peut toujours utiliser les registres 16 et 8 bits
comme ax, ah ou al.

Les registres eip et eflags sont les extensions de ip et flags et les registres de
segment sont les mémes. On a cependant ajouté deux autres registres de segment
appelés fs et gs.

5.2.3 Architecture et registres 64 bits

L’architecture 64 bits apportent plusieurs changements importants. Les registres
ont bien entendu une taille de 64 bits et sont appelés rax, rbx, ... rsp, rip, rflags.

150

CHAPITRE 5. TRAITEMENTS DE BASE

Registre Partie Basse

Partie Haute Partie Basse

32 bits 16 bits 8 bits 8 bits
eax ax ah al
ebx bx bh bl
ecx cX ch cl
edx dx dh dl
esi si - -
edi di - -
ebp bp - -
esp sp - -

TABLE 5.2 — Registres manipulables en architecture 32 bits

On dispose également de 8 nouveaux registres nommés r8 a r15 ce qui laisse une
plus grande marge de manoeuvre pour la programmation en permettant de stocker
des valeurs temporaires dans ces registres plutot que de les stocker en mémoire.

Registre Partie Basse Partie Basse Partie Haute Partie Basse

64 bits 32 bits 16 bits 8 bits 8 bits
rax eax ax ah al
rbx ebx bx bh bl
rcx ecx cX ch cl
rdx edx dx dh dl
rsi esi si - sil
rdi edi di - dil
rbp ebp bp - bpl
rsp esp sp - spl
r8 r8d réw - r8b
ri15 r15d ri5w - r15b

TABLE 5.3 — Registres manipulables en architecture 64 bits

La Table 5.3 recense les différentes possibilités de manipulation des registres en
64 bits. On notera que I'on peut manipuler les premiers 8 bits de certains registres
comme rsi alors que cela n’est pas possible en 32 bits, en effet, en architecture 32
bits on ne pourra manipuler que esi ou si.

5.3. INSTRUCTIONS ELEMENTAIRES 151

5.2.4 Architecture 128 bits

Le passage des microprocesseurs 8 bits a des microprocesseurs 16 bits a permis
de gérer une quantité de mémoire plus importante mais également de gérer des
nombres plus grands en une seule opération. Le bus de données qui représente les
quantités sur lesquelles on réalise des calculs, et le bus mémoire qui représente la
taille de I'espace mémoire, sont corrélés puisqu’on stocke dans un registre, soit une
adresse mémoire, soit un entier.

Il en fut de méme lors du passage de 16 bits au 32 bits, puis du 32 bits au 64
bits. Ainsi, avec 32 bits on gere 4 x 10° valeurs alors qu’avec 64 bits on atteint un
ordre de grandeur de 18 x 10'®, soit 18Eo (Exa octets).

La question que I'on peut se poser est la suivante, pourquoi ne passe t'on
pas a des microprocesseurs 128 bits ce qui permetrait de gérer 34010%¢ valeurs.
Simplement parce que seules quelques rares applications ont besoin de gérer des
quantitiés si importantes et que globalement nous n’en avons pas 'utilité. Par
exemple 1810'® représente environ 570 milliards d’années. D’un autre c6té, si on
rapporte ce temps a des nano secondes cela représente 570 ans.

5.3 Instructions élémentaires

La grande majorité des instructions x86 sont de la forme :

operation destination, source

e operation est un mnémonique, c’est a dire un symbole court de quelques
lettres facilement compréhensible et mémorisable qui représente 'opération
a exécuter, par exemple add pour 'addition

e source est une donnée en lecture qui ne sera donc pas modifiée, ce peut étre
une constante, un registre ou une adresse mémoire

e destination est une donnée en écriture qui peut étre un registre ou une adresse
mémoire

e les deux opérandes source et destination sont séparées par une virgule

En fait la syntaxe de 'assembleur permet d’écrire plus simplement le traitement
qui est effectivement réalisé, a savoir :

destination = destination operation source

Ainsi, add eax, ebx signifie que I'on doit réaliser le calcul eax = eax + ebx.

Nous verrons qu’il existe d’autres variantes de format d’instruction comme pour
les instructions neg, not, cmp, test, div, mul, etc.

152 CHAPITRE 5. TRAITEMENTS DE BASE

Il existe toutefois une contrainte imposée par le format de codage des instruc-
tions x86 qui nous force a n’avoir qu’une seule référence mémoire (cf. Section 3.3.5),
cela implique que I'on ne peut pas écrire :

operation [adressel], [adresse2] ; !'!'! non autorisé !!!

Il faudra alors passer par un registre et écrire :

mov registre, [adresse2]
operation [adressel], registre

L’instruction mov dont nous allons reparler ci-apres déplace la donnée située a
I'adresse adresse2 dans un registre.

Référence mémoire

On remarque également que lorsque l'on fait référence a une donnée en
mémoire identifiée par son adresse, on place 'adresse entre crochets [].
Ainsi :
e mov eax, [addr] signifie placer la valeur 32 bits située a 'adresse addr
dans le registre eax

e mov eax, val signifie placer la valeur constante codée sur 32 bits val
dans le registre eax

5.3.1 mov : chargement et stockage

L’instruction mov réalise le chargement (Load) et le stockage (Store) des don-
nées. C’est I'instruction qui est la plus souvent utilisée. Le fait de déplacer une
donnée n’influe par sur le registre flags. Il faudra donc utiliser une instruction de
comparaison pour vérifier si la donnée chargée dans un registre est nulle, postive
ou négative.

Voici quelques exemples liés a l'instruction mov qui permettent de comprendre
comment l'utiliser :

e mov eax, 0 : affecter la valeur 0 au registre eax
e mov eax, ebx : affecter le contenu de ebx au registre eax
e mov al, bh : affecter le contenu de bh au registre al

e mov eax, [ebx + ecx * 4] :affecter auregistre eax la valeur située a 'adresse
mémoire indiquée, il s’agit d'une référence mémoire (comme vu Section 3.3.5)
comme eax est un registre 32 bits on lit le double mot situé a I'adresse indi-
quée

e mov [edi + esi], edx : stocker a adresse edi + esi la valeur contenue
dans le registre edx

5.3. INSTRUCTIONS ELEMENTAIRES 153

On trouve deux variantes de linstruction mov :

e movsx (Mov with Sign eXtension) qui transforme une valeur sur 8 (respective-
ment 16 bits) en une valeur 16 (respectivement 32 bits) en préservant le fait
que la valeur soit négative ou positive

e movzx (Mov with Zero eXtend) qui transforme une valeur sur 8 ou 16 bits en
une valeur 16, 32 ou 64 bits en la complétant avec des 0

L’instruction movzx est parfois plus rapide que mov'. Il est donc préférable
d’écrire, afin de lire 'octect a 'adresse edi en mémoire et le stocker dans le registre
al:

movzx eax, byte [edi]

plutot que :

mov al, [edi]

La différence est que movzx va modifier eax en mettant dans al I'octet pointé
par edi et en mettant a O les 24 autres bits. On remarque que dans ce cas il faut
préciser la quantité chargée : byte pour un octet, word pour un mot et dans d’autres
instructions dword pour un double mot.

5.3.2 Instructions arithmétiques

5.3.2.1 Instructions add, sub, inc et dec

Les instructions add et sub réalisent respectivement I'addition et la soustraction
de deux valeurs entiéres signées ou non signées et prennent deux opérandes.

Les instructions inc et dec réalisent respectivement l'incrémentation et la décré-
mentation de leur unique opérande. On peut les utiliser pour réaliser les opérations
du C comme ++i qui correspond a I'incrémentation d’une variable de boucle

Les deux instructions suivantes sont donc équivalentes :

add eax, 1
inc eax

Il existe également une instruction adc (ADd with Carry) qui réalise une addition
avec une retenue en entrée. Par exemple, imaginons que l'on travaille avec les
registres 16 bits de I'Intel 8086 et que 'on désire réaliser le calcul a + b pour
a = 196607 et b = 262145, soit en hexadécimal a« = 2FFFF_h et b = 40001_h. Ces
deux valeurs sont supérieures a 26 — 1 = 65535, pour les stocker on va donc devoir
utiliser deux registres de 16 bits :

1. voir Intel 64 and IA-32 Architectures Optimization Reference Manual, section 3.5.1.8.

R O

O 0 N o 1 AW N =

154 CHAPITRE 5. TRAITEMENTS DE BASE

e pour ¢ on utilisera par exemple dx:ax, c’est a dire la partie haute dans dx et
la partie basse dans ax

e pour b on utilisera cx:bx

mov ax, OxFFFF

mov dx, 0x2 ; dx:ax = O0x2FFFF
mov bx, 0x0001
mov cx, 0x4 ; cx:bx = 0x40001

Si on réalise le calcul suivant (a = a + b) en écrivant :

add ax, bx
add dx, cx ; ne prend pas en compte la retenue !

On obtient un résultat faux car alors dx:ax = 60000_h = 393216,,. Cela est dii
au fait que la premiére addition génere une retenue de 1 qu’il faut utiliser lors de
la deuxieme addition. On doit donc écrire :

add ax, bx
adc dx, cx ; prend en compte la retenue

Afin d’obtenir le résultat correct qui est dx:ax = 70000_h = 458752;,. On trouve
également l'instruction sbb (SuBstract with Borrow) pour faire des soustractions si
on utilise deux registres 16 ou 32 bits.

Concernant les instructions inc et dec, elles modifient les flags OF, SF, ZF, AF
et PF, mais pas le Carry Flag. Il est de plus conseillé de ne pas les utiliser car elle
peuvent produire dans certaines situations des false dependencies et des partial flag
register stall.

Un exemple concret est celui du Chapitre 15 pour lequel on compte des voyelles
en mode 64 bits. Le code suivant :

.while:
movzx eax, [rdi + recx] ; s[i]
sub eax, 'a' ; s[i] - 'a'
inc [rbx + rax x 4] ;++letters[s[i]l-'a']
inc ecx g dhdril
cmp ecx, esi ; 1f (1 < size)
jne .while 5 goto .while

est susceptible dans certains cas et sous certaines architectures de produire de
graves ralentissements passant d’'un code qui s’exécutait en 6 secondes a un temps
d’exécution de 29 secondes, mais environ 6 a 7 fois sur 10 exécutions, ce qui semble
totalement aberrant! On devrait en effet obtenir toujours le méme effet, mais ce
n’est pas le cas. Si on remplace I'instruction inc par un add le probléme disparait.

(3 I N

5.3. INSTRUCTIONS ELEMENTAIRES 155

5.3.2.2 L’instruction mul

L’instruction mul n’accepte qu'une seule opérande source et réalise la multipli-
cation non signée entre un registre 8, 16 ou 32 bits et respectivement al, ax, eax
comme indiqué Table 5.4. Les notations reg8, reg16, reg32 signifient respective-
ment un registre général 8, 16 ou 32 bits.

Opération Source Résultat

mul reg8 al ax
mul regl6 ax dx:ax
mul reg32 eax edx:eax

TABLE 5.4 — Modes d’utilisation de mul

Par exemple, si on écrit mul bh, c’est le registre al qui est multiplié par bh et le
résultat est placé dans ax.

En architecture 32 bits, on notera qu’avec une opérande source de 16 (resp. 32
bits), le registre dx (resp. edx) est modifié. Il ne faudra donc pas stocker de donnée
dans edx, ou alors, sauvergarder cette donnée avant la multiplication en la plagant
dans la pile, puis apres la multiplication, la récupérer depuis la pile.

Pour calculer 7 x 5 ou 5 x 7, on écrira donc :

push edx ; on sauvegarde edx
mov eax, 5

mov ebx, 7

mul ebx ; edx:eax= 0:35

Pop edx ; on restaure edx

Il existe également une autre instruction appelée imul (voir ci-apres) qui réalise
une multiplication signée et peut prendre trois formes en fonction du fait qu’elle
utilise une, deux ou trois opérandes [8].

5.3.2.3 L’instruction div et le modulo

L’instruction div réalise la division entiere non signée entre une valeur 64,
32 ou 16 bits par un diviseur sur 32, 16 ou 8 bits respectivement, le reste de la
division est également calculé. L’instruction div permet donc également de réaliser
le modulo (voir Table 5.5).

Par exemple en architecture 32 bits, c’est en fait une valeur sur 64 bits contenue
dans deux registres 32 bits edx:eax que l'on divise par une opérande 32 bits
contenue dans un autre registre. Si on désire travailler avec des valeurs 32 bits, il
faut mettre edx a 0 avant de faire la division. Pour diviser 1024 par 3, on écrira
donc :

u A W N =

o A W N =

a1 AW N =

156

mov
Xor

mov
div

eax,
edx,

ebx,
ebx

Dividende

edx:eax
eax

ax

CHAPITRE 5. TRAITEMENTS DE BASE

Diviseur Quotient Reste
div reg32 eax edx
div reglé ax dx
div reg8 al ah

TABLE 5.5 — Comportement de I'instruction div

1024

edx

3

mise a zéro de edx pour rester
en 32 bits

Le registre eax contiendra alors la valeur 341 et edx sera égal a 1 car 1024 =

3 x 341 + 1.

Attention, si le résultat de la division de edx:eax par un autre registre 32
bits donne un résultat plus grand que la valeur hexadécimale 0xFF_FF_FF_FF, le
microprocesseur leve une exception. C’est pour cela qu’il est conseillé de mettre
edx a 0 avant de faire le calcul. Par exemple si eax est égal a 6 et que 'on divise
par ebx qui vaut 2, mais que edx contient 8, c’est la valeur 8_00_00_00_06 qui est
divisée par 2, ce qui donne 4_00_00_00_03 qui est supérieure a FF_FF_FF_FF.

En outre, puisqu'’il s’agit d’une division non signée, si on réalise le calcul suivant :

mov
Xor

mov
div

On n’obtiendra pas —2 (FF_

eax,
edx,

ebx,
ebx

-6
edx

8

eax = FF_FF_FF_FA_h
mise a zéro de edx pour rester
en 32 bits

eax = 55_55_55_53_h = 1_431_655_763
edx = 0

FF_FF_FE) dans eax mais 55_55_55_53. Pour réaliser

une division signée, il faut utiliser I'instruction idiv (Integer Division) mais pour cela
il faut mettre edx a —1, sinon le résultat du calcul sera le méme que précédemment.
En effet, c’est edx:eax que I'on divise par ebx, il faut donc coder —2 sur 64 bits :

mov
Xor
dec
mov
div

eax,
edx,
edx
ebx,
ebx

-6
edx

3

eax = FF_FF_FF_FA_h
mise a -1 de edx pour réaliser
-6 (FF_FF_FF_FF_FF_FF_FF_FA) / 3

eax FF_FF_FF_F2_h = -2 (quotient)

0 (reste)

edx

ou alors, on utilisera I'instruction cdq qui réalise cette conversion :

[I N

A wWoN =

5.3. INSTRUCTIONS ELEMENTAIRES 157

mov eax, -6 ; eax = FF_FF_FF_FA_h
cdg ; edx = FF_FF_FF_FF, eax = FF_FF_FF_FA
mov ebx, 3 5
div ebx ; eax = FF_FF_FF_F2_h = -2 (quotient)
; edx = 0 (reste)

5.3.2.4 L’instruction imul

Elle réalise la multiplication de valeurs signées et possede trois formats. Voici
par exemple avec des opérandes 32 bits les formalismes possibles :

imul ecx ; edx:eax = eax * ecx (comme mul)
imul ebx, ecx ; ebx = ebx * ecx (edx pas modifié)
imul ebx, 3 ; ebx = ebx * 3 (edx pas modifié)

5.3.2.5 L’instruction idiv

Elle réalise la division de valeurs signées et posseéde le méme format que div.
Par exemple, pour diviser 23 par -7 :

Xor edx, edx
mov eax, 23
mov ecx, -7

idiv ecx
On obtient alors —3 dans eax et 2 dans edx.

5.3.2.6 L’instruction neg

L’instruction neg réalise le complément a deux (Two’s Complement Negation). Si
eax contient la valeur —1 alors neg eax produira la valeur 1 dans eax et inversement.
Le Sign Flag du registre flags sera positionné en conséquence.

Attention cette instruction met le drapeau CF (carry flag) a O si la valeur initiale
est 0, sinon le drapeau CF sera positionné a 1, on calcule ensuite le complément
a deux et on ajuste les autres flags en conséquence. On pourra par exemple
utiliser I'information sur le drapeau CF pour implanter en 4 instructions la fonction
gero_un_moins_un (cf. Exercice 5.6).

5.3.2.7 L’instruction lea

L’instruction lea (Load Effective Address) est intéressante car elle réalise une
multiplication et une addition. Il ne faut pas se laisser leurrer par son formalisme
qui utilise la représentation sous forme de référence mémoire. Ainsi :

158 CHAPITRE 5. TRAITEMENTS DE BASE
lea eax, [ebx + ecx * 4 + 9]

signifie que I'on calcule I'expression ebx + ecx * 4 + 9 et qu'on affecte le
résultat au registre eax. Il n’y a pas d’acces a la mémoire!

En particulier, si on désire multiplier le registre eax par 5, plutét que d’utiliser
une multiplication coliteuse en nombre de cycles on utilisera :

lea eax, [eax + eax * 4]

Comme pour les références a la mémoire le facteur d’échelle qui multiplie le
registre eax dans I'instruction précédente ne peut étre égal qu’a 1, 2, 4 ou 8 (cf.
Section 3.3.5).

5.3.3 Instructions logiques
Les instructions logiques (ou binaires, puisqu’elles s’appliquent sur 'ensemble

des bits de leurs opérandes) permettent de réaliser bon nombre d’opérations basées
sur I'utilisation de masques.

x y and(xy) or(x,y) xor(x,y)

00 O 0 0
o1 0 1 1
10 0 1 1
11 1 1 0

TABLE 5.6 — Table de vérité pour les fonctions and, or, xor

Nous rappelons Table 5.6, les tables de vérité des opérateurs and, or et xor.

5.3.3.1 Instructions and et or

L’instruction and permet de sélectionner des bits spécifiques d’'un registre alors
que l'instruction or permet de positionner certains bits a 1. Ainsi, le code suivant
permet de ne garder la valeur que des 3 bits de poids faible du registre eax et de
positionner le bit de poids fort a 1.

and eax, 0x07 ; sélectionne les 3 bits de poids faible
or eax, 0x80000000 ; fixe le bit de poids fort a 1

5.3. INSTRUCTIONS ELEMENTAIRES 159

5.3.3.2 L’instruction xor

L’instruction xor réalise le ou exclusif. Cette instruction est également utilisée
sous la forme xor reg, regou reg est 'un des registres généraux. C’est un autre
moyen de mettre la valeur 0 dans le registre reg car d’apres la table de vérité du
xor, un ou exclusif entre deux valeurs identiques donne O.

Xor al, al ; mise a zéro de al
Xor ecx, ecx ; mise a zéro de ecx

L’instruction xor permet également de modifier un bit en le positionnant a 1 s’il
était préalablement a O et inversement.

5.3.3.3 L’instruction not
Elle réalise le complément, c’est a dire qu'on change les bits a 1 en les position-

nant a 0 et inversement. Avec nasnm, il existe 'opérateur ~ qui réalise le not, on peut
donc écrire :

mov eax, -~7
au lieu de :

mov eax, 7

not eax

5.3.4 Instructions de décalage

5.3.4.1 Instructions shl, shr

Les instructions shl (SHift Left) et shr (SHift Right) réalisent des décalages
respectivement a gauche et a droite de 'opérande destination, la source étant une
constante ou le registre cl qui indique de combien de rangs on réalise le décalage.

Décaler un registre de n rangs vers la gauche consiste a faire une multiplication
entiere par 2". De la méme maniére, si on décale a droite, on réalise une division
entiére par 2" :

mov eax, 17
shl eax, 5 ; eax = 17 * 275 = 544
shr eax, 7 ; eax = 544 / 277 = 4

N

160 CHAPITRE 5. TRAITEMENTS DE BASE

5.3.4.2 L’instruction sar

L’instruction sar (Shift Arithmetic Right) permet de réaliser une division par
une puissance de 2 tout en préservant le signe de la valeur divisée. Comme on peut
le voir sur 'exemple qui suit, shr considere -128 comme une valeur non signée et
ne préservera pas son signe, par contre, sar le fera :

mov eax, -128 ; eax = OxFFFFFF80

shr eax, 2 ; eax = Ox3FFFFFEQO = 1073741792
mov eax, -128 ; eax = OxXFFFFFF80

sar eax, 2 ; eax = OxXFFFFFFEO = -32

Il existe également d’autres opérations de décalage comme rcl (Rotate Carry
Left) et rcr (Rotate Carry Right), rol (ROtate Left), ror (ROtate Right). Pour de plus
amples explications sur ces instructions nous conseillons la lecture de [19].

5.3.5 Comparaison

5.3.5.1 L’instruction cmp

L’instruction cmp (CoMPare) réalise la comparaison non signée de deux opé-
randes en calculant leur différence. Les opérandes ne seront pas modifiées seule
la différence sera utilisée pour mettre a jour le registre des flags. Voici quelques
utilisations de cette instruction :

e cmp eax, 10 :compare eax a la constante 10
e cmp eax, edx :compare eax a edx
e cmp ecx, [ebp-12] : compare ecx a 'entier 32 bits situé en mémoire a

I'adresse [ss:ebp-12]

La Table 5.7 montre comment sont modifiés les principaux bits du registre flags
lors de la comparaison en fonction des opérandes de la commande cmp.

cmp eax, ebx CF SF ZF

eax == ebx 0 0 1
eax < ebx 1 1 0
eax > ebx 0 0 0

TABLE 5.7 — Influence sur les bits du registre flags de la comparaison de valeurs

[I N

5.3. INSTRUCTIONS ELEMENTAIRES 161

5.3.5.2 L’instruction test

L’instruction test permet également de comparer deux valeurs mais en réalisant
un and entre les deux opérandes qui ne seront pas modifiées et dont le résultat
sera propagé au niveau du registre flags. En général cette instruction est utilisée
pour vérifier qu'une valeur est nulle ou non ou qu’un bit est positionné a 1. En
réalisant par exemple un test eax, eax, on vérifie si eax est nul plutot que d’écrire
cmp eax, 0 qui prend plus de place en mémoire puisqu’on code 'opérande O.

test eax, eax ; si eax == 0 alors aller en .end

jz .end g

test eax, 1 ; si le bit de poids faible n'est pas
jz .pair ; a 1l, alors il s'agit d'un nombre pair

5.3.6 Instructions de branchement

Ce que nous appelons instructions de branchement correspond aux instructions
qui modifient le pointeur d’instructions. On distingue les instructions de branche-
ment conditionnel (qui sont liées a une comparaison préalable) des instructions
non conditionnelles.

5.3.6.1 Instructions de branchement conditionnel

Ces instructions sont utilisées apreés une comparaison (cmp, test) ou un calcul
(add, sub, mul, etc) afin de pouvoir modifier le pointeur d’instruction et exécuter
une instruction qui n’est pas directement la suivante. Elles sont de la forme jCC
adresse ou CC est remplacé par la condition de branchement (cf. Table 5.8).

La documentation Intel indique que les termes less et greater sont utilisés pour
des comparaisons entre des entiers signés alors que les termes below et above sont
utilisés pour des entiers non signés.

Note : il existe également des équivalents a certains instructions comme jnae
(Jump on Not Above or Equal) qui est équivalent a jb.

En prévision de ce que nous verrons plus tard au sujet du coprocesseur, nous
indiquons que les instructions de saut de type below et above sont utilisées lors de
la comparaison de valeurs flottantes.

5.3.6.2 Loop

Il existe également une instruction spécifique loop address qui décrémente le
registre ecx et, si celui-ci n’est pas égal a 0, se branche a I'adresse indiquée. Elle est
donc équivalente aux deux instructions suivantes :

N O

162

CHAPITRE 5. TRAITEMENTS DE BASE

Instruction Signification Condition

jl jump on less SF # OF
jle jump on less or equal ZF = 1 ou SF # OF
jg jump on greater ZF = 0 et SF = OF
jge jump on greater or equal SF = OF
je jump on equal ZF =1
jne jump on not equal ZF =0
jz jump on zero ZF =1
jnz jump on not zero ZF =0
jb jump on below CF=1
jbe jump on below orequal CF =1o0uZF =1
ja jump on above CF=0etZF=0
jae jump on above or equal CF =0
jcxz jump on cx equals zero CX =0
jecxz jump on ecx equals 0 ECX=0
jrcxz jump on rcx equals 0 RCX =0
jo jump on overflow OF =1
jno jump on notoverflow OF =0
jp jump on parity PF =1
jnp jump on not parity PF=0
js jump on sign SF=1
jns jump on not sign SF=0

TABLE 5.8 — Instructions de branchement conditionnel et FLAGS affectés

.begin:
dec ecx
jnz .begin

; a remplacer par
; loop .begin

5.3.6.3 Autres instructions de branchement

Il s’agit des instructions de branchement comme :

e jmp address : modifie (JuMP) le pointer d’instruction pour qu’il soit égal a
I'opérande address

e call address : réalise un appel de sous-programme (cf. Chapitre 6)

e ret : réalise le retour de sous-programme

L’instruction call empile 'adresse de I'instruction qui lui succede puis modifie
le registre eip pour qu’il soit égal a address. L’instruction ret, utilisée lors du

N o AW =

5.3. INSTRUCTIONS ELEMENTAIRES 163

retour de sous-programme, dépile I'adresse en sommet de pile (placée par call) et
I'affecte a eip.

5.3.7 Instructions complexes

Ces instructions permettent de réaliser des traitements complexes et remplacent
la combinaison de plusieurs instructions que nous venons d’évoquer. Elles sont
généralement combinées a un préfixe comme rep pour REPeat qui utilise le registre
ecx pour indiquer le nombre de répétitions a exécuter. Il existe également les
préfixes repe (REpeat while Equal) repne (REpeat while Not Equal), repz (REpeat
while Zero), repnz (REpeat while Not Zero) qui peuvent étre utilisés avec les instruc-
tions cmps qui permet de comparer deux tableaux et scas qui permet de rechercher
une valeur dans un tableau.

5.3.7.1 Lecture d’un tableau

lods(b/w/d) (LOaD String of Byte/Word/Double word) permet de parcourir un
tableau en le lisant sous forme d’octets, de mots ou de double mots, les valeurs
étant lues depuis ds:esi et stockées respectivement dans al, ax, eax.

5.3.7.2 Ecriture d’un tableau

stos(b/w/d) (STOre String of Byte/Word/Double word) permet d’écrire la méme
valeur dans un tableau en écrivant sous forme d’octets, de mots ou de double mots,
les valeurs étant écrites vers ds:edi et lues depuis respectivement al, ax, eax.

5.3.7.3 Déplacement d’un tableau

movs(b/w/d) (MOV String of Byte/Word/Double word) permet de déplacer un
tableau dont I'adresse est stockée dans ds:esi vers un tableau dont ’adresse est
stockée dans es:edi. Il ne faut pas que les tableaux se chevauchent.

Ainsi rep movsd correspond a la série d’instructions suivantes :

.label:
mov eax, [esi]
mov [edi], eax
add esi, 4
add edi, 4
dec ecx
jnz .label

Les deux derniéres instructions (lignes 6 et 7) peuvent étre remplacées par l'ins-
tructions loop .label comme indiqué précédemment. Attention, apres exécution
de rep movsd, ecx est a 0 et edi et esi sont également modifiés.

A W N =

164 CHAPITRE 5. TRAITEMENTS DE BASE

5.3.7.4 repret

L'utilisation du préfixe rep devant une autre instruction n’est pas défini. Cepen-
dant, on trouve parfois dans la génération du code assembleur pour les processeurs
AMD, la série d’instructions rep ret. Il s’agit d’'un stratégeme qui a été trouvé afin
de remédier a un probleme de prédiction de branchement lorsque l'instruction
ret se trouve juste apres une instruction de branchement conditionnel. On pourra
consulter le site http://repzret.org/p/repzret/ pour de plus amples informa-
tions.

5.4 Traitements de base

5.4.1 Langage de GoTo

Nous avons déja évoqué le fait que 'assembleur est un langage sans structures de
contrble que sont le i1, le . Le langage assembleur est rudimentaire et se fonde
sur le déplacement du pointeur d’instruction en mémoire pour éviter d’exécuter le
code d’un if ou revenir au début d'un . Il s’agit d’un fonctionnement basé sur
I'instruction goto que I'on trouve par exemple en langage BASIC.

En BASIC, chaque ligne d’un programme commence par un numéro qui permet
de l'identifier. On commence généralement par 10, puis on incrémente de 10 a
chaque nouvelle ligne, cela permet, au cas ot on aurait oublié certaines instructions,
d’en ajouter de nouvelles entre les lignes 11 a 19, 21 a 29, etc. L’instruction goto
suivie d'un numéro de ligne permet de revenir a la ligne voulue.

On recommande fortement aux programmeurs de ne pas utiliser cette fameuse
instruction goto dans des langages plus évolués comme le langage C (méme si
cette instruction est présente) car elle va a 'encontre d’'un mode de programmation
structuré. Néanmoins, cette instruction est implicitement utilisée, bien que cachée,
par les mécanismes d’exception comme en C++, pour lesquels on appelle une
fonction nommée longjmp.

L’exemple qui suit est un programme BASIC qui calcule la somme des entiers
de 1 a 10 puis affiche le résultat.

i =1: sum = O

if 1 > 10 then goto 60
sum = sum + i
i=1i+1

goto 20

print "sum=", sum

Les programmes en assembleur vont donc suivre ce modéle de programmation.
On peut d’ailleurs voir le langage BASIC comme une version plus évoluée de
l'assembleur pour laquelle les variables et les entrées / sorties sont gérées de

http://repzret.org/p/repzret/

(3 N

5.4. TRAITEMENTS DE BASE 165

maniere a simplifier la tdche du programmeur.

5.4.2 Association variable registre

Dans la suite de ce chapitre et de 'ouvrage, nous allons traduire du code écrit
en C vers I'assembleur. Pour optimiser le code il est nécessaire d’utiliser le plus
souvent possible des registres car ils sont les plus rapides pour le traitement des
données. La premiére étape préalable a la traduction est donc la réalisation de
cette association. On pourra procéder en créant une table de correspondance (voir
Table 5.9). Ainsi, pour le code suivant :

void init (int +tab, int N) {
(int i = 0; i < N; ++i) {
tab[i] = 1;

On peut par exemple décider d’utiliser ebx pour stocker I'adresse du tableau
tab et ecx pour réprésenter la variable de boucle i. La taille du tableau N pourra
également étre stockée dans un registre comme edx ainsi que la valeur 1 qui sera
affectée a tab[i] et qui sera placée dans eax.

Variable/Cste Type Parametre Registre Description

tab int [] [ebp+8] ebx tableau de valeurs entieres
N int [ebp+12] edx taille du tableau

int ecx variable de boucle
1 int eax constante 1

TABLE 5.9 — Association entre variables C et registres du microprocesseur en architecture
32 bits

Si on est en architecture 32 bits, les parametres du sous-programme sont dans
la pile (cf. Chapitre 6). Il faudra donc les placer dans des registres. C’est le cas pour
les adresses de tableau, mais la longueur N peut étre référencée depuis la pile.

5.4.3 Notion de label

Un label, également appelé étiquette, permet dans le code assembleur de
définir 'adresse d’une instruction ou d’'une donnée en utilisant un identifiant
alphanumérique. On distingue :

¢ un label global qui commence par une lettre et suivi par des lettres, chiffres
et le symbole souligné et permet de définir le nom d’un sous-programme ou
le nom d’une variable

O O N o v AW N =

T
> w 0 R~ O

166 CHAPITRE 5. TRAITEMENTS DE BASE

e un label local qui commence par un point (.) et qui indique une adresse de
branchement a l'intérieur d’un sous-programme

L’intérét des labels locaux est que leurs identifiants peuvent étre réutilisés alors
que les labels globaux sont uniques. Pour pouvoir réutiliser un label local il faut
le faire précéder d’un label global. Nous verrons également plus avant dans ce
chapitre un autre type de label utilisé par nasm.

La définition d’un label, qu’il soit local ou global, est réalisée en le suffixant par
un caracteére deux points (:) alors que lorsqu’on y fait référence ce symbole n’est
pas utilisé :

fonction 1: ; définition de fonction_1
push ebp
mov ebp, esp

Jif ... ; utilisation du label local if
mov esp, ebp
pop ebp
ret

fonction 2: ; définition d'une autre fonction
push ebp
mov esp, ebp
call fonctionl

Jif: C. ; réutilisation du label local if
ret

Dans I'exemple précédent le label local .if (défini en ligne 4) peut étre réutilisé
en ligne 13 car il est précédé en ligne 9 d’un label global (fonction_2).

5.4.4 Si alors

La conditionnelle si alors est réalisée en utilisant une comparaison cmp suivie
d’une instruction de branchement conditionnel que nous notons jCC?, comme
présenté sur la Figure 5.1, ot nous pouvons voir trois représentations du

e la premiere (en haut a droite) est la version en langage C que nous voulons
traduire

e laseconde (en haut a gauche) est une vision graphique sous forme d’organigramme

e la troisieme (en bas a gauche) est un code en BASIC

L’organigramme montre deux chemins d’exécution, celui de droite qui est
emprunté lorsque la condition du if est vraie et qui consiste a exécuter le code
du bloc alors. Le chemin de gauche est emprunté quand la condition est fausse et
consiste a se placer apres le code du alors en fin_si.

2. Comme nous ne connaissons pas la condition celle-ci est représentée de maniere générique
par un double C.

5.4. TRAITEMENTS DE BASE

fausse

vraie (x < y)

167

Langage C

if (x <y) {
X =Y;

printf("x=%d", x);

BASIC

20x =y

10 if not(x < y) goto 30

30 print "x=", x

FIGURE 5.1 — si alors

Pour la partie en langage C on considere la condition x < y, ol x et y sont deux
variables entieres que I'on a choisi de modéliser par les registres eax et ebx. On
débute donc la traduction en chargeant la variable x dans eax et la variable y dans

ebx.

La traduction du
moyen de I'instruction cmp qui prend comme opérandes eax et ebx, suivie par un
branchement en fin de conditionnelle si la condition est fausse. On prend donc,
dans ce cas, la négation de I'expression x < vy, soit x >= y. Ce qui se traduit par
I'instruction de branchement conditionnel jge (Jump on Greater or Equal) :

Lif:
mov
mov
cmp
jge

.then:
mov

.endif:

eax, [x]
ebx, [y]
eax, ebx
.endif

[x], ebx

14

14

’

si non(x < y)
aller en .endif

bloc alors

est obtenue en réalisant la comparaison entre x et y au

équivalent a x >= vy

On remarquera que pour clarifier le code on a défini trois labels qui corres-
pondent au si (.if), alors (.then) et fin_si (.endif) mais seul le label .endif est

utile ici.

168 CHAPITRE 5. TRAITEMENTS DE BASE

5.4.5 SiCl1letC2et...etCn alors

Dans le cas d’une condition complexe qui peut se résumer a des conjonctions
(et), il faut que toutes les conditions soient vraies pour exécuter le code du bloc
alors. On doit donc produire le pseudo code suivant :

e si C1 est fausse alors aller en .endif
e si C2 est fausse alors aller en .endif
e si Cn est fausse alors aller en .endif

On pourra représenter ce code sous forme d’organigramme pour s’en convaincre.

((x <3) & (y >=6) && (x == z)) {
X=1Y;

Listing 5.4.1 — Si Alors avec conjonction de conditions

; eax = X, ebx =y, ecx = z

Lif:
cmp eax, 3 ; Cl
jge .endif ; si non(x < 3) alors aller en finsi
cmp ebx, 6 ; C2
jl .endif ; si non(y >= 6) alors aller en finsi
cmp eax, ecx ; C3
jne .endif ; si non (x == z) alors aller en finsi
.then:
mov eax, ebx
.endif:

Listing 5.4.2 — Si Alors avec conjonction de conditions

Afin de gagner en efficacité lorsque I'on rencontre ce genre de condition com-
plexe il faut placer la condition qui a le plus de chance d’étre fausse en premier
car elle échouera en premier et on n’aura pas a évaluer C2 a Cn.

Prenons I'exemple du Listing 5.4.1 dont la traduction en assembleur est donnée
par le Listing 5.4.2. On considere que x est représentée par eax, y par ebx et z par
ecx. Il serait alors probablement préférable de placer la condition C3 en premier si
elle a le plus de chance d’échouer, tout dépend bien évidemment des données que
'on traite.

5.4.6 SiC1 ou C2 ou ... ou Cn alors

Dans le cas d’'une condition composée de disjonctions (ou), il suffit qu'une seule
condition soit vraie pour exécuter le code du bloc alors. On doit donc produire le

5.4. TRAITEMENTS DE BASE 169

pseudo code suivant :

e si CI est vraie alors aller en . then
e si C2 est vraie alors aller en . then

e si Cn est fausse alors aller en .endif

Afin d’étre efficace lorsque I'on rencontre ce genre de condition complexe il faut
placer la condition qui a le plus de chance d’étre vraie en premier.

5.4.7 Si alors sinon

fausse vraie
X >=y X<y Langage C

if (x < Y) {

X = 1;
} else {

A

bloc_sinon

printf("x=%d",x);

BASIC

10 if not(x < y) goto 40
20 x = 1

30 goto 50

40

50 print "x=", x

FIGURE 5.2 — si alors sinon

Dans le cas de la conditionnelle si alors sinon de la Figure 5.2, il y a égale-
ment, comme dans le cadre du si alors, deux chemins a emprunter en fonction de
I’évaluation de la condition du si.

On procede comme avec le si alors en comparant les valeurs puis en prenant
la négation de la condition pour effectuer un branchement conditionnel en .else.
Apres I'exécution des instructions du . then il ne faut pas oublier de se brancher en
.endif sinon on exécuterait également le code du sinon.

Notons que x et y sont deux variables entieres et que 'on pourrait n’utiliser
qu'un seul registre afin de comparer ces valeurs en chargeant par exemple x dans
eax puis en le comparant a y grace a I'instruction cmp eax, [y].Il n’est pas toujours
nécessaire de charger toutes les variables dans les registres.

170 CHAPITRE 5. TRAITEMENTS DE BASE

Le code correspondant est le suivant :

1 .if:

2 mov eax, [x]

3 mov ebx, [y]

4 cmp eax, ebx

5 jge .else

6 .then:

7 mov [x], 1 ; bloc alors
8 Jjmp .endif ; pour ne pas exécuter le code du .else
9 .else:

10 mov [x], 2 ; bloc sinon
11 .endif:

5.4.8 Tant que

fausse vraie
i > 10 i <= 10

Langage C

int sum = 0;

int 1 = 1;

while (1 <= 10) {
sum += 1i;
++1;

printf("sum=%d",sum);

BASIC

10 sum = 0: 1 =1
20 if not(i <= 10) goto 60

30 sum = sum + i
50 goto 20

60 print "sum=", sum

FIGURE 5.3 — Tant que

La structure de contrOle tant que est modélisée sur la Figure 5.3. Elle est
organisée de la maniere suivante et comprend :

e une initialisation i = 1

¢ une condition de poursuite de la boucle i <= 10, souvent appelée condition
d’arrét

e le corps de la boucle, c’est a dire les instructions a exécuter a chaque itération
de la boucle, soit ici sum += 1i;, suivi de 'incrémentation de i

5.4. TRAITEMENTS DE BASE 171

Le tant que est traité comme un si alors suivi du code du corps de la boucle . body,
puis le code de I'incrémentation et enfin par une instruction de saut jmp (JuMP)
qui ramene au début de la condition de poursuite (.while). Si cette condition est
fausse on se branchera en .endwhile.

Pour traduire la somme des entiers entre 1 et 10 (cf. Listing 5.4.3), on choisit
de remplacer la variable sum par le registre eax et la variable i par ecx :

xor eax, eax ; sum = @
mov ecx, 1 ;1 =1
.while:
cmp ecx, 10 ; si i > 10 alors sortir du while
jg .endwhile
add eax, ecx ;osum += i
inc ecx ; i
jmp .while
.endwhile:
mov [sum], eax

Listing 5.4.3 — Tant que

On remarquera que pour passer a litération suivante on a utilisé, ligne 7,
I'instruction inc ecx et, que sous certaines architectures, un add ecx,1 qui prend
plus de place puisqu’il faut coder la valeur 1 au niveau de l'instruction est plus
efficace.

549 Pouridelan

L’instruction pour, soit en langage C, est en fait un déguisé, il s’agit
d’un sucre syntaxique °.

(initialisation; condition; incrementation) {

corps;
}
initialisation;
(condition) {
corps;
incrementation;
b

Listing 5.4.4 — Equivalence des boucles pour et tant que

3. Expression inventée par Peter J. Landin pour exprimer le fait de donner au programmeur des
possibilités d’écriture plus succinctes ou plus proches d’'une notation usuelle.

AW N =

10

11

12

13

14

172 CHAPITRE 5. TRAITEMENTS DE BASE

Comme pour la boucle tant que on retrouve l'initialisation, la condition de
poursuite ainsi que I'incrémentation. Nous avons fait figurer sur le Listing 5.4.4 la
correspondance entre la syntaxe du en Cetle

Il est possible de traduire une boucle de deux maniéres différentes. Consi-
dérons le code suivant qui est équivalent au que nous venons de traduire :

int N = 10;

int sum = 0;
(int i =

sum += 1i;

1l; i <= N; ++i) {

On peut traduire cette boucle comme on I'a fait précédemment pour le
le code est donc identique.

L’autre maniere de traduire le consiste au préalable a vérifier la condition
de poursuite et a ne pas exécuter le corps de la boucle si la condition est fausse. Si la
condition est vraie par contre, la boucle s’exécutera au moins une fois. On traduira
donc par le corps de la boucle, 'incrémentation puis la condition de poursuite, qui,
si elle est vraie, forcera a retourner grace a un branchement conditionnel au début
de la boucle comme présenté Listing 5.4.5.

Xor eax, eax ; sum = @

mov ecx, 1 ; initialisation : i =1

mov edx, N
.pre_for:

cmp ecx, edx ; test condition

jg .endfor ; ne pas executer la boucle si i >=n
.for:

add eax, ecx ; corps : sum += i

inc ecx ; incrémentation : ++i

cmp ecx, edx ; test de la condition

jle .for ; retour au début de la boucle si vraie
.endfor:

Listing 5.4.5 — Traduction améliorée du for

Dans le premier cas (Listing 5.4.3) on aura a chaque itération de la boucle a
exécuter quatre instructions (lignes 4, 5, 7, 8) pour traiter la boucle (sans son
corps).

Dans le second cas (Listing 5.4.5), on n’exécutera que trois instructions (lignes
8 a 10) a chaque itération pour traiter la boucle (sans son corps). On peut donc
parfois gagner en efficacité en ayant une instruction en moins a exécuter, mais le
gain est généralement tres faible.

10

11

12

13

14

5.4. TRAITEMENTS DE BASE 173

5.4.10 Selon cas

La structure selon cas, c’est a dire le en langage C, est dans le cas général
difficile a traduire et dépend des données. Dans certains cas les données sont
consécutives et il est facile de remplacer le par une expression comme c’est

le cas du Listing 5.4.6.

int converti(char c) {
int code = 0;

(e) {
'a': 'A': code = 1; 3
'b': 'B': code = 2; :
S7a: 'Z': code = 26; ;
}
code;
}
int convert2(char c) {
(isalpha(c)) toupper(c) - 64;
0;
}
Listing 5.4.6 — Exemple de switch simplifiable par une expression
(e {
1: liste_instructions_cas_1; 3
3: liste_instructions_cas_3; ;
22: liste_instructions_cas_22; 5
: liste_instructions_defaut;
}

Listing 5.4.7 — Exemple de switch avec table de conversion

En effet la premiére fonction convert1 ne fait que remplacer chaque lettre par
un identifiant entier en suivant 'ordre alphabétique. Elle contraint a écrire 26 lignes
qui peuvent étre remplacées par une seule (ligne 13) de la fonction convert2.

Le cas le plus problématique correspond a des valeurs du qui ne suivent
pas une suite logique ou calculable. Dans ce cas on passe généralement par un
tableau de valeurs (cf. Listings 5.4.7 et 5.4.8).

On crée ainsi deux tables, 'une pour les valeurs du , autre qui contient
les adresses des labels qui correspondent au code a exécuter pour chaque
On remarquera que 'on utilise des labels spéciaux dotés d’un préfixe . .@ qui sont
définis pour ce genre de situation. Les labels qui débutent par ce préfixe n’obéissent

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

174 CHAPITRE 5. TRAITEMENTS DE BASE

.data
switch_values_table: dd 1, 3, 22
switch_jumps_table: dd ..@case_1, ..@case_3, ..@case_22
.text
main:
xor ecx, ecx
mov edx, 3
.for:
cmp ecx, edx
jge .default
cmp [switch_values_table + ecx * 4], eax
jne .endif
jmp [switch_jumps_table + ecx * 4]
.endif:
inc ecx
jmp .for
..@case_1:
jmp .endswitch
..@case_3:
jmp .endswitch
..@case_22:
jmp .endswitch
.default:
.endswitch:

Listing 5.4.8 — Exemple de switch avec table de conversion en assembleur 32 bits

pas aux regles des labels locaux et peuvent étre référencés a tout moment dans le
code.

On doit donc parcourir la table des valeurs jusqu’a trouver un valeur de cette
table, ou alors, si on ne la trouve pas, on éxécutera le default.

5.4.11 Techniques d’amélioration liées aux boucles for

Nous allons présenter deux techniques d’amélioration liées aux boucles de type
et par extension aux boucles . La premiere qualifiée de dépliage permet
de diminuer le nombre d’itérations de la boucle en dupliquant les instructions du
corps de la boucle. La seconde appelée tuilage augmente 'efficacité des traitements

5.4. TRAITEMENTS DE BASE 175

en réduisant les données placées en mémoire cache lors de I'utilisation de grands
tableaux.

5.4.11.1 Dépliage de boucle

Le dépliage de boucle ou loop unrolling (voir Figure 5.4) en anglais consiste
a augmenter le corps de la boucle en le répétant plusieurs fois. On dépliera une
boucle par une puissance de 2 : soit 2, 4, 8 voire 16. Le but de cette technique est
double, elle permet :

e de diminuer le nombre de branchements

e d’augmenter l'efficacité en exécutant un plus grand nombre d’instructions
avant de passer a la prochaine itération

const int N = 1003;

Sans dépliage | int tab[N];

1003 itérations for (int 1 = 0; 1 < N; ++1) {
tab[i] = 1;

}

int i;)]
I dépliage Eor (1=0; 1 < (N&~7); 1L +=8)

N
)

1003/8 = 125 tab[i+0] = 1;
itérations tab[i+1] = 1;
tab[1+7] = 1;
}
J
while (1 < N) { - switch(N-1) {
tab[i] = 1; case 7: tab[1l] = 1; ++1;
++i; e I
} Derniéres case 1: tab[1l] = 1; ++1;

\ itérations | /
FIGURE 5.4 — Dépliage de boucle

En effet, comme on I'a vu précédemment, le traitement d’une boucle clas-
sique demande d’exécuter au moins 4 instructions : une comparaison et une ins-
truction de branchement conditionnel en début de boucle, puis une incrémentation
et un branchement pour revenir au début de la boucle.

SiN = 1003, comme sur 'exemple de la Figure 5.4, cela fait 1003 x 4 = 4012
instructions a exécuter rien que pour traiter la boucle sans son corps.

Par contre si la boucle est dépliée par 8, on traitera dans un premier temps
125 itérations (1003/8 = 125) et donc seulement 125 x 4 = 500 instructions liées a
la boucle.

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

176

CHAPITRE 5. TRAITEMENTS DE BASE

Reste a traiter les trois dernieres itérations potentielles de la boucle, ce qui peut
étre fait de deux manieres différentes :

e soit par une boucle

e soit par un

on le ferait pour le

On obtient avec le

. L'utilisation d’'un
boucle est dépliée par 8 ou 16.

mais on risque de perdre quelque peu en efficacité
si le corps de la boucle se traduit par quelques instructions,

dont I'intérét est d’éviter les branchements répétifs comme

.data
N EQU 1003
tab: times N dd o
.text
mov ebx, tab
mov eax, 1
xor ecx, ecx
mov edx, N
and edx, ~(8-1)
.for_ur8:
cmp ecx, edx
jge .endfor_ur8
mov dword [ebx +
mov dword [ebx +
mov dword [ebx +
mov dword [ebx +
mov dword [ebx +
mov dword [ebx +
mov dword [ebx +
mov dword [ebx +
add ecx, 8
jmp .for_ur8
.endfor_ur8:
.while:
cmp ecx, N ;

ecx
ecx
ecx
ecXx
ecx
ecXx
ecx
ecx

un code séquentiel puisqu’on ne trouvera pas de
se révele donc en général intéressante lorsque la

¥ % X% % X %X X %

L A R R

+ 4+ + + + + + +

; ebx =
; eax

-
I
N o |l

; edx
; edx

; constante
; tableau de N entiers dont chaque
; élément est initialisé a @

tab
1 (constante)

N
(N/ 8) * 8

; fin de boucle si i >= N

0], eax

4], eax

8], eax
127, eax
16], eax
20], eax
247, eax
28], eax
i+=8

: dernieres iterations

Listing 5.4.9 — Dépliage de boucle

La traduction assembleur du code de la Figure 5.4 est donné Listing 5.4.9. On
commence par définir la constante N grace a l'instruction EQU qui signifie EQUal,
puis le tableau tab grace a l'instructions times N qui signifie répéter N fois ce qui

(3 I N

5.4. TRAITEMENTS DE BASE 177

suit, c’est a dire dd @ qui définit un entier sur 32 bits initialisé a 0. On crée donc
1003 entiers initialisés a 0.

On traduit ensuite le code en utilisant les associations suivantes :

le tableau tab est placé dans ebx

la variable de boucle i est remplacée par ecx

le registre eax contient la valeur a affecter a chaque élément du tableau soit 1

le registre edx contient le plus proche multiple de 8 de la constante N qui
représente la taille du tableau

Afin de stocker dans edx le multiple de 8 le plus proche de N, il existe deux
possibilités :

e la plus naturelle consiste a rendre N multiple de 8 en le divisant par 8 puis en le
multipliant par 8, ce qui peut étre fait rapidement en utilisant les instructions
de décalage puisque 8 est une puissance de 2. On peut donc traduire par :

1 mov edx, N : edx = 1003
2 shr edx, 3 ; /8=2"3 edx = 125
3 shl edx, 3 ; *8 edx = 1000

e l'autre solution consiste a utiliser un masque afin d’éliminer les trois premiers
bits de edx qui permettent de coder des valeurs entre O et 7 :

1 mov edx, N ; edx = 1003 = 000..0011_1110_1011_Db
2 and edx, ~7 g ~' & 111..1111 1111 _1000_b
3 ; edx = 1000 = 11_1110_1000_b

ici le symbole ~ (tilde) correspond a la complémentation.

On peut en outre utiliser une macro instruction afin de remplacer le corps de
la boucle de maniere a obtenir un code plus lisible cela est particulierement vrai
si le corps de la boucle contient plusieurs instructions. On définit donc la macro
instruction BODY qui prend un parametre représentant le décalage de I'adresse
observé listing 5.4.10.

Enfin, on pourra utiliser des macro instructions de nasm afin de remplacer les
huit macro instructions BODY (lignes 14 a 21) par une boucle :

$assign i O ; définition d'une variable affectée a 0
$rep 8 ; répéte 8 fois
BODY i ; appel de la macro BODY avec la valeur de i

%$assign i i +4 ; ajouter 4 a i et l'affecter a i, soit i += 4
$endrep ; fin de la répétition

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

178

%macro BODY

CHAPITRE 5. TRAITEMENTS DE BASE

1

mov [ebx + ecx * 4 + %1], eax

%endmacro
.text

mov ebx, tab

mov eax, 1

xor ecx, ecx

mov edx, N

and edx, ~(8-1)
.for_ur8:

cmp ecx, edx

jge .endfor_ur8

BODY 0

BODY 4

BODY 8

BODY 12

BODY 16

BODY 20

BODY 24

BODY 28

add ecx, 8

jmp .for_ur8
.endfor_ur8:
; dernieres itérations de la boucle
.while:

cmp ecx, N

Listing 5.4.10 — Dépliage de boucle avec macro instruction

Attention cependant, en C l'utilisation des parentheses est primordial car si on

ne les utilise pas, 'expression sera interprétée de maniere a ce que la boucle
ne soit pas exécutée et c’est le qui traitera toutes les itérations de
la boucle.

En effet, si on écrit :

i <N& ~3; ++i) { ... }

L’expression de continuité de la boucle sera interprétée comme i < N, c’est a
dire vrai, ce qui correspond a la valeur 1. On réalise ensuite un et binaire entre la

[N L B N N

N o AW N =

5.4. TRAITEMENTS DE BASE 179

valeur 1 et ~3, c’est a dire une valeur dont les deux premiers bits sont a 0. Au final
on obtient la valeur 0, la boucle n’est donc pas exécutée.

Il faut donc bien écrire :

(1 =0; 1 < (N & ~3); ++ti) { ... }

5.4.11.2 Tuilage

La technique du tuilage (tiling en anglais) aussi appelée blocage de boucle
(loop blocking) est associée au traitement des tableaux notamment ceux a deux
dimensions. Elle permet de décomposer un traitement défini pour un grand tableau
en plusieurs traitements plus simples qui interagissent sur des sous parties du
tableau que 'on gardera en mémoire cache afin de les réutiliser. Cette technique
est particuliérement efficace dans le cas du produit de matrices car elle permet de
ne pas saturer la mémoire cache et a pour objectif de cantonner les données aux
registres et aux caches L1 et L2.

int N = 1027;
int tab[N];

(int i = 0; i < N; ++i) {
A[i] = O0;

int BLOCK SIZE = 32;

(int i = 0; i < N; i += BLOCK SIZE) |
(int ii = 0; ii < std::min (i+BLOCK SIZE, N); ++ii) {
A[ii] = 0;

Cette technique n’a d’intérét que si on lit et/ou écrit les données plusieurs fois.

5.4.11.3 Perte d’efficacité : if a I’intérieur d’un for

Le cas d’un if a l'intérieur d’une boucle (ou d’'un) est problématique
car cest le genre de traitement qui peut ralentir 'exécution de la boucle. En
effet, si la condition du if n’est pas prédictible, la prédiction de branchement (cf.
Section 3.7.1) ne sera pas capable de choisir avec certitude la branche de code a
exécuter.

Il faut faire en sorte, quand cela est possible, de remplacer le if par un calcul
plutot que par un branchement pour gagner en efficacité. La vectorisation du code
permet également d’éviter les ralentissements diis a I'impossibilité de prédire quel
chemin emprunter (cf. Chapitre 14).

v A W N =

O 0 N o 1AW N =

N
2 W N = O

o A W N =

180 CHAPITRE 5. TRAITEMENTS DE BASE

5.4.12 Instructions pour I’élimination des if
On dispose de deux instructions qui permettent de supprimer les branchements :

e setCC (Set Byte on Condition) introduite a partir de I'Intel 80386 qui met a 0
ou 1 un registre 8 bits ou un emplacement mémoire 8 bits en fonction des
valeurs des bits CF, SF, OF, ZF et PF du registre eflags : on remplacera CC
par les lettres qui correcpondent aux sauts conditionnels, par exemple nz
pour Not Zero

e cmovCC (Conditional MOVe) qui déplacera entre registres ou entre un registre
et une adresse mémoire les données de la source vers la destination en
fonction des valeurs des bits du registre eflags

Par exemple, le code suivant :

(x $ 3 == 0) {
101;

7001;

peut étre traduit de maniere classique par :

mov eax, [x]
movs ecx, 3
cdqg ; convertir dans edx:eax
div ecx ; division par 3
if:
cmp edx, O ; quotient == 0 ?
jnz .else
.then:
mov eax, 101
Jjmp .endif
.else:
mov eax, 7001
.endif:

; sortie de la fonction

Cette traduction utilise deux sauts : un saut conditionnel jnz pour ne pas
exécuter le .then et un saut jmp pour ne pas exécuter la partie .else. On peut
réécrire le code en utilisant cmov afin d’éviter ces sauts qui viennent perturber
I'exécution du code :

mov eax, [x]
mov ecx, 3
cdg

div ecx

cmp edx, O

mov ecx, 7001

[I N (3 N

[I N

5.4. TRAITEMENTS DE BASE 181

mov eax, 101
cmovnz eax, ecx

Dans le méme esprit, lorsqu’on doit par exemple travailler avec des booléens, le
code suivant :

(expression == 0) {
0;
} {
1;

peut étre réécrit en :

; évaluation de 1'expression résultat dans edx
Xor eax, eax ; valeur de sortie a 0

cmp edx, O ; ou test edx, edx

setnz al

; sortie de la fonction

Ici, le comportement de I'instruction setnz est :

(Nz) {

al = 1;
} {

al = 0;

Il est nécessaire de mettre la valeur 0 dans eax de maniere a ce que le résultat
soit 0 ou 1. Ou alors, il faut utiliser I'instruction movzx eax,al apres setnz.

5.4.13 Débit et latence des instructions

On distingue deux grandeurs lorsqu’on évoque le temps de traitement des
instructions : la latence (latency) et le débit (throughput). Malheureusement il
est tres difficile de distinguer et comprendre la différence entre ces deux valeurs.
D’apres la documentation Intel :

e Latency is the number of processor clocks it takes for an instruction to have its
data available for use by another instruction

e Throughput is the number of processor clocks it takes for an instruction to
execute or perform its calculations

N o AW N =

182 CHAPITRE 5. TRAITEMENTS DE BASE

Référence mémoire

En fait, lorsque 'on parle de latence on fait référence a la chaine de dé-
pendance des latences (dependency chain latency). Quand une instruction a
besoin du résultat d'une instruction qui la précede on parle de dépendance et
dans ce cas on mesure son cofit de traitement par sa latence.

Le débit (throughput) est le nombre maximum d’instructions de méme type
qui peuvent étre exécutées par cycle d’horloge quand il n’y a pas de dépen-

dances.
_ J

Par exemple, imaginons que nous ayons a traduire le code suivant ou les
variables sont des entiers :

a=a+b+c+d;

Convenons que a est dans eax, b dans ebx, etc. Une premiere traduction en
assembleur est :

add eax, ebx ;
add eax, ecx ; dépendance avec la ligne 1
add eax, edx ; dépendance avec la ligne 2

Ce code introduit deux dépendances : de la ligne 2 vers la ligne 1 et de la ligne
3 vers la ligne 2. Etant donné qu’on utilise le méme registre (eax) pour stocker le
résultat du calcul, l'instruction de la ligne 2 doit attendre que I'instruction de la
ligne 1 soit terminée pour pouvoir ajouter le résultat de ecx a eax.

On peut réécrire ce code de maniere a pouvoir effectuer deux sommes en
paralléle :

add eax, ebx ; indépendant de la ligne 2: a += b
add ecx, edx ; indépendant de la ligne 1 ¢ += d
add eax, edx ; dépendance avec les lignes 1 et 2: a += c

Le second code peut éventuellement étre réalisé de maniére plus rapide puisque
I'on pourra effectuer les deux premieres sommes en parallele nonobstant le fait que
I'on perde la valeur de ecx.

Imaginons a présent un exemple plus conséquent qui concerne un tableau de
flottants dont on doit faire la somme. On écrit une boucle que 'on déplie par 8 :

// ici N, la taille du tableau, est multiple de 8
int N = 320000;
float array|[N];

float sum = 0.0f;
(int i = 0; i < N; i += 8) {
sum += array[i+0];

5.4. TRAITEMENTS DE BASE 183

8 sum += array[i+l];
9 sum += array[i+2];
10 sum += array[i+3];
11 sum += array([i+4];
12 sum += array([i+5];
13 sum += array[i+6];
14 sum += array[i+7];

15 }

Si on traduit ce code en utilisant les registres SSE mais sans vectorisation en ne
prenant en compte que la partie basse du registre (cf. Chapitre 8), on obtient :

1 mov ebx, array

2 Xorps xmm0, xmmO ; xmmO = sum = 0.0

3 Xor ecx, ecx ; 1 =0

4 for i:

5 cmp ecx, 320000 ; fin, si 1 >= 320000
6 jge .endfor_i

7 addss xmm0O, [ebx + ecxx4 + 0] ; sum += arrayl[il];

8 addss xmm0, [ebx + ecxx4 + 4] ; sum += arrayl[i+l];
9 addss xmm0, [ebx + ecxx4 + 8] ; sum += arrayl[i+2];
10 addss xmm0, [ebx + ecxx4 + 12] ; sum += array[i+3];
11 addss xmm0, [ebx + ecxx*4 + 16] ; sum += array[i+4];
12 addss xmm0, [ebx + ecxx4 + 20] ; sum += array[i+5];
13 addss xmm0, [ebx + ecxx4 + 24] ; sum += array[i+6];
14 addss xmm0, [ebx + ecxx4 + 28] ; sum += arrayl[i+7];
15 add ecx, 8 ; 1 += 8

—
fo)}

jmp .for_i
17 endfor i:

La partie basse du registre xmm@ est utilisée pour contenir la somme mais chaque
instruction (de la ligne 7 a la ligne 13) dépend de I'instruction précédente. Il existe
une chaine de dépendance de 7 instructions. Si l'instruction addss, addsd posséde
un débit d’'une instruction par cycle et une latence de 4 cycles alors le cotit du
traitement de la ligne 6 a la ligne 13 est d’au moins 7 x 4 = 28 cycles. Cependant
comme l'exécution se fait dans le désordre, il est possible que le microprocesseur
puisse briser en partie ces dépendances.

Maintenant, si on organise le traitement autrement en créant des sommes
partielles, on peut briser la chaine des dépendances :

1 mov ebx, array

2 xXorps xmm0O, xmmO ; xmmO = suml = 0.0

3 xXorps xmml, xmml ; xmml = sum2 = 0.0

4 xXorps xmm2, xmm2 ; xmm2 = sum3 = 0.0

5 Xorps xmm3, xmm3 ; xmm3 = sum4 = 0.0

6 Xor ecx, ecx ; 1 =0

7 for i:

8 cmp ecx, 320000 ; fin de boucle si i >= 320000
9 jge .endfor_i

=
o

addss xmm0, [ebx + ecxx4 + 0] ; suml += arrayl[i]

11
12
13
14
15
16
17
18
19
20
21
22
23

O 0 N o AW =

e e
w N = O

184 CHAPITRE 5. TRAITEMENTS DE BASE

addss xmml, [ebx + ecxx*x4 + 4] ; sum2 += array[i+1]
addss xmm2, [ebx + ecxx4 + 8] ; sum3 += arrayl[i+2]
addss xmm3, [ebx + ecxx4 + 12] ; sumd += array[i+3]
addss xmm0, [ebx + ecxx4 + 16] ; suml += array[i+4]
addss xmml, [ebx + ecxx4 + 20] ; sum2 += array[i+5]
addss xmm2, [ebx + ecxx4 + 24] ; sum3 += array[i+6]
addss xmm3, [ebx + ecxx4 + 28] ; sum4 += arrayl[i+7]
add ecx, 8 ; 1 += 8
Jmp .for_ i

endfor i:
addss xmmO, xmml ; suml += sum2
addss xmm2, xmm3 ; sum3 += sumi
addss xmmO, xmm2 ; suml += sum3

La ligne 13 dépend de la ligne 9, la ligne 14 dépend de la ligne 10, etc. Au final
nous avons 4 dépendances, donc trois de moins que dans la premiere version de la
somme. Le code assembleur précédent correspond en fait au code C suivant :

float sum, suml, sum2, sum3, sum4;

suml = sum2 = sum3 = sumd4d = 0.0f;
(int 1 = 0; 1 < N; i += 8) {
suml += array[i+O0];
sum2 += array[i+l];
sum3 += array[i+2];

[]
[]
[]
sum4 += array[i+3];
[]
[]
[]
[]

suml += array[i+4];
sum2 += array[i+5];
sum3 += array[it+6];
sum4 += array[i+7];
}
sum = (suml + sum2) + (sum3 + sumd) ;

Nous avons reporté, Table 5.10, certains résultats de I'implantation des solutions
précédentes suivant le nombre de cycles nécessaires au traitement de la boucle.
Nous avons exécuté 100 fois la somme des éléments d’un tableau de 320 000
flottants :

e la version v1 correspond au code avec 7 dépendances

e la version v2 est un code avec 4 dépendances dues a I'utilisation de 4 registres
SSE (xmm@ a xmm3)

e la version v3 ne posseéde pas de dépendances car on utilise 8 registres SSE
(xmm@ a xmm7).

La ligne intitulée gain est le rapport entre la version 1 et la version 3.

Il est alors flagrant que diminuer le nombre de dépendances conduit a obtenir
un code qui s’exécute plus rapidement. Sur AMD Ryzen 5 3600, on va 4, 47 fois
plus vite sans chaine de dépendance en utilisant la version 3.

5.5. CONCLUSION 185

Dépendances Intel Intel Intel AMD Intel
Core i5 Corei7 Xeon Silver Ryzen 5 Core i7

7400 8700 4208 5600g 10850H

v1 (7 dépendances) 103 112 93 105 85 122
v2 (4 dépendances) 35 28 23 29 23 28
v3 (aucune) 23 19 16 25 15 19
gain x4,47 x5,89 x5, 81 x4, 20 x5, 66 x 6,42

TABLE 5.10 — Nombre de millions de cycles pour la somme des éléments d’un tableau avec
et sans chaine de dépendance

Un dernier point important concerne la version 2 avec 4 dépendances. Celles-

ci sont distantes. Si on les place cote a cote, on obtient sur AMD Ryzen 5
5600g, un temps moyen d’exécution de 32 millions de cycles et non plus 23.

5.5 Conclusion

Nous avons vu dans ce chapitre comment traduire les structures de controle du
langage C et comment on pouvait améliorer I'efficacité des boucles en les dépliant
ou en brisant la chaine de dépendances d’un calcul. Ces améliorations doivent étre
conjuguées avec 'accélération de I'acces mémoire en tentant de mettre le plus de
données dans les caches et en les réutilisant quand cela est possible.

5.5.1 Que retenir?

> en architecture 32 bits, on dispose de huit registres généraux, cependant seuls
6 sont utilisés pour faire des calculs ou stocker des données (eax, ebx, ecx,
edx, edi, esi); le registre esp contient le sommet de pile et ne doit pas étre
modifié directement alors que ebp est utilisé afin de récupérer les arguments
d’un sous-programme

> en architecture 32 bits, si 'on doit réaliser des multiplications ou des divisions
les registres eax et edx seront impactés, ce qui ne laisse plus que 4 registres
pour faire les calculs

> en architecture 64 bits, on dispose de 8 registres généraux supplémentaires
(r8 a 15), ce qui permet de lever le verrou des limitations du 32 bits

> lassembleur ne dispose pas de structures de controle comme la conditionnelle
if, les boucles for, while. Ecrire en assembleur est donc une tiche difficile.

R L 2

186 CHAPITRE 5. TRAITEMENTS DE BASE

> les techniques de dépliage de boucle ou de tuilage permettent d’améliorer
Iefficacité du traitement des boucles

> positionner un if a I'intérieur d'une boucle (ou) conduit a ralentir
I'exécution du traitement, il faut alors étre en mesure de pouvoir éliminer le
soit en le remplacant par des instructions spécifiques (cf Chapitre 14), soit

en le vectorisant (cf. Chapitre 8)

5.5.2 Compétences a acquérir

On doit étre capable de traduire :

[0 une multiplication, une division, un modulo

[0 une conditionnelle avec plusieurs conditions séparées par des et/ou
[0 une boucle for

0 une boucle while

5.6 Exercices

Exercice 21 - Traduire le code suivant en assembleur x86 32 bits ou x, y et z sont
trois variables entieres :

((((x % 2) ==0) && (y < 257)) || (z == 9)) {

((
X=X +y - z;

Exercice 22 - Traduire le code suivant en assembleur x86 32 bits :

int SIZE = 1000;
int tab[SIZE];
(int 1 = 0; i < SIZE; ++i) {
tab[i] = (1 + 1) % 7;

Exercice 23 - Ecrire les fonctions qui réalisent les traitements suivants en C puis
les traduire en assembleur :

1. vérifier qu’un entier est une puissance de 2

2. trouver le bit le plus significatif d’un entier non signé, c’est a dire la position
du bit de poids fort

o AW N =

(3 N

O N o LW N =

5.6. EXERCICES 187

3. compter le nombre de bits a 1 dans un entier non signé

Exercice 24 - Soit le code suivant :

int N = 1005;

int tab[N];
(int i = 0; i < N; ++i) {
tab[i] = 1i;

1. réaliser un dépliage par 8 du code C

2. puis le traduire en assembleur 32 bits

Attention, la difficulté lors de la traduction en assembleur provient de I'instruction
tab[i] = i; pour laquelle il faut augmenter i a chaque itération du dépliage.

Exercice 25 - Que se passe t-il si on réalise le traitement suivant (cf. Section 5.3.2.3) ?

mov eax, -6 ; eax = FF_FF_FF_FA_h
Xor edx, edx ; mise a -1 de edx
dec edx

mov ebx, 3 g

div ebx

Exercice 26 - Traduire la fonction suivante en assembleur x86 32 bits de la maniére
la plus efficace possible :

int zero_un moins _un(int x) {
(x < 0) {

188 CHAPITRE 5. TRAITEMENTS DE BASE

Chapitre 6

Appel de sous-programme

Aux cieux, les dieux,
Baptisent des dissidents belliqueux.

6.1 Introduction

Dans ce chapitre nous allons voir comment réaliser I'appel de sous-programme
en 32 et 64 bits. Malheureusement les conventions d’appel dans ces deux archi-
tectures sont tres différentes sous Linux et elles différent également entre Linux
et Windows. Il faut donc soit penser méticuleusement au choix des registres si on
désire écrire du code en 32 bits pour ensuite passer au 64 bits ou revoir entierement
son code.

6.2 Appel de sous-programme en 32 bits

Regardons dans un premier temps comment est réalisé 'appel de sous-programme
en 32 bits.

6.2.1 Role de la pile

Lorsque I'on appelle un sous-programme en 32 bits on passe les parametres dans
la pile. La pile est une partie de la mémoire centrale qui sert d’espace de stockage
et, en réalité, il existe plusieurs piles. Chaque programme se voit attribuer une
pile. Lorsque I'on bascule d’'un programme a un autre on réalise un changement de
contexte et on doit mettre a jour les différents registres pour qu’ils soient conformes
a ’état dans lequel ils étaient avant de basculer vers un autre programme. La pile
permet de garder trace des appels de sous-programmes, de passer les parametres
des sous-programmes et de créer des variables locales a un sous-programme.

189

190 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

En architecture 32 bits, le segment ss contient 'adresse du début de la pile et
Le sommet de pile se trouve dans le registre esp. On utilise le registre ebp afin de
récupérer les parameétres placés dans la pile.

Sous Linux, la pile d’'un programme possede une taille de 8 Mo qui peut étre
éventuellement redéfinie. On peut obtenir la valeur de cette taille initiale de la pile
grace a la commande ulimit -a dans le terminal.

Les deux instructions principales utilisées pour manipuler la pile sont push et
pop mais les instructions call et ret agissent également sur celle-ci.

6.2.1.1 Push pour empiler ou sauvegarder des données

L’instruction push consiste a mettre la valeur d'un registre, un emplacement mé-
moire ou une constante dans la pile. Cependant la pile possede un fonctionnement
différent et spécifique par rapport a une pile que I'on pourrait implanter soi-méme.
La pile est un tableau d’octets que I'on remplit par le haut et non par le bas comme
on le ferait classiquement.

Par exemple push eax, consiste a abaisser le sommet de pile puis y écrire la
valeur contenue dans eax ce qui se résume en fait aux deux instructions suivantes :

sub esp, 4
mov [esp], eax

On soustrait ici 4 octets a esp car eax est un registre 32 bits.

6.2.1.2 Pop pour dépiler ou restaurer des données

L’instruction pop fonctionne de maniere inverse. Par exemple pop eax, lit la
valeur en sommet de pile et la stocke dans eax puis remonte le sommet de pile :

mov eax, [esp]
add esp, 4

6.2.1.3 pusha, pushad, pushf

Il existe d’autres instructions pour empiler et dépiler des informations dans la
pile, dont notamment :

e pusha place dans la pile 'ensemble des registres généraux 16 bits (ax, cx, dx,
bx, sp, bp, si, di)

e pushad place dans la pile 'ensemble des registres généraux 32 bits (eax, ecx,
edx, ebx, esp, ebp, esi, edi)

e pushf place dans la pile le registre 16 bits flags

6.2. APPEL DE SOUS-PROGRAMME EN 32 BITS 191

e pushfd place dans la pile le registre 32 bits eflags

Bien entendu, on dispose des instructions popa, popad, popf et popfd qui réa-
lisent les opérations inverses.

6.2.2 Réalisation d’un appel de sous-programme

L’appel de sous-programme en 32 bits est 'un des concepts des plus difficiles a
appréhender lorsque I'on apprend I'assembleur car il fait appel a diverses notions
et conventions. Lors de 'appel d’un sous-programme, on distingue :

e le sous-programme appelant (un autre sous-programme) qualifié de caller
en anglais
e du sous-programme appelé (par 'appelant) qualifié de callee

Pour réaliser I'appel de sous-programme, on procede de la maniére indiquée
Table 6.1, qui consiste a suivre la convention d’appel du langage C sous Linux.

Sous-programme appelant Sous-programme appelé
(Caller) (Callee)

1 | placer les parametres dans la pile dans
I'ordre inverse de la définition du
sous-programme

2 appel du sous-programme grace a
I'instruction (call)

3 entrée dans le sous-programme :
sauvegarde de ebp, mise a jour de ebp
4 récupération des parametres grace a
ebp
5 Exécution du sous-programme
6 sortie du sous-programme : mise a

jour de esp, restauration de ebp

7 | suppression des parametres mis dans
la pile a I'étape 1

TABLE 6.1 — Appel de sous-programme en 32 bits convention du langage C

192 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

6.2.3 Registres non modifiables

La convention d’appel en 32 bits en langage C impose que le sous-programme
appelé ne modifie pas certains registres. Ces registres sont ebp, ebx, esi et edi. Il
est donc nécessaire, une fois entré dans le sous-programme appelé, de sauvegarder
ces registres dans la pile si on a l'intention de les modifier. Il faudra par la suite
les dépiler afin de restaurer leur contenu avant de sortir du sous-programme. Les
registres qui peuvent étre modifiés sont donc eax, ecx et edx.

La conséquence de cela est que si on écrit du code assembleur qui appelle une
fonction de la librairie C, on doit garder a I'esprit que eax, ecx et edx pourront étre
modifiés. Il ne faudra pas stocker de données qui doivent étre réutilisées apres
I'appel du sous-programme ou alors il faudra les sauvegarder dans la pile, puis les
restaurer.

Afin de se rappeler des registres qui sont modifiables ou non modifiables,
les deux vers qui figurent en préambule de ce chapitre, représentent un moyen
mnémotechnique intéressant :

AuX CieuX, les DieuX,
BaPtisent des DIsSIdents BelliqueuX.

Il fait apparaitre :

e sur la premiére ligne les registres modifiables : ax, cx, dx (et par extension
eax, ecx, edx)

e et sur la seconde ceux qu’il faut préserver : bp, di, si, bx (et par extension
ebp, edi, esi, ebx)
6.2.4 Valeur de retour de sous-programme en 32 bits

Lorsqu’un sous-programme retourne une valeur il doit le faire en suivant la
convention du langage C :

e s’il s’agit d’'une valeur entiere (entier, pointeur), on la place dans le registre
eax

e ¢’il s’agit d’'un nombre a virgule flottante, on le place dans st0 le sommet de
pile du coprocesseur (cf. Chapitre 7)

6.2.5 Exemple d’appel en 32 bits

Prenons un exemple simple avec le programme suivant :

o N AW =

6.2. APPEL DE SOUS-PROGRAMME EN 32 BITS 193

int sum(int a, int b) {
int r;
r = a + b;
r;

int main () {
sum(4, 5);

Le caller (main) appelle le callee (sum) qui retourne une valeur entiere mais que
la fonction main n’utilisera pas, ceci afin de simplifier le code que nous allons écrire.
Nous allons réaliser une traduction tres terre a terre de cet exemple afin de montrer
tout ce qui doit étre réalisé. Pour cela, nous utiliserons, dans la fonction sum, le
registre eax pour représenter a et ebx pour représenter b.

6.2.5.1 Appel du sous-programme

Traduisons dans un premier temps le sous-programme main (cf. Listing 6.2.1). 1l
consiste a passer les parametres dans la pile. On peut le faire ici de deux manieres
différentes puisqu’il s’agit de constantes entiéres : soit on met la constante dans
un registre et on empile le registre (lignes 2 et 3 du code qui suit), soit on empile
directement la constante (ligne 4). Dans ce dernier cas il faut préciser sur combien
d’octets on code la valeur 4. Etant donné qu’il s’agit d’'un entier sur 32 bits, on
utilise le préfixe dword pour double word.

On réalise ensuite 'appel du sous-programme sum grace a l'instruction call.
Cela a pour effet de stocker dans la pile 'adresse de retour du sous-programme,
c’est a dire I'adresse de I'instruction située juste apres call, c’est a dire la ligne 6.

Nous verrons pourquoi, ci-apres, nous appelons I'instruction add esp, 8 en
ligne 6 apres étre sorti du sous-programme.

main:
mov eax, 5 ; place dans la pile le second parametre
push eax
push dword 4 ; place le premier parametre
call sum ; appel du sous-programme
add esp, 8 ; supprime les parametres
ret

Listing 6.2.1 — Appelant en 32 bits

194 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

Convention : ordre des parametres

Par convention en C (en architecture 32 bits), on place le dernier parameétre

du sous-programme appelé en premier dans la pile et le premier parametre
du sous-programme en dernier dans la pile.

Pour notre exemple, on commence donc par le parametre le plus a droite (5) et
on termine par le plus a gauche (4).

6.2.5.2 Le sous-programme appelé

Traduisons dans un second temps le sous-programme sum qui figure Listing 6.2.2.

11
12
13
14
15
16

17

sum:
push ebp ; entrée dans le sous-programme
mov ebp, esp ;
sub esp, 4 ; création de la variable 'r'
push ebx ; sauvegarde de ebx
mov eax, [ebp + 8] ; recupération de 'a'
mov ebx, [ebp + 12] ; recupération de 'b'
add eax, ebx ; calcul du résultat
mov [ebp - 4], eax ; stockage du résultat dans 'r'
mov eax, [ebp - 4] ; mise du résultat dans eax
pop ebx restauration de ebx
mov esp, ebp ; sortie du sous-programme
pop ebp
ret

Listing 6.2.2 — Appelé en 32 bits

L’entrée dans la fonction sum consiste a réaliser les trois étapes suivantes :

1. la premiere étape est 'entrée dans le sous programme (lignes 2 et 3), elle
consiste a sauvegarder ebp puisque celui-ci va étre utilisé pour accéder aux
parametres a et b ainsi que la variable locale r, puis on affecte a ebp la valeur
de esp

2. on crée ensuite les variables locales si cela est nécessaire en réservant de
I'espace dans la pile, ici il s’agit de la variable r qui est un entier 32 bits, soit
4 octets, on abaisse donc le sommet de pile de 4 octets (ligne 4)

3. on sauvegarde les registres dont la valeur doit étre préservée pour la procé-
dure appelante, ici c’est le cas pour ebx en ligne 5 qui sera utilisé pour stocker
le parametre b

6.2. APPEL DE SOUS-PROGRAMME EN 32 BITS 195

Le role du registre ebp est primordial car c’est lui qui permet d’acceder aux
parametres et aux variables locales deés lors que 'on écrit mov ebp, esp en ligne 3.
On peut voir Figure 6.1 la mise en correspondance entre ebp et les parametres.

main:
mov eax, 5 .
Sommet de pile
push eax A
push dword 4 \ 5 ebp+16 esp
call sum \\\\\\\\\\\\\\\\.; ebp+12 esp-4
4
ebp+8 esp-8
adresse retour
ebp+4 esp-12
sauvegarde ebp
ebp esp-16
H r
sun: ebp-4 esp-20
ush eb ebx
P P / ebp-8 esp-24

mov ebp, esp =
sub esp, 4
push ebx

FIGURE 6.1 — Etat de la pile apres entrée dans le sous-programme appelé

A lintérieur de la fonction sum :

e le premier parametre (a) est en [ebp + 8]
e le second parametre (b) est en [ebp + 12]

e par extension le niéme parametre, s’il est défini, est situé a ’'adresse [ebp +
4x(n+1)]

e les variables locales sont stockées en [ebp - x] ou x dépend du nombre de
variables et de leurs types

Taille des parametres

Que le parametre soit un octet ou un mot, on le stockera sur 32 bits. S’il s’agit
d’une chaine de caracteres ou d’un tableau on passera son adresse sur 32 bits.
S’il s’agit d’une valeur 64 bits elle occupera 2 fois 32 bits.

On éxécute ensuite le corps de la fonction : on place le parametre a dans eax,
puis b dans ebx (lignes 7 et 8). On additionne ensuite ebx a eax et on stocke le
résultat dans r (lignes 9 et 10).

La sortie de la fonction consiste a faire dans I'ordre inverse ce que I'on a fait lors
de I'entrée (voir Figure 6.2) :

196 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

main:

call sum Sommet de pile
add esp, 8 e A
ebp+16 esp
5
ebp+12
. " (5]
ebp+ esp
adresse retour e
. ebp+4 esp
sun: sauvegarde ebp e
mov eax, [ebp-4] <w— | h ebp esp e
b ebp-4 esp
PO o ebx (1]
mov esp, ebp e ebp-8 esp

pop ebp e
ret e

FIGURE 6.2 — Sortie du sous-programme appelé

1. on récupere le résultat, comme il s’agit d’'une fonction entiére on le place dans
eax (ligne 12)

2. on restaure le registres ebx qui a été sauvegardé (ligne 14)

3. on rétablit esp a sa valeur quand on est entré dans la fonction (ligne 15) puis
on restaure ebp (ligne 16)

4. enfin on exécute l'instruction ret qui récupere I'adresse de retour du sous-

programme et exécutera I'instruction a cette adresse dans le sous-programme
main

Définition : Ordinateur

Il faut remarquer que 'on n’a pas supprimé la variable locale r qui avait

été créée par un sub esp, 4. Cela n’est pas nécessaire car I'étape 3 (de la
fonction sum) qui consiste a rétablir esp le fait automatiquement.

On notera que la ligne 12 n’est pas utile puisque le résultat est déja dans eax et,
de plus, la variable locale r est également inutile puisque les calculs sont réalisés
avec les registres eax et ebx. On notera que pour améliorer le temps d’exécution de
la fonction, on pourrait également remplacer ebx par ecx car ecx est un registre
modifiable et il n’est alors pas nécessaire de le sauvegarder puis le restaurer comme
on 'a fait avec ebx.

N o L AW

6.2. APPEL DE SOUS-PROGRAMME EN 32 BITS 197

6.2.5.3 Suppression des parametres

Les parametres mis dans la pile dans le sous-programme main doivent étre
supprimés car si ce n’était pas le cas on risquerait de saturer la pile. La maniere la
plus simple pour réaliser cela consiste a remonter le sommet de pile du nombre
d’octets qui correspondent a I'espace occupé par les parametres. En 'occurrence, on
a placé deux entiers 32 bits dans la pile, donc 2 x 4 octets, on doit donc remonter
le sommet de pile de 8 octets.

La convention du langage C impose que ce soit le sous-programme appelant
qui supprime les parametres. C’est pourquoi dans le code du sous-programme main
nous avons placé une instruction add esp, 8, juste apres le call.

Dans un langage comme le Pascal c’est I'inverse, c’est le sous-programme appelé
qui supprime les parametres. Dans le cas présent nous devrions écrire en Pascal
une instruction ret 8, pour quitter le sous-programme sum. La valeur qui suit ret
est forcément une constante. Nous faisons la méme chose en langage C mais en
reportant la suppression des parametres dans la fonction appelante.

Pourquoi le langage C utilise t-il la convention qui impose au sous-programme
appelant de supprimer les parametres ? La réponse est simple, en C on a la possibilité
de créer des fonctions qui peuvent prendre un nombre quelconque de parametres
comme par exemple printf. Etant donné que le sous-programme appelé ne connait
pas le nombre de parametres on ne peut pas utiliser I'instruction ret avec une
valeur constante prédéfinie puisqu’elle varie en fonction du nombre de parametres.
Par contre le sous-programme appelant sait combien de parametres il a mis dans la
pile et il est donc en mesure de les supprimer.

Tout ceci peut paraitre complexe mais il s’agit d'une mécanique tres simple et il
suffit de suivre a la lettre les regles que nous venons de voir.

6.2.6 Enter et leave

L’entrée dans un sous-programme et la sortie peuvent étre réalisées également
grace a deux instructions assembleur nommées enter et leave :

push ebp ; enter 4, O
mov ebp, esp 5
sub esp, 4 g

mov esp, ebp ; leave
pop ebp ;
ret

L’instruction enter remplace les lignes 1 et 3 du code précédent et leave les
lignes 5 et 6. On pourra se référer a [19] pour de plus amples informations quant a
ces instructions.

N o v AW N -

198 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

6.2.7 Appel rapide (fast call)

La maniere dont on appelle classiquement un sous-programme est de type cdecl,
c’est a dire déclaration du langage C. Il existe en 32 bits la possibilité d’appeler
un sous-programme en utilisant un appel dit rapide, en anglais fast call. Un appel
rapide signifie que I'on passe les parameétres dans les registres plutét que de les
passer dans la pile.

La raison derriere tout cela est qu’utiliser ebp pour accéder aux parametres est
pénalisant pour deux raisons :

e la premiere est que le sous-programme appelant place une premiere fois les
parametres dans la pile

e la seconde est que le sous-programme appelé relit les parameétres depuis
la pile et utilise plusieurs instructions (push ebp; mov esp, ebp, etc.) qui
servent uniquement a la relecture

Tout cela est finalement pénalisant et source de ralentissement. Lors d’un fastcall
les données sont passées en 32 bits dans les registres ecx et edx respectivement. Si
un sous-programme dispose de plus de deux parametres, les premiers parametres
sont placés dans les registres évoqués et le reste des parametres est placé dans la
pile.

Si on désire écrire une fonction avec appel rapide en assembleur et 'appeler
depuis un code source en langage C ou C++, il faut préciser dans le fichier C que la
fonction est externe (c’est a dire définie dans un autre fichier) et qu’elle est de type
fastcall grace a la directive __attribute__ :

// en C
int fonction(int a, int b) _ attribute_ ((fastcall));

// en C++
Hcll {
int fonction(int a, int b) _ attribute__ ((fastcall));

Il existe également une autre possibilité afin d’améliorer I'efficacité des sous-
programmes qui consiste a ne pas utiliser ebp mais a utiliser directement esp. C’est
généralement ce que font les compilateurs lorsqu’ils génerent du code optimisé.
Malheureusement cela se révele trés compliqué a gérer lorsque 'on écrit soi-méme
de I'assembleur car dés qu’on place des données dans la pile, 'acces aux parametres
est décalé et il faut garder trace constamment de 'adresse des parametres.

6.3. APPEL DE SOUS-PROGRAMME EN 64 BITS 199

6.3 Appel de sous-programme en 64 bits

Afin d’écrire des fonctions en assembleur et de pouvoir les interfacer avec un
programme C il est nécessaire de définir une convention d’appel, tout comme en 32
bits. Cette convention indique comment passer les parameétres aux sous-programmes
appelés, quels registres devront étre préservés dans les sous-programmes appelés
et comment retourner les résultats. Il existe différentes conventions d’appel en 64
bits comme celle de Microsoft. En ce qui concerne Linux, on utilise la convention
System V AMD64 ABI et c’est bien entendu celle que nous allons décrire ici.

Parameétre 64 bits 32 bits 16 bits 8 bits

1 rdi edi di dil
2 rsi esi si sil
3 rdx edx dx dl
4 rcx ecx cX cl
5 r8 r8d r8w r8l
6 ro9 rod row rol

TABLE 6.2 — Ordre des registres entiers utilisés pour la convention d’appel C sous Linux

e la premiere différence avec la convention d’appel 32 bits est que les para-
metres sont placés dans des registres et non dans la pile, il s’agit donc d’appels
de type fastcall, cependant, s’il n’y a pas assez de registres on utilise la pile
comme en 32 bits

e pour les parametres entiers on dispose de 6 registres rdi, rsi, rdx, rcx, r8,
r9 (cf. Table 6.2) que l'on utilise dans 'ordre indiqué

e les parameétres pour les nombres a virgule flottante sont passés dans la partie
basse des registres xmm@ a xmm7 (cf. Chapitre 8)

e pour retourner une valeur entiere, on la place dans rax
e pour retourner un flottant, on le place dans la partie basse de xmmo

e les registres qui ne doivent pas étre modifiés par le sous-programme appelé
sont rbp, rbx, r12ari15

On remarque donc qu’il y a un maximum de 14 parametres (6 entiers, 8 réels)
qui peuvent étre passés dans des registres avec la convention d’appel 64 bits sous
Linux.

6.3.1 Entrée et sortie de la fonction

Pour entrer dans une fonction on peut procéder comme en 32 bits en sauve-
gardant rbp puis en positionnant rbp sur rsp et lors de la sortie on effectuera les
opérations inverses :

[Y

N v AW N =

200 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

push rbp
mov rbp, rsp

mov rsp, rbp
pop rbp
ret

Néanmoins si tous les parametres d’'un sous-programme sont placés dans des
registres cela n’a aucune utilité et on peut donc faire 'économie de quatre instruc-
tions.

6.3.2 Red zone

En 64 bits, sous Linux, il est convenu que la zone mémoire de 128 octets située
dans la pile de [rsp-128] a [rspl, juste apres 'appel d’un sous-programme, et que
I'on qualifie de red zone, ne sera pas modifiée par les interruptions. On peut donc
l'utiliser pour stocker temporairement des valeurs a condition de ne pas faire de
push ou de call car ces instructions vont modifier cette zone. Notons que sous
Windows cette zone n’est pas disponible.

6.3.3 Adresses

Les adresses doivent étre précisées en utilisant les registres 64 bits uniquement.
La manipulation de la pile par I'intermédaire de push et pop impose également
d’utiliser des registres de 64 bits.

6.3.4 Exemple de traduction 64 bits

On considére la fonction C suivante qui calcule la somme des éléments ¢;/a d’'un
tableau ¢ avec a qui est une constante :

float sum(float *t, int n, float a) {
float s = 0;
(int 1 = 0; i < n; ++i) {
s =s + t[i] / a;

Sy

Nous donnons ci-apres la traduction selon g++ du code précédent en Listing 6.3.1
avec option d’optimisation -02.

D’aprés ce que nous avons vu précédemment, lors de I'entrée dans le sous-
programme le premier parametre t est placé dans rdi, la taille du tableau n est
dans rsi et la constante a est dans xmm@. On note que I'on jongle entre les registres

10
11
12
13

14

16
17
18

19

6.3. APPEL DE SOUS-PROGRAMME EN 64 BITS 201

sum:
test esi, esi ; Si n == 0 alors sortir
jle .L4 ; du sous-programme
lea eax, [rsi + -1] ; eax = n-1
pxor Xmm2, Xmm2 ;S = xmm2 = [0, 0, ... 0]
lea rax, [rdi + raxx4 + 4] ; rax = tab + (n-1)*4 + 4
.L3: ; en fait rax = tab + n*4
movss xmml, [rdi] ; xmm1.ps[@] = tab[i]
add rdi, 4 ; ++tab
divss xmm1, xmmo ; xmm1.ps[@] /= a
addss xmm2, xmm1 ;s += xmml.ps[O]
cmp rdi, rax ; si &t[i] < &tab[N] alors boucler
jne .L3
movaps Xmm@, xmm2 ; résultat placé dans xmm@
ret
.L4:
pxor Xmm2, Xmm2 ; résultat mis a o
movaps xmm@, xmm2 ; et placé dans xmm@
ret

Listing 6.3.1 — Traduction en 64 bits de la fonction sum

32 bits et 64 bits. Par exemple la taille du tableau est un entier de type int donc 32
bits, il n’est donc pas nécessaire de considérer cette valeur comme une valeur 64
bits et par conséquent on se cantonne a utiliser esi.

Décrivons a présent le comportement de ce sous-programme. Les lignes 2 et 3
vérifient que la taille est bien supérieure a 0, si ce n’est pas le cas on saute en .L4
pour mettre xmm@ a O et sortir du sous-programme. Etrangement la mise a 0 utilise
deux instructions (lignes 17 et 18) alors qu'une seule instruction xorps xmm@, xmm@d
aurait suffit. En ligne 4, on calcule dans eax le résultat de rsi - 1, c’est a dire n-1.
De méme que précédemment, on aurait pu écrire lea eax, [esi - 1].

En ligne 5, on met xmm2, qui représente s a 0. On remarque qu’on a utilisé
pxor qui est normalement destinée aux entiers et qu’il aurait fallu utiliser xorps
destinée aux valeurs flottantes, mais les deux instructions produisent au final le
méme résultat a savoir mettre ’ensemble des bits du registre SSE a 0.

En ligne 6, on calcule I'adresse de fin du tableau c’est a dire rdi + rsix4,
cependant on réalise le calcul en deux étapes (lignes 4 et 6) et on calcule :

rdi + rax *4 + 4
—~—

rsi—1
rax, i inuti i i :
ue 'on stocke dans ce qui est inutile puisqu’au final

rdi+rarx4d—4=rdi+ (rsi— 1) x4d+4d=rdi+rsixd—4+4=rdi+rsixd

On notera que I'adresse du dernier élément du tableau est &t[n-1] et I'adresse

10

11

12

13

14

15

202 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

de fin du tableau est &t[n], c’est a dire 'adresse du dernier élément du tableau
plus 4 octets.

Les lignes 7 a 13 réalisent la boucle en utilisant xmm1 pour charger t[i].
On augmente rdi de 4 octets a chaque itération de boucle pour passer au flottant
suivant jusqu’a avoir atteint rax qui est 'adresse de fin du tableau.

Enfin, lignes 14 a 15, on met le résultat s stocké dans xmm2 dans xmm@ qui est le
registre qui contient la valeur de retour de la fonction (puisqu’il s’agit d’'une valeur
en virgule flottante), puis on sort du sous-programme.

Nous avons noté beaucoup de bizzareries dans cette traduction automatique et
on peut la réécrire de maniere plus concise comme présenté Listing 6.3.2.

sum:
xorps Xmm2, xmm2 ; S =0
test esi, esi ; Si n <= 0 alors sortir
jle .end ; du sous-programme
lea rax, [rdi + rsix4] ; rax = &tab[N]
.while:
movss xmm1, [rdi] ; xmm1.ps[0] = tab[i]
add rdi, 4 ; ++tab
divss xmm1, xmmo ; xmm1.ps[@] /= a
addss xmm2, xmm1l ; s += tab[i] / a
cmp rdi, rax ; si &t[i] < &tab[N] alors boucler
jne .while
.end:
movaps Xxmm@, Xmm2 ; résultat placé dans xmm@
ret

Listing 6.3.2 — Traduction en 64 bits de la fonction sum - version améliorée

Le lecteur aura compris que le calcul peut étre simplifié puisque a est une
constante :

Rl

On pourra donc sortir I'instruction de division de la boucle .while.

6.3.5 Spécificités du mode 64 bits

6.3.5.1 With Respect To (WRT)

L’appel de fonctions externes, comme la fonction printf, doit étre réalisé en
utilisant le mécanisme de PLT (Procedure Linkage Table). Ce mécanisme permet
I'appel de fonctions dont 'adresse n’est pas connue lors de 1’édition de liens et qui
sera résolu par I’éditeur de lien dynamique lors de I'exécution.

6.3. APPEL DE SOUS-PROGRAMME EN 64 BITS 203

Il faut alors suffixer les fonctions par WRT ..plt ou WRT signifie With Respect
to :

call printf WRT ..plt

Cela n’est pas nécessaire pour les fonctions écrites en assembleur par I'utilisateur
a moins de faire appel a ces fonctions depuis un autre fichier assembleur.

6.3.5.2 Position Independent Code

En outre, en 64 bits, on utilise généralement le PIC (Position Independent Code)
qui est simple a mettre en ceuvre car on se base sur 'adressage relatif par rapport
au registre rip, le pointeur d’instruction.

De la méme maniere, le PIE pour Position Independent Executable est une fonction
de sécurité qui permet aux exécutables d’étre chargés a des adresses mémoire
aléatoires a chaque fois qu’ils sont exécutés, ce qui peut aider a prévenir certains
types d’attaques, telles que la programmation orientée retour (ROP) et certaines
formes d’attaques par débordement de mémoire tampon.

Par défaut, certaines distributions modernes de gcc générent des exécutables
indépendants de la position. Cela est utile pour les bibliotheques partagées, qui
peuvent étre chargées a différentes adresses dans différents programmes. Cepen-
dant, cela peut poser un probleme pour certains programmes de bas niveau, comme
certains programmes d’assemblage, qui peuvent dépendre d'un chargement a une
adresse spécifique.

Dans le cadre de la programmation assembleur que nous voyons dans cet
ouvrage, il est plus simple de ne pas utiliser cette fonctionnalité car elle est difficile
a mettre en oeuvre manuellement. Un compilateur sera plus a méme d’automatiser
cette tache.

C’est pourquoi il est nécessaire, pour I'écriture de notre code, d’utiliser lors de
I’édition de lien avec gcc, 'option -no-pie afin d’éviter que le compilateur ne se
plaigne du fait que le code n’est pas de type PIC. Il en résulte que le code sera
toujours chargé a la méme adresse en mémoire.

Par défaut, avec nasm I'adressage est absolu, c’est le mode qui nous convient. Si
on désire passer a 'adressage relatif il faut, en début du fichier assembleur, ajouter
la directive

default rel

6.3.5.3 Alignement de la pile

Un autre point important qui est a prendre en considération est lié a 'appel des
fonctions de la bibliothéque C. Les conventions d’appel en 64 bits imposent qu’avant

204 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

I'appel d’un sous-programme, la pile (donc rsp) contienne une adresse multiple de
16 octets. Lorsque I'on entre dans un sous-programme, on a préalablement réalisé
un call, qui en 64 bits place 8 octets dans la pile. Ces 8 octets correspondent a
I'adresse de retour de sous-programme qui sera utilisée par I'instruction ret afin
de passer a l'instruction suivant le call dans le sous-programme appelant. Cela
implique qu'une fois dans le sous-programme appelé, 'adresse de rsp est multiple
de 8.

Si on écrit un sous-programme qui fait appel a une fonction de la bibliotheque
C, il est nécessaire de rendre rsp multiple de 16 avant 'appel a cette fonction.
Pourquoi, me direz vous ? Normalement cela ne devrait pas poser de probleme. Un
appel a printf devrait étre indifférent au fait que rsp soit multiple de 8 ou de 16.
Mais pour certaines fonctions ou dans certaines version de la glibc se produit une
erreur de segmentation! Ce qui semble bien étrange mais dont I'explication réside
dans I'implantation de la fonction.

Regardons ce qui se passe au niveau du code de la fonction scanf par exemple,
en installant les sources de la bibliothéque C, version 2.31, comme suit :

1 |sudo apt-get install libc-dbg
2 |sudo apt-get install glibc-source
3 |sudo tar xvf /usr/src/glibc/glibc-2.31.tar.xz -C ~

Avec la derniere commande (tar), on installe les sources dans le répertoire
home de l'utilisateur.

On peut alors lancer le débogueur gdb sur un petit programme, ici appelé
prog.exe, qui fait un simple appel a scanf. On obtient bien une erreur de segmen-
tation (ligne 6). Avant de lancer le programme, on indique grace a la commande
directory (ligne 2) dans quel répertoire se trouvent les sources de la bibliotheque
C:

1 |> gdb prog.exe

2 | (gdb) directory /home/richer/glibc-2.31/
3 | (gdb) run

4 |Starting program: /home/richer/prog.exe

6 |Program received signal SIGSEGY, Segmentation fault.
7 | 0x00007ffff7e0da86 in __vfscanf_internal (s=0x7ffff7f96980 <_I0_2_1_stdin_>,

8 format=0x555555558023 <msg_scanf> "%d", argptr=argptr@entry=0x7fffffffd748,
9 mode_flags=mode_flags@entry=0) at vfscanf-internal.c:339

10 [339 vfscanf-internal.c: Aucun fichier ou dossier de ce type.

11 (gdb) bt

12 |[#0 0x00007ffff7e0da86 in __vfscanf_internal (s=0x7ffff7f96980 <_I0_2_1_stdin_>,
13 format=0x555555558023 <msg_scanf> "%d", argptr=argptr@entry=0x7fffffffd748,
14 mode_flags=mode_flags@entry=0) at vfscanf-internal.c:339

15 |#1 0x00007ffff7e0c20f in __scanf (format=<optimized out>) at scanf.c:38

16 |#2 0x0000555555555173 in main () at prog.asm:87

1

1

1

6.3. APPEL DE SOUS-PROGRAMME EN 64 BITS 205

Grace a la commande x/1i, on affiche la derniére instruction exécutée et donc
celle qui a provoqué l'erreur de segmentation :

1| (gdb) x/1i $pc
2 | => Ox7ffff7e0da86 <__vfscanf_internal+134>: movaps %xmm1,-0x600 (%rbp)

L’instruction est affichée au format AT&T, elle correspond en fait, sous format
Intel, a I'instruction :

movaps [rbp-0x600], xmml

qui sauvegarde le contenu du registre vectoriel xmm1 dans la pile. L’instruction
movaps impose que I'adresse de destination soit multiple de 16 (voir le Chapitre 8).

Si on affiche le contenu de rbp, on obtient :

1 | (gdb) info reg rbp
2 | rbp Ox7fffffffd738 Ox7fFfffffd738

Soit, si on s’'intéresse au trois derniers chiffres hexadécimaux a 7385 — 600,54 =
1384, donc une adresse multiple de 8, d’ou 'erreur de segmentation. Attention, ici
il s’agit de rbp et non rsp, mais rbp a été mis a jour en fonction de rsp comme on
peut le faire en 32 bits.

Pour résoudre le probleme, il suffit, dans le sous-programme qui réalise I'appel
a scanf, de remettre rsp a une valeur multiple de 16.

Soit en placant un registre dans la pile :

push rbp ; ou tout autre registre 64 bits

Soit en abaissant le sommet de pile de 8 octets :
sub rsp, 8

Soit en alignant le sommet de pile sur un multiple de 16 inférieur a la valeur
actuelle de rsp :
and rsp, ~O0xF

Il faudra bien évidemment supprimer ces octets de la pile avant de sortir du

sous-programme. On obtient, par exemple, le code suivant pour lire un entier en
64 bits :

O 0 N o 1AW N =

T N S
= S © ® W o U~ W 0 = O

206

scanf
.data

s: db "%d", O
a: dd 0

.text

; scanf ("sd", &a)
my call_ to_scanf:

sub rsp, 8
lea rdi, [s]
lea rsi, [a]
mov eax, 0

call scanf WRT
add rsp, 8

ret

CHAPITRE 6. APPEL DE SOUS-PROGRAMME

; rsp multiple de 16

; premier parametre
; second parametre
; pas de flottant traité

..plt

; on supprime les octets utilisés
; pour l'alignement

Le désassemblage du code du sous-programme précédent compilé avec un
adressage absolu sous forme de fichier objet (.0), donne :

1 |> objdump -d -j .text a.o --show-raw-insn

2 PR

3 |my_call_to_scanf():

4 0: 48 83 ec
5 4: 48 8d 3c
6 b: 00

7

8 c: 48 8d 34
9 13 00

10

1 14: b8 00 00
12 19: e8 00 00
13

14 le: 48 83 c4
15 22: 31 c0

16 24: c3

08
25

25

00

00

08

00 00 00

8: R_X86_64_32S
00 00 00

10: R_X86_64_32S
00
00

la: R_X86_64_PLT32

sub
lea

lea

mov

call

add

xor
ret

rsp,ox8
rdi,ds:0x0

.data

rsi,ds:0xo

.data+0x3

eax,0x0

le <my_call_to_scanf+0xle>
scanf-0x4

rsp,0x8

eax,eax

Le méme code généré avec I'approche PIC ou adressage realtif donne :

1 |> objdump -d -j .text a.o --show-raw-insn

4 |my_call_to_scanf():
5 0: 48 83 ec

08

3 | 0000000000000000 <my_call_to_scanf>:

sub

rsp,ox8

6.3. APPEL DE SOUS-PROGRAMME EN 64 BITS

10

11

12

13

14

15

12:
17:

1c:
20:
22:

48

48

b8
e8

48
31
c3

8d 3d 00

8d 35 00

00 00 00
00 00 00

83 c4 08
co

00 00 00

7: R_X86_64_PC32
00 00 00

e: R_X86_64_PC32
00

00

18: R_X86_64_PLT32

lea

lea

mov
call

add
xor
ret

207

rdi,[rip+0x@] # b <my_call_to_scanf+0xb>

.data-0x4

rsi,[rip+0x@] # 12 <my_call_to_scanf+0x12>

.data-0x1

eax,0x0

1c <my_call_to_scanf+0x1c>
scanf-0x4

rsp,0x8

eax,eax

On voit apparaitre 'adressage relatif par rapport a rip qui a été ajouté par nasm.
On note également que certains instructions qui n’utilisent pas le PIC sont plus
longue d’un octet.

6.3.5.4 Entrée et sortie de sous-programme en 64 bits

dans la pile.

Pour I'entrée dans un sous-programme en 64 bits, je recommande d’utiliser un
fonctionnement du type 32 bits en passant par rbp.

1. on commence par sauvegarder rbp

2. on place rsp dans rbp

3. on sauvegarde les registres que 'on désire ou que 'on doit préserver s’ils sont

modifiés

4. on aligne le sommet de pile rsp sur un multiple de 16

Des lors, on peut au travers de rbp, accéder aux valeurs des registres sauvegardés

Pour la sortie de sous-programme, on procéde de la maniere suivante :

> W b=

on dépile rbp

on place rbp dans rsp

on termine par ret

on récupere les valeurs des registres sauvegardés grace a rbp

Afin de simplifier ’écriture du code, on peut définir deux macro-instructions en
nasm :

e defsp pour define sub program

e endsp pour end sub program

La premiere macro-instruction comporte 1 a plusieurs arguments (1-*) dont le
premier est le nom du sous-programme. Il est suivi par éventuellement d’autres

O 0 N o AW N =

e
v AW N = O

208 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

arguments qui sont, soit des noms de registres généraux 64 bits, considérés comme
des identifiants, soit des entiers positifs. S’il s’agit d’'un registre général, il sera
empilé, sinon on décrémentera le sommet de pile de la quantité indiquée. Cet
espace pourra servir a stocker des variables temporaires.

$macro defsp 1l-x
%1:
$rotate 1
push rbp
mov rbp, rsp
$rep %0 - 1
$ifnum %1
sub rsp, %1
%else
push %1
%$endif
%$rotate 1
sendrep
and rsp, ~O0xF
%$endmacro

L’instruction %rep, de la ligne 6, permet de répéter %0 - 1 fois, c’est a dire
n — 1 fois les instructions qui apparaissent jusqu'a %endrep. Ici, n est égal a %0 qui
représente le nombre d’arguments de la macro-instruction. On utilise I'instruction
%rotate 1 qui permet de passer a 'argument suivant en considérant que les
arguments sont dans une liste sans fin. Par exemple, %rotate %@ nous ramene sur
le premier argument.

On termine ensuite la macro en rendant le sommet de pile multiple de 16 (ligne
14).

L’appel de cette macro peut étre réalisé de la sorte :

defsp main, rdi, rsi, 100, rbx

On note que les parametres sont séparés par des virgules. Dans ce cas précis, la
macro-instruction permettra de générer le code suivant :

main:

push rbp

mov rbp, rsp

push rdi

push rsi

sub rsp, 100

push rbx

and rsp, ~O0xF

La seconde macro-instruction qui gére la sortie du sous-programme fonctionne
sur le méme modele :

O N AW N =

10
11
12
13
14
15
16
17

N o AW N =

6.4. CODE EN 32 OU 64 BITS 209

fmacro endsp 1-—x
end %1:
$rotate 1
%assign i 8
srep 50 - 1
$ifnum %1
%$assign i 1 + %1
$else
mov %1, [rbp - i]
%assign 1 1 + 8
$endif
$rotate 1
%endrep
mov rsp, rbp
Pop rbp
ret
%$endmacro

Elle permet de récupérer les valeurs mises dans la pile. On y fait appel de la
méme manieére que pour defsp :

endsp main, rdi, rsi, 100, rbx

On obtient alors le code suivant :

end main:

mov rdi, [rsp - 8]
mov rsi, [rsp - 16]
mov rbx, [rsp - 124]
mov rsp, rbp

Pop rbp

ret

6.4 Code en 32 ou 64 bits

On peut se demander s’il est préférable de compiler son code en 32 ou 64 bits.
A Theure ol nous écrivons cet ouvrage les fournisseurs de systemes d’exploitation
commencent a abandonner le support 32 bits. Il est toujours possible de compiler
du code 32 bits sur un systéeme 64 bits mais cela requiert d’installer des librairies
spécifiques : avec gcc notamment, le package multilib.

Un code C compilé en 64 bits s’exécute normalement plus rapidement que du
code 32 bits parce que le passage des parameétres des sous-programmes se fait
dans les registres et que I'on dispose de plus de registres de calcul pour stocker des
résultats temporaires '. On dispose de plus de registres en 64 bits ce qui permet

1. Cependant, dans certains cas, un programme 32 bits peut étre plus rapide qu'un programme
compilé en 64 bits.

210 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

de stocker plus de données temporaires dans les registres et faire moins d’appels
a la mémoire pour certains traitements, on est donc sensé gagner en efficacité.
L’écriture du code est également simplifiée mais plus contraignante qu’en 32 bits.

Il semble donc préférable d’écrire le code assembleur uniquement en 64 bits et
compiler ses programmes en 64 bits dorénavant.

6.5 Conclusion

6.5.1 Que retenir?

>> en architecture 32 bits les parametres des sous-programmes sont passés dans
la pile. Les valeurs de retour des fonctions sont passées dans le registre eax
s’il s’agit d’'un entier ou d’un pointeur ou dans le sommet de pile de la FPU s'il
s’agit d'un nombre a virgule flottante

> en architecture 64 bits les parametres des sous-programmes sont passés dans
les registres généraux (rdi, rsi, rdx, rcx) s’il s’agit d’entiers ou de pointeurs
et dans les registres SSE s’il s’agit de nombres a virgule flottante. Les valeurs
de retour des fonctions sont passées dans le registre rax s’il s’agit d’un entier
ou d’un pointeur ou dans xmmO s’il s’agit d'un nombre a virgule flottante

> les conventions d’appel en architecture 32 et 64 bits étant différentes il est
trés souvent nécessaire de modifier le code assembleur pour passer d'une
architecture a I'autre.

6.5.2 Compétence a acquérir

Il faut étre en mesure de :

[J réaliser un appel de sous-programme en 32 bits

[0 récupérer les arguments d’un sous-programme écrit en 32 bits
[J réaliser un appel de sous-programme en 64 bits
0

savoir dans quels registres se trouvent les arguments d’un sous-programme
écrit en 64 bits

6.6 Exercices

Exercice 27 - Réaliser le codage du sous-programme suivant en 32 bits, puis en 64
bits :

® N o s~ W N =

N o AW =

6.6. EXERCICES 211

float procedure (int xtab, int n) {
float sum = O;
(int 1 = 0; 1 < n; ++i) {
tab[i] = tab[i] / 2;
sum += tab[i] *x 1.25;

sqgrt (sum) ;

Exercice 28 - Réaliser le codage du sous-programme suivant en 32 bits, puis en 64
bits :

double procedure (double x*tab, int n, double k) {
double sum = 0;
(int 1 = 0; 1 < n; ++i) {
sum += tab[i] / k;

sqgrt (sum) ;

212 CHAPITRE 6. APPEL DE SOUS-PROGRAMME

Chapitre 7

Coprocesseur arithmétique

Quelle prétention de dire que I'informatique est récente,
Adam et Eve avaient déja un Apple!
Anonyme.

7.1 Introduction

Dans ce chapitre nous allons voir comment utiliser le coprocesseur arithmétique
afin de réaliser des calculs avec des nombres a virgule flottante. L’ensemble des
instructions du coprocesseur commencent par la lettre ’ f’ pour Floating point value.
Le coprocesseur était absent sur les premiers microprocesseurs de la famille x86
mais on pouvait ajouter un circuit externe sur la carte mere chargé de faire les
calculs des nombres en virgule flottante. Ce circuit a donc été nommé coprocesseur
dans la méme veine que coéquipier, c’est a dire celui qui vient aider pour réaliser
une tache. Le premier coprocesseur pour I'Intel 8086 fut I'Intel 8087. D’autres
coprocesseurs furent produits pour les microprocesseurs suivants dans la gamme
x86 : 80287, 80387, 80487, jusqu’a l'intégration du coprocesseur au sein du
microprocesseur a partir des Intel 80486DX. On ne parle donc plus a présent de
coprocesseur mais plutét de FPU pour Floating Point Unit, comme nous I'avons vu
dans le Chapitre 3.

7.2 Organisation de la FPU

La FPU est composée des éléments suivants (cf. Figure 7.1) :

e une pile de 8 registres (Registers Stack)
e le registre opcode qui contient le code de la derniére instruction exécutée

e le registre de statut qui contient le sommet de pile, les exceptions et les flags

213

214 CHAPITRE 7. COPROCESSEUR ARITHMETIQUE

e le registre de contréle qui contrdle la précision et 'arrondi des méthodes de
calcul

e le registre d’étiquette (Tag Register) indique le contenu (valid, 0, NaN, infini)
de chaque registre du coprocesseur

e le registre dit pointeur de derniere instruction (Last Instruction Pointer) qui
pointe sur la derniére instruction exécutée

e le registre dit pointeur de derniere donnée (Last Data Pointer) qui pointe vers
I'opérande de la derniére instruction exécutée

80 bits
RO
R1
R2 ST2
R3 ST1
R4 STO
R5
R6
R7
16 bits 48 bits
‘ Control register ‘ ‘ Last instruction pointer ‘
‘ Status register ‘ ‘ Last data pointer ‘
‘ Tag register ‘ Opcode ‘

10 bits

FIGURE 7.1 — Registres du coprocesseur

7.3 Manipulation des données et de la FPU

Le coprocesseur comporte 8 registres notés RO a R7 mais qui ne sont pas
manipulables directement. On y accéde au travers d’une pile dotée de 8 registres
appelés st@ a st7 que ce soit en architecture 32 ou 64 bits.

Des que 'on charge une nouvelle donnée dans st, les données déja stockées
dans st@ a st6 sont déplacées vers st1 a st7. En réalité, la pile du coprocesseur
peut étre vue comme une liste, on recule donc le pointeur de sommet de pile et
cela revient a ajouter la nouvelle valeur en début de liste.

Les registres st@ a st7 occupent chacun 80 bits ce qui permet de disposer d’une
grande précision de représentation afin de réaliser des calculs justes comparative-
ment aux nombres en simple ou double précision. L’exposant occupe alors 15 bits
et la mantisse 64 bits.

O 0 N o LW N =

P T e T
o 1 A W N = O

7.3. MANIPULATION DES DONNEES ET DE LA FPU 215

Comme nous le verrons ci-apres, si on charge plus de huit valeurs dans la pile
du coprocesseur, on génere une exception. Il faut donc prendre I'habitude de ne
laisser qu'une valeur dans st@ qui correspond au réstulat du dernier calcul, puis la
supprimer lorsqu’on n’en a plus besoin.

7.3.1 Chargement avec fld

Le chargement des données se fait grace a l'instruction f1d, pour Floating point
LoaD, en précisant la quantité chargée. Par exemple :

e dword pour un flottant en simple précision

e qword pour un flottant en double précision

Il existe également une instruction fild pour Floating point Integer LoaD qui
permet de charger une valeur entiére qui sera convertie en nombre en simple ou
double précision.

On ne peut pas charger une donnée depuis un registre général, uniquement
depuis la mémoire ou a partir d’'un autre registre du coprocesseur :

.data
a: dd 1.25 ; float a = 1.25
b: dg 3.75 ; double b = 3.752567871
c: dd 31 ; int ¢ = 31
d: dg 123 ; long int d = 123
.text

fld dword [a]
fld gword [b]
fld stl

f1ld st2

fild dword [c]
fild gqword [d]
ret

Nous pouvons voir Table 7.1 les effets du chargement des données du pro-
gramme assembleur précédent. A mesure que I'on charge de nouvelles données les
précédentes sont déplacées dans la pile du coprocesseur.

Afin de faciliter I'écriture des calculs, un certain nombre de constantes sont pré-
définies et peuvent étre chargées en utilisant le mnémonique adéquat (cf. Table 7.2).
On pourra donc charger les constantes 0 et 1,0. Mais si on désire utiliser 2,0, il
faudra stocker cette donnée en mémoire puis la charger dans sto.

216 CHAPITRE 7. COPROCESSEUR ARITHMETIQUE

Instruction ‘stO stl st2 st3 st4 st5 st6 st7

fld dword [a] | 1.25 ? ? ? ? ?
fld qword [b] | 3.75 1.25 ? ? ? ?
fld st1 1.25 3.75 1.25 ? ? ?
fld st2 1.25 1.25 3.75 1.25 ? ?
fild dword [c¢] 31 1.25 1.25 3.75 1.25 ?
fild qword [d] | 123 31 1.25 1.25 3.75 1.25

N Y D Y Y Y
A R S " S)

TABLE 7.1 — Effets du chargement de valeurs dans le coprocesseur

fldz 0.0

£1d1 1.0

fldpi 7r

fldl2e log(e) = 1.442695
fldl2t log»(10) = 3.312928
fldlg2 l0g10(2) = 0.3102999
fldln2 l0ge(2) = 0.693147

TABLE 7.2 — Constantes prédéfinies du coprocesseur (valeurs approchées)

7.3.2 Stockage avec fst
Le stockage fonctionne comme le chargement, on indique ’emplacement mé-

moire au format dword ou qword vers lequel on désire stocker la valeur en sommet
du coprocesseur.

La plupart des instructions que nous allons voir par la suite disposent d'un

suffixe formé de la lettre p. C’est le cas pour fst, fstp. Ajouter le suffixe p
signifie qu’on dépile (pop) le résultat.

Voyons cela sur un exemple :

section .data
a: dd O
b: dg O

section .text
f1d1
fst dword [a]
fstp qword [b]

7.4. OPERATIONS 217

Pour le code précédent, on commence par charger la valeur 1.0 dans sto (ligne
6), puis a la ligne 7, on stocke cette valeur dans la variable a sous forme d’'un
flottant simple précision. A la ligne 8 ,on stocke la valeur contenue dans st@ qui est
toujours 1.0 en b sous forme d’une valeur flottante 64 bits, puis on la supprime de
st0. On se retrouve finalement avec une pile vide.

7.4 Opérations

Nous donnons a présent une liste non exhaustive des opérations que I'on peut
utiliser avec la FPU.

7.4.1 Opérations de base

En ce qui concerne les opérations arithmétiques de base que I'on peut utiliser,
on dispose de :

e fadd, faddp pour 'addition st@ = st@ + src

e fsub pour la soustraction st@ = st@ - src

e fsubr pour la soustraction inverse st0 = src - sto

e fmul, fmulp pour la multiplication

e fdiv, fdivp, fdivr, fprem pour la division st@ = st@ / src

e fdivr pour la division inverse st0 = src / sto

fprem reste de la division

Ces opérations peuvent étre suffixées par la lettre p pour dépiler la valeur
au sommet de la pile du coprocesseur. Elles fonctionnent toutes sur le méme
modele, par exemple pour fadd nous donnons Table 7.3 les différentes variantes
de l'instruction sachant que le registre st@ représente le sommet de pile et sti
représente 'un des 7 autres registres soit st1 a st7.

fadd [mem] st@ += [mem]

fadd sti sto += sti

fadd sti, st®0 sti += st@

faddp sti sti += sto, puis sto est dépilé

faddp sti, st@ identique a l'instruction précédente

fiadd [mem] sto += (float) [mem], ou [mem] est un entier

TABLE 7.3 — Description de l'instruction fadd

O O N o AW N =

= e
N = O

218 CHAPITRE 7. COPROCESSEUR ARITHMETIQUE

On note que fadd sti et faddp sti ont un comportement différent alors
qu’elle ne devrait normalement différer que d’un pop :

o fadd sti:std += sti
e faddp sti:sti += sto, puis sto est dépilé

On dispose également d’opérations comme :

e fabs pour le calcul de la valeur absolue

e fchs changement de signe

e fsqrt calcul de la racine carrée

e fscale calcul de st0 = st0"

o f2xm1 : st0 = 250 — 1

o fyl2x : st0 = stl x log2(st0)

o fyl2xpl : st0 = stl x log2(st0 + 1)

e fxtract extrait 'exposant du nombre stocké dans sto

7.4.2 Opérations trigonométriques
Pour appliquer les opérations trigonométriques, on utilise les fonctions suivantes

qui s’appliquent uniquement sur st@ qui représente une mesure d’angle exprimée
en radians :

fcos, fsin, fsincos, fptan, fpatan pour le cosinus

fsin pour le sinus

fptan calcul de la tangente (partielle)

fpatan calcul de I'arctangente (partielle)

fsincos calcul du sinus et cosinus, st@ = cos(st0), st1 = sin(st0)

Par exemple, le code qui suit commence par convertir un angle de 60° en
radians, puis applique la fonction fsincos :

.data
angle: dd 60 ; degrés
cqv: dd 180 ; degrés
.text

; calcul de pi * 60 / 180 pour avoir la mesure en radians

fild dword [angle] st0 = 60.0
fild dword [cqv] st0 = 180.0 stl = 60.0

fldpi st0 = pi, stl = 0.3333...
fmulp stl, stoO st0 = pi ~ 0.3333...
fsincos

fdivp stl, stO ; stl = 60.0 / 180.0, puis pop st0 = 0.3333...

7.5. ERREURS LIEES A LA FPU 219

On obtient donc dans st@ la valeur 0.5 et dans st1 la valeur 0.86 qui corres-
pondent respectivement au cosinus et sinus d’'un angle de 60 degrés.

7.4.3 Manipulation de la pile de la FPU

La FPU n’a pas directement acces au flux d’instructions du microprocesseur.
Celui-ci lui transmet les intructions qui la concernent. Pendant que la FPU exécute
les instructions qui lui sont envoyées, le microprocesseur peut continuer a exécuter
d’autres instructions qui n’agissent pas sur les flottants car certaines instructions
de la FPU peuvent étre relativement lentes en comparaison des instructions qui
agissent sur les entiers.

Le microprocesseur garde néanmoins la main et est en mesure de lire ou d’écrire
les registres de statut et de controle de la FPU. Dans certains cas il est préférable
d’acceder a ces registres sans attendre, par contre d’en d’autres situations il est
nécessaire d’attendre que la FPU ait terminé le calcul de I'instruction en cours
d’exécution.

Les instructions suivantes permettent de manipuler la pile du coprocesseur soit
de maniere locale en modifiant un registre (ffree) soit de maniere globale (fsave,
frstor). Certaines de ces instructions commencent par les lettres fn, la lettre n
signifiant no-wait.

e fwait synchronisation des exceptions avant de passer a la prochaine instruc-
tion

e finit initialise ou réinitialise le coprocesseur

e fclex, fnclex supprime les exceptions qui auraient été levées

e fsave, fnsave sauve 'état et les registre du coprocesseur, soit 108 octets

e frstor restaure I'état et les registres du coprocesseur

e ffree libére un registre

7.5 Erreurs liées a la FPU

Deux types d’erreurs peuvent se produire lors de calculs avec les nombres
flottants :

e les erreurs de calcul : calcul d’une racine carrée négative, débordement,
division par zéro

e les erreurs liées a la gestion de la pile de la FPU : pile pleine, pile vide

Pour gérer 'ensemble des erreurs, la FPU utilise deux registres appelés registre
de statut dont la description est donnée Table 7.4, ainsi qu'un registre de controle

220 CHAPITRE 7. COPROCESSEUR ARITHMETIQUE

Bit Identifiant Description Exception
0 FPU_IE Opération Invalide oui
1 FPU_DE Opérande dénormalisée oui
2 FPU_ZE Division par Zéro oui
3 FPU_OE Débordement (Overflow) oui
4 FPU_UE Débordement (Underflow) oui
5 FPU_PE Précision oui
6 FPU_SF Erreur Pile (Stack Fault)

7 FPU_ES Résumé Erreur
8 FPU_CO C0 (Retenue)
9 FPU_C1 C1 (Débordement)

10 FPU_C2 C?2 (Parité)

11-13 - Sommet de pile
14 FPU_C3 C3 (Zéro)
15 FPU_B Busy Bit

TABLE 7.4 — Description du registre de statut de la FPU

que nous ne détaillerons pas car le registre de statut est suffisant pour traiter les
erreurs qui nous intéressent.

Pour le registre de statut les bits 0 a 5 correspondent a des exceptions qui
peuvent étre interceptées au niveau d’un programme C en utilisant un gestionnaire
de signal (Signal Handler). Le signal levé est SIGFPE soit Signal Floating Point
Exception.

Les bits 11 a 13 codent sur 3 bits le sommet de pile, celui-ci est initialement a
7 puis descend jusqu’a 0. Si on place plus de 8 valeurs dans la pile de la FPU on
génere une erreur FPU_SF et les prochaines valeurs chargées dans la FPU seront
remplacées par —Na/N (moins Not a Number).

On trouvera sous Linux dans le fichier /usr/include/fenv.h les signaux liés
a la FPU et on pourra consulter le fichier signal_handler.cpp dans les sources
des études de cas car il gere les différents signaux qui peuvent étre levés grace
a la classe SignalHandler. On consultera également la méthode main qui appelle
la classe SignalHandler dont le constructeur a pour but d’intercepter les signaux
principaux.

Enfin, les bits qui correspondent aux identifiants Co a C3 sont des bits dits de
condition (Condition Flags) qui sont calqués sur les bits du registre des flags. Ces
bits qui sont utilisés lors des comparaisons peuvent étre copiés dans le registre
des flags mais il faut utiliser la série d’instructions suivantes pour réaliser cette
opération ce copie nécessaire pour certaines instructions de comparaison :

N o L AW =

7.6. COMPARAISON 221

fstsw ax
sahf

7.6 Comparaison

Il existe différentes instructions pour la comparaison de valeurs flottantes. On
pourra consulter la documentation de ftst, fcom, fcomp, fcompp, fucom, fucomp,
fucompp dans la documentation Intel.

Les instructions un peu plus intéressantes pour le développeur sont fcomi,
fcomip, fcomu, fcomup, fcomip, fcucomi et fcuomip car elles réalisent la compa-
raison de deux valeurs et mettent directement a jour le registre flags a partir des
bits de condition de la FPU.

7.6.1 Comparaison en architecture 32 bits

Par exemple pour comparer deux valeurs flottantes :

int compare_32bits (float x, float y) {
(x > y) {
1;
} {
3;

En 32 bits, on commence par charger y, puis x. On compare ensuite x a y grace a
l'instruction fcomip qui réalise la comparaison et dépile x de st@. On dépile ensuite
y (ligne 8). On utilise I'instruction de branchement conditionnel jbe (Jump Below
or Equal) pour exécuter le .else dans le cas ou = < y.

compare_32bits:
push ebp

mov ebp, esp
fld dword [ebp+12] ; on charge y
f1ld dword [ebp+8] ; puis x
fcomip st0, stl ; X est en st0, y en stl, on compare
; x ay et on dépile x
fstp st0 ; supprime y
jbe .else
mov eax, 1
Jjmp .endif
.else:
mov eax, 3
.endif:

mov esp, ebp

16
17

222 CHAPITRE 7. COPROCESSEUR ARITHMETIQUE

pop ebp
ret

Instructions de saut pour les flottants

Pour des raisons historiques les instructions de comparaison sur les flottants

ne mettent pas a jour les mémes bits du registre EFLAGS que l'instruction cmp.
On a donc défini d’autres instructions de branchement comme jb (au lieu de
jl1) et ja (au lieu de jg). Il existe également jbe et jae.

Pour résumer, pour comparer deux valeurs (x a y), on commence par charger y
dans le coprocesseur, puis = et on exécute fcomip ou fcomip st@, st1.On prend
alors le méme raisonnement que pour un if entre valeurs entieres. On prend la
négation de la condition pour se brancher sur le . Il ne faut pas oublier de
supprimer les valeurs chargées au niveau du coprocesseur.

7.6.2 Comparaison en architecture 64 bits

Lorsque I'on travaille en 64 bits, ce sont les registres SSE qui sont utilisés (cf.
Chapitre 8) pour réaliser les calculs avec les nombres flottants. En prévision de ce
que nous verrons dans le prochain chapitre nous montrons comment le compilateur
C traduit le code suivant :

void equal_64bits (float x, float y) {
(fabs (x - y) <= le-6) {
// code du then
} {
// code du else

On a vu Chapitre 6 que les variables x et y sont respectivement placées dans les
registres xmm@ et xmm1 :

equal_64bits:
subss xmmO0, xmml
andps xmm0O0, XMMWORD PTR .LCO[rip]
cvtss2sd xmm0O, xmmO
movsd xmml, QWORD PTR .LCl[rip]
comisd xmml, xmmO

jb .else
.then:

Jjmp .endif
.else:

.endif:

14
15
16
17
18
19
20
21
22
23
24

AW N R

7.6. COMPARAISON 223

ret
.LCO:
.long 2147483647 ; OxX7FFFFFFF
.long 0
.long 0
.long 0
.LC1:

.long 2696277389 ; 0xAOB5SEDSD
.long 1051772663 ; Ox3EBOC6F7

On commence donc par calculer la différence x-y (ligne 2), puis on calcule la
valeur absolue (ligne 3) en appliquant un masque qui ne garde que les 31 premiers
bits du registre xmm@ qui lui, occupe 128 bits (variable .LC®). En ligne 4, on convertit
le résultat simple précision en double précision et on le compare a 10~¢ codé en 64
bits au format IEEE 754 en .LC1. Le reste du code exécute le . then dans le cas ou
la condition du if est vérifiée, sinon il exécute le .else.

Il faut noter que la constante le=® placée en .LC1 est donnée au format
IEEE 754 double précision dans le code et représente la valeur hexadécimale
Ox3EBOC6F 7A@B5EDSD qui correspond en fait a la valeur :

9.99999999999999954748111825886 E — 7

Il existe également une instruction \gls {cmpss} xmm1, xmm2, imm8 qui permet
de comparer deux valeurs 32 bits en partie basse des registres qui sont passés en
parameétre. La constante imm8 indique quel type de comparaison doit étre réalisée

(cf. Table 7.5).
imm8 Type de comparaison

xmm1.ps[0] > xmm2.ps[0]
ordered

0 xmm1.ps[@] == xmm2.ps[0]
1 xmm1.ps[0] < xmm2.ps[@]
2 xmm1.ps[@] <= xmm2.ps[0]
3 unordered

4 xmm1.ps[@] != xmm2.ps[0]
5 xmm1.ps[@] >= xmm2.ps[@]
6

7

TABLE 7.5 — Comparaison avec cmpss

L’implantation de cmpss est donc la suivante :

bool cmp (float x, float y, u8 imm8) ({
(imm8) {
Ok X == y;
il g x < y;

O ® N o w

10
11
12
13
14
15
16
17
18
19

224 CHAPITRE 7. COPROCESSEUR ARITHMETIQUE

2: x <= y;
SF (x == Nan) || (y == NaN);
4: x !=y;
5E X >=y;
6: X > y;
Ve (x != Nan) && (y !'= NaN);
}
}
bool res = cmp (xmml.ps[0], xmml.ps[1l], imm8)
(res == true) {
xmml .ps[0] = OxXFFFFFFFF;

} {
xmml.ps[0] = 0x00000000;

Notamment la relation unordered est vraie si au moins un des opérandes est
égale a NaN, alors que la relation ordered est vraie si aucune des opérandes n’est
égale a NaN

Il existe I'instruction cmpsd (Compare Scalar Double-Precision Floating-Point
Value) pour comparer deux double, instruction qui possede le méme mnémonique
que cmpsd (Compare String Operands). Il ne faut donc pas les confondre. La premiere
utilise des registres vectoriels comme opérandes alors que la seconde ne possede
pas d’opérande.

7.7 Traduction des expressions réelles

Pour traduire une expression en utilisant les instructions assembleur du copro-
cesseur il suffit de procéder en trois étapes :

1. représenter I'expression sous forme d’un arbre binaire

2. la traduire en notation polonaise inverse (RPN ') en réalisant un parcours
postfixe de I'arbre

3. traduire la version en notation polonaise inverse par des instructions du
coprocesseur en suivant les regles de traduction décrites ci-apres

Prenons I'exemple suivant :
(x4+1) x (z—1)
3—Vz

La représentation sous forme d’arbre binaire de cette expression est donnée
Figure 7.2. On notera que 'arbre n’est pas un arbre binaire au sens strict puisque

1. ou Reverse Polish Notation est une notation post-fixée qui permet d’écrire de facon non ambigué
les formules arithmétiques sans utiliser de parenthéses.

7.7. TRADUCTION DES EXPRESSIONS REELLES 225

pour la racine carrée (/x), on a qu’une seule branche. Dans le cas des opérateurs
unaires on ne disposera que d’une seule branche au niveau de I'arbre et on peut
convenir qu’il s’agit de la branche gauche ; la branche droite étant nulle (pointer
non représenté).

(z+1)x (z—1)
3—Vz

FIGURE 7.2 — Représentation arborescente de

Le parcours postfixe de 'arbre consiste a visiter récursivement le fils gauche,

puis le fils droit s’il existe et enfin le noeud. Si I'un des fils est également un noeud,

on réitere le processus jusqu’a parvenir a une feuille de 'arbre, représentée ici par

un rectangle au bords carrés vert sur la figure. Les noeuds internes sont représentés

par des rectangles aux bords arrondis de couleur bleu. Au final 'expression postfixe
est :

x1.0+x 1.0 -%*3.0xsqrt -/

Les régles de traduction en assembleur a partir de ’expression RPN sont tres
simples :

e s’il s’agit d’'une constante ou d’'une variable, on la charge au niveau du copro-
cesseur grace a l'instruction fld

e s’il s’agit d'un opérateur unaire, on I'applique sur sto

e s’il sagit d'un opérateur binaire, on applique la formule f<Oper>p st1,sto,

ou Oper = add, sub, mul, div

A partir de 'expression précédente, on obtient donc :

O O N AW N -

T S
=~ & © ® N o0 O & W B = O

O O N o AW N =

226

trois

fld
£f1d1
faddp

f1d
f1d1
fsubp

fmulp
fld
fld
fsqrt
fsubp

£divp

CHAPITRE 7. COPROCESSEUR ARITHMETIQUE

data
: dd 3.0 ; constante
text
g ox o A
dword [x]
stl, stO
g ox = 1
dword [x]
stl, stO
;o (x+1) x (x—-1)
stl, stO

; 3 — sqgrt (x)
dword [trois]

dword [x]
stl, stO

;o (x+1)*(x=1) / (3 — sqgrt(x))
stl, stO

On notera que dans le cas des constantes, si la constante n’est pas une des

constantes

prédéfinies du coprocesseur il est nécessaire de la stocker en mémoire.

7.8 Affichage d’une valeur flottante

7.8.1 Architecture 32 bits

En32b

its laffichage est assez simple, il suffit de déclarer en externe la fonction

printf et de suivre la convention d’appel du langage C avec cependant une spé-
cificité. Une valeur de type simple précision doit étre convertie en une valeur double
preécision avant Uaffichage, comme sur le code suivant :

float x =
printf ("%

3.14;
f\n", x);

est donc traduit en :

pr

intf

.data

msg:

dd 3.14
db “%$£f\n°, 0

.text

fld
sub

dword [x] ; chargement simple précision
esp, 8 ; réservation de 64 bits pour

10
11
12

14

O 0 N o bW N

11
12
13
14

16
17
18
19
20

7.9. CONCLUSION

fstp gword [esp]
push dword msg
call printf

add esp, 12

’

4

227

double précision

conversion en 64 bits dans la pile

Afin de convertir la valeur en une valeur double précision, on réserve 8 octets
dans la pile et on utilisera ces 8 octets comme parameétre de la fonction printf.

7.8.2 Architecture 64 bits

Pour une architecture 64 bits, d’apres ce qui a été vu en Section 6.3.5, on doit

procéder ainsi

printf

default rel

.data
X: dd 3.14
msg: db "%$f\n°, O
.text
affiche:
push rbp
mov rbp, rsp
movss xmm0, [x]
cvtss2sd xmmO, xmmO
lea rdi, [msg]
mov rax, 1
call printf WRT
mov rsp, rbp
Pop rbp
ret

.plt

’
4
4

4

’

; utilisation de 1l'adressage relatif

| ces deux instructions sont

| normalement inutiles

utilisation de xmmO pour stocker x
conversion au format double précision

indique qu'il y a une valeur flottante

| ces deux instructions sont
| normalement inutiles

Le registre rdi contient 'adresse de la chaine du format d’affichage. La valeur
flottante est placée dans le registre xmm@ et est convertie en double précision comme
en 32 bits. Enfin, le registre rax doit contenir le nombre de valeurs flottantes a

traiter avant 'appel a printf.

7.9 Conclusion

7.9.1 Que retenir?

> le coprocesseur arithmétique permet de réaliser les calculs des nombres a
virgule flottante

228 CHAPITRE 7. COPROCESSEUR ARITHMETIQUE

> initialement absent, puis par la suite positionné sur la carte mere, il est aujour-
d’hui intégré au microprocesseur et est qualifié de FPU (Floating Point Unit).
On trouve généralement plusieurs unités FPU au sein du microprocesseur

> la FPU fonctionne comme une pile dotée de huit registres st@ a st7
> les instructions assembleur liées a 1a FPU commencent par la lettre f

> toute donnée empilée dans la FPU doit étre dépilée

7.9.2 Compétences a acquérir
Apreés lecture et travail sur ce chapitre, on doit étre capable de :

[0 traduire un calcul avec des nombres a virgule flottante sous forme dune
série d’instructions assembleur, pour cela on modélise I'expression sous forme
d’'un arbre binaire que I'on traduit en utilisant les reégles données dans la
Section 7.7.

[0 comparer deux nombres flottants

7.10 Exercices

Exercice 29 - Montrer comment, en utilisant les registres généraux et les instruc-
tions associées, on peut réaliser les opérations de la FPU comme fabs qui calcule la
valeur absolue ou fchs qui change le signe d’une valeur flottante sur 32 bits. On
chargera la valeur flottante dans eax par exemple avant de réaliser 'opération.

Exercice 30 - Implantez la fonction iota en architecture 32 bits en utilisant la
FPU :

void iota (float x*t, int n) ({
(int i=0; i<n; ++i) {
t[i] = (float) 1i;

Exercice 31 - Implantez I'expression suivante en architecture 32 bits en utilisant la

FPU :
(x —5) X (z +6)

cos(x — 5)?

1. on commencera par dessiner ’expression sous forme d’arbre binaire

X sin(z + 6)

2. puis on identifiera les sous-expressions qui sont répétées comme z — 5 et x + 6

N o v AW N =

7.10. EXERCICES 229

3. on traduira I'expression non optimisée

4. puis on donnera une version en optimisant les calculs en ne recalculant pas a
chaque fois les sous-expressions répétées

Exercice 32 - Implantez la fonction puissance en architecture 32 bits en utilisant
la FPU :

float puissance (float x, int n) {
float result = 1;
(int i=0; i<n; ++i) {
result *= x;

result;

Faire de méme en 64 bits.

Exercice 33 - Ecrire un programme assembleur qui calcule I'expression suivante
sous forme d’un développement limité :

— = l4z+22+22+.. .+
(1—z)

Cette formule fonctionne lorsque z est proche de 0, on pourra essayer avec
x = 0.2 par exemple et déterminer a partir de quelle valeur de n on peut s’arréter
car n ne modifie plus la précision du calcul.

Exercice 34 - Ecrire un programme assembleur qui permet de trouver les solutions
a valeurs dans R d’une équation du second degré az? + bz + ¢ = 0. On utilisera
la FPU pour réaliser les calculs. On rappelle qu’il faut calculer le discriminant
A = b? — 4ac, puis si A > 0, on trouvera des solutions réelles :

_chtva _b=vA

Ty =

i 2a 2a

On utilisera l'instruction fcomip st@, st1 afin de réaliser une comparaison
entre A et 0.

230 CHAPITRE 7. COPROCESSEUR ARITHMETIQUE

O 0 N oy Ll AW N =

Chapitre 8

Unités vectorielles

8.1 Introduction

Les unités vectorielles permettent de vectoriser le code, en d’autres termes, de
le paralléliser au sein du microprocesseur. On exécutera la méme instruction sur
plusieurs données différentes stockées dans un registre de type MMX (64 bits), SSE
(128 bits) ou AVX (256 bits).

Par exemple avec la technologie SSE, au lieu d’écrire :
float v1[(4], v2[4], v3[4];

void vector_sum(float xx, float +y, float xz, int size) {
(int 1 = 0; 1 < 4; ++i) {
z[i] = x[i] + yl[i]

}

vector _sum(vl, v2, v3, 4);

On réalise une seule opération en parallele sur un registre capable de contenir
4 floats, ce que I'on note :

z[0:3] = x[0:3] + y[0:3]

La notation x[@:3] symbolise x[@] a x[3], elle n’est pas utilisable en langage C,
elle nous permet seulement d’exprimer de maniere concise le traitement réalisé.

On parle alors de traitement SIMD pour Single Instruction Multiple Data, cela
signifie que la méme instruction est appliquée sur des données différentes et pour
que cela ait un intérét en terme de performance, on réalise les calculs en parallele
et non pas de maniere séquentielle.

Par la suite nous allons nous intéresser aux technologies SSE et AVX et nous ne

231

232 CHAPITRE 8. UNITES VECTORIELLES

traiterons pas du MMX désuet a présent.

La technologie MMX pour MultiMedia eXtensions est apparue sur les processeurs
Intel Pentium MMX en 1997. 1l s’agit d'un jeu d’instructions composé de 57 ins-
tructions qui traitent uniquement des entiers d'un maximum de 64 bits. Le MMX
souffre d'un défaut majeur qui fait qu’il rend indisponible la FPU puisqu'’il en utilise
une partie des registres. On ne peut donc travailler simultanément avec la FPU et
le MMX. Ce défaut a été corrigé avec I'introduction du SSE.

Notons également que nous allons suivre la convention de représentation Intel
pour les instructions SSE qui consiste a écrire les valeurs d’'un vecteur en mémoire
ou d’un registre en placant la partie haute a gauche et la partie basse a droite. Cette
convention reprend en fait le principe du little endian vu Section 2.6.

8.2 SSE

Sous le sigle SSE (Streaming SIMD Extensions) nous réunissons tous les jeux
d’instructions successifs SSE, SSE2, SSE3, SSSE3, SSE4A, SSE4.1 et SSE4.2. Nous
n’allons faire qu’effleurer 'ensemble des instructions SSE qui sont bien trop nom-
breuses et diverses pour étre toutes passées en revue et nécessiteraient a elles seules
un ouvrage. Le lecteur intéressé pourra consulter a ce sujet 'excellent livre de [19].
Nous nous intéresserons et décrirons dans la suite de ce chapitre les instructions
qui entrent en jeu dans les études de cas que nous ménerons par la suite.

La premiére version du SSE est un jeu de 70 instructions apparu en 1999 sur le
Pentium III en réponse a la technologie 3DNow ! d’AMD, née un an plus t6t. Ces
instructions traitent des entiers ou des réels. Les versions suivantes ont apporté
de nouvelles instructions de manipulation des données ou de calcul comme par
exemple dpps (Dot Product of Packed Single Precision Floating-Point Values) du jeu
d’instructions SSE4.1 qui réalise le produit scalaire de deux vecteurs.

Sur les Pentium III notamment, I'efficacité du SSE était nettement moindre que
sur son successeur, le Pentium 4, car bien que le Pentium III disposat de registres de
stockage de 128 bits, il ne possédait que de registres 64 bits pour réaliser les calculs.
De ce fait, une instruction SSE était traitée en deux fois 64 bits, on commencait par
traiter la partie basse, puis la partie haute, ce qui est moins efficace que de traiter
128 bits en une seule fois.

En architecture 32 bits, il existe 8 registres SSE de 128 bits nommés xmm@ a
xmm7 !. Ce nombre de registres est doublé en architecture 64 bits avec I'ajout des
registres xmm8 a xmm15.

Les registres SSE possedent des instructions qui traitent les valeurs qu'’ils
contiennent (cf. Figure 8.1) :

e soit sous forme d’entiers au format :

1. A ne pas confondre avec les registres MMX qui sont appelés mm@ a mm7.

8.2. SSE 233

poids fort poids faible

/ entiers
bl15] | B[14] a b[1] | blo | 8 bits

\ w7l \ wle] \ wi5] \ wi4] \ wi3] \ wi2] \ wl1] \ wlo] \ 16 bits

d3 | da | dm | do | 32bits
| al1l | alo] | 64 bits
dq 128 bits

réels
‘ ps[3] ‘ ps(2] ‘ ps[1] ‘ ps[0] ‘ 32 bits
| pd[1] | pdI0] | 64 bits

FIGURE 8.1 — Types de données contenues dans un registre SSE

> 16 octets

> 8 mots

> 4 double mots (4 entiers 32 bits signés ou non)

> 2 quadruples mots (2 entiers 64 bits signés ou non)

> double quadruple mot (double quad word) soit un total de 128 bits
e soit sous forme de nombres a virgule flottante (32 et 64 bits)

> 4 flottants simple précision (float)

> 2 flottants double précision (double)

On disposera donc de plusieurs instructions similaires mais avec des mnémoni-
ques différents en fonction que I'on traite des entiers ou des flottants. La grande
majorité de ces instructions seront suffixées par une a deux lettres (cf. Table 8.1)
qui correspondent au type de donnée manipulée.

Ainsi, l'instruction paddb réalise une addition entiere en paralléle entre les 16
octets de ses deux opérandes, alors que paddb, paddw, paddd réalise une addition
entiere en parallele sur 4 entiers 32 bits. De la méme maniere addps, addpd réalise
une addition en parallele sur 4 flottants en simple précision et addpd traite 2
flottants en double précision.

On note également pour les flottants les suffixes ss et sd qui ne traitent que la
partie basse du registre SSE (respectivement 32 et 64 bits). Ces instructions liées a
des flottants simple ou double précision permettent de remplacer la FPU car en 64
bits les parametres de type float ou double sont passés dans les registres SSE et les
calculs sont réalisés avec ces mémes registres.

234 CHAPITRE 8. UNITES VECTORIELLES

Type Taille Nom Quantité Suffixe
en octets dans 128 bits
entier 1 byte 16 b
entier 2 word 8 w
entier 4 double word 4 d
entier 8 quad word 2 q
flottant 4 float 4 ps
flottant 8 double 2 pd
flottant 4 float 1 ss
flottant 8 double 1 sd

TABLE 8.1 — Suffixes des instrutions SSE

Facteur d’amélioration

Il n’est pas possible de manipuler un registre vectoriel en faisant directe-
ment référence a son ieme élément (sauf pour des instructions utilisant un
masque de sélection) mais afin de simplifier la compréhension de certaines
instructions et traitements nous introduisons la notation suivante qui nous
permettra de décrire le comportement des instructions SSE et AVX sous forme
de petits programmes C :

xmmd . T[i]

ou T représente le type (b, w, d, g, ps, pd, présenté Table 8.1) et i le i€éme
élément. Ainsi xmm@.b[15] représente le dernier octet du registre xmm@, donc
I'octet de poids fort, I'octet de poids faible étant xmm@.b[@].

Notons que dans la documentation Intel on fait référence aux bits du re-
gistre. Ainsi, pour représenter xmm@.b[15] on indiquera xmm@[127:120] qui

est I'intervalle de bits qui correpond au seizieme octet du registre.
\ J

8.2.1 Chargement et stockage des données

Le chargement des données vers les registres SSE ou le stockage des valeurs
contenues dans les registres vers la mémoire se font a l'aide des instructions de
déplacement de type mov.

Pour les entiers, on utilisera movdqu (MOV Double Quad word Unaligned) ou
movdga, movdqu (MOV Double Quad word Aligned). Dans le cas du SSE les données
sont alignées si 'adresse depuis laquelle on lit ou on écrit est un multiple de
16. Nous renvoyons le lecteur au Chapitre 3, Section 3.2.1 concernant la notion
d’alignement des données en mémoire.

AW N =

AW N =

8.2. SSE 235

Le format des instructions de chargement de données est de la forme :

movdga xmml, [ebx] ; opérande SSE et référence
; mémoire (Load)

movdga ([edi + ecx x 4], xmm7 ; idem (Store)

movdga xmm3, xmml ; deux opérandes SSE

Pour les flottants, on utilisera les instructions movups ou movaps qui fonctionnent
sur le méme modele.

Cependant, on notera que 1’'on peut utiliser movdqga (ou movdqu) avec des flottants
et movaps, movups (ou movups)avec des entiers puisqu’il n’y a a priori aucune
conversion ou modification des données, on se contente de lire les données et
les stocker dans un registre ou en mémoire. J'avais tenté, il y a quelques années,
de contacter Intel afin de savoir pourquoi ils existaient deux types d’instructions
différentes mais je n’ai jamais eu de retour.

Enfin il existe des instructions qui ne traitent que la partie basse du registre SSE
comme movd pour les entiers et movss, movsd, movsd pour les flottants simple et
double précision :

mov eax, 0x01010101

movd xmml, eax ; xmml.d[0] = 0x01010101, xmml.d[1:3] = 2
movss xmm2, [edi] ; xmm2.ps[0] = [edi], xmm2.ps[l:3] = ?
movsd xmm2, [edi] ; xmm2.pd[0] = [edi], xmm2.pd[l] = ?

On charge ici la valeur hexadécimale sur 32 bits ©x01010101 dans la partie basse
du registre xmm1, les 3 autres valeurs 32 bits ne sont pas modifiées.

Le fonctionnement est identique pour movss avec la particularité qu’on ne

peut charger une valeur depuis un registre mais seulement depuis la mémoire
comme pour la FPU.

8.2.2 Instructions arithmétiques

Pour les entiers, on utilisera les instructions padd pour I'addition, psub pour
la soustraction et pmull pour la multiplication, suffixées par la quantité traitée.
Notons qu’il n’existe pas d’instruction pdiv qui réaliserait une division entiere.

Pour les flottants, on trouve les instructions addps, subps, mulps, divps ainsi
que addpd et consorts.

Il existe également des instructions comme addsubps xmm1, xmm2 dont le com-
portement est le suivant :

N O

N o AW N =

236 CHAPITRE 8. UNITES VECTORIELLES

xmml.ps[0] = xmm2.ps[0]
xmml .ps[1l] += xmm2.ps[1]
xmml.ps[2] -= xmm2.ps[2]
xmml .ps[3] += xmm2.ps[3]

et haddps xmm1, xmm2 qui réalise une addition dite horizontale.

haddps xmm1, xmm?2

Xmm2 [X3 X2)| X1 X0 J
5

xmm1 Y3/ X 1 W
% xmm1 X3+X2 | X1+X0 | Y3+Y2 | Y1+Y0

FIGURE 8.2 — Instruction haddps

; haddps xmml, xmm2
; on utilise un registre temporaire xmmt

xmmt .ps[0] = xmml.ps[0] + xmml.ps[1]
xmmt .ps[1l] = xmml.ps[2] + xmml.ps[3]
xmmt .ps[2] = xmm2.ps[0] + xmm2.ps[1]
xmmt .ps[3] = xmm2.ps[2] + xmm2.ps[3]
xmml = xmmt

L’'intérét de l'instruction haddps (cf. Figure 8.2) est qu’elle permet de faire la
somme des quatre valeurs flottantes simple précision contenues dans un registre
SSE? en procédant ainsi :

haddps xmml, xmml
haddps xmml, xmml

On réalise deux fois I'addition horizontale d’un registre avec lui méme. Au final
on obtient :

2. On appelle cette opération une réduction.

8.2. SSE 237

xmml.ps[0:3] = xmml.ps[0] + xmml.ps[1l] + xmml.ps[2] + xmml.ps|[3]

On trouve également phaddw et phaddd pour les entiers 16 et 32 bits respective-
ment qui réalisent 'addition horizontale de mots et double mots.

8.2.3 Fonctions trigonométriques, logarithme, exponentielle

Il n’existe pas d’instructions qui réalisent les calculs des fonctions trigonomé-
triques, logarithmiques ou exponentielles. Il faut utiliser des librairies spécialisées
comme I'Intel MKL® (Math Kernel Library) ou ’'AMD 1ibM * (Math Library). Vous
trouverez également d’autres librairies non propriétaires sur internet.

8.2.4 Instructions binaires

Les instructions que nous qualifions de binaires agissent sur la totalité des
128 bits d’un registre SSE (ou les 256 bits d’'un registre AVX). Il s’agit de pand,
por, pxor, por, pxor. Ces instructions réalisent respectivement un et binaire, le ou
binaire, le ou exclusif binaire. Il existe également I'instruction pandn (Parallel AND
Not) qui réalise un et binaire entre le complémentaire de 'opérande de destination
et 'opérande source.

pand xmml, xmm2 ; xmml = xmml and xmm2
por xmm2, [esi]
pandn xmml, xmmé ; Xxmml = not (xmml) and xmmé

On pourra voir comment utiliser ces instruction dans un cas concret en consul-
tant le Chapitre 14.

8.2.5 Instructions de conversion

Il existe de nombreuses instructions de conversion dont le mnémonique com-
mence par cvtss2sd, cvtps2pd, cvtss2si, cvtsi2sd pour convert. Elles per-
mettent de convertir des flottants en simple ou double précision ou de convertir
des flottants en entiers :

e cvtss2sd convertit un flottant simple précision en double précision
e cvtsd2ss convertit un flottant double précision en simple précision
e cvtps2pd convertit des flottants simple précision en double précision

e cvtpd2ps convertit des flottants double précision en simple précision

3. https://software.intel.com/en-us/mkl
4. https://developer.amd.com/amd-cpu-libraries/amd-math-1library-1ibm/

https://software.intel.com/en-us/mkl
https://developer.amd.com/amd-cpu-libraries/amd-math-library-libm/

N o v AW N =

v A W N =

238 CHAPITRE 8. UNITES VECTORIELLES

e cvtss2si convertit un flottant simple précision en entier dans un registre 32
ou 64 bits

e cvtsi2ss convertit un entier situé dans un emplacement mémoire ou un
registre 32 ou 64 bits en un flottant simple précision

e cvtsd2si convertit un flottant double précision en un entier dans un registre
32 ou 64 bits

e cvtsi2sd convertit un entier situé dans un emplacement mémoire ou un
registre 32 ou 64 bits en un flottant double précision

Par exemple, le code suivant charge les 4 valeurs flottantes de v dans xmm@ puis
convertit la partie basse du registre vectoriel en une valeur entiere dans eax. Au
final eax contient la valeur 12.

.data
v: dd 12.0, 14.0, 16.0, 20.0

.text
movups xmm0, [v]
cvtss2si eax, xmmO

8.2.6 Instructions de réarrangement

Les instructions pshufd pour les entiers et shufps pour les flottants permettent
de sélectionner ou réorganiser les données au sein d’un registre SSE mais ont un
comportement différent. La plupart de ces instructions utilisent une troisi€me opé-
rande qualifiée de masque et notée imm8 ce qui signifie qu’il s’agit d'une constante
sur 8 bits et elle est utilisée pour indiquer quels champs sélectionner.

Par exemple pshufd xmm1, xmm2, imm8, qui est présentée Figure 8.3, réalise
une sélection et réorganisation des valeurs de xmm2 vers xmm1 :

; pshufd xmml, xmm2, imm8

xmml.ps[0] = xmm2.ps|[imm8 & 0x03];

xmml.ps[l] = xmm2.ps|[(imm8 >> 2) & 0x03];
xmml.ps[2] = xmm2.ps|[(imm8 >> 4) & 0x03];
xmml.ps[3] = xmm2.ps|[(imm8 >> 6) & 0x03];

L'utilisation de cette instruction sur la méme opérande avec un masque de
0 (pshufd xmm1, xmm1, @) a pour effet de recopier la valeur xmm1.d[@] dans
xmm1.d[1:3]. Au final on obtient donc quatre fois la méme valeur dans xmm1.

On peut bien entendu I'utiliser pour des flottants simple précision car I'instruc-
tion shufps, qui possede la méme syntaxe, prend en considération xmm1 et xmm2
pour la sélection des valeurs mais possede un comportement quelque peu différent :

N AW N =

oA wN e

8.2. SSE 239

pshufd xmm1, xmm2,|00_01_10_11b
]

o d[3] d[2] d[1] d[0]
%) Xxmm?2 -1 3 7 -2
(O]

sélection '>
2
S | xmm1 -2 7 3 -1

FIGURE 8.3 - Instruction PSHUFD

; shufps xmml, xmm2, imm8

xmmt [0] = xmml.ps[imm8 & 0x03];

xmmt [1] = xmml.ps[(imm8 >> 2) & 0x03];
xmmt [2] = xmm2.ps|[(imm8 >> 4) & 0x03];
xmmt [3] = xmm2.ps[(imm8 >> 6) & 0x03];
xmml = xmmt

Une autre instruction intéressante est blendps, mais elle n’utilise que les 4
premiers bits de la constante imm8. Elle permet de remplacer les valeurs du registre
de destination par des valeurs du registre source :

// blendps xmml, xmm2, imm8
(int index = 0; index <= 3; ++index) {
xmml.ps[index] = (imm8 & (1 << index)) == 0
? xmml.ps|[index] : xmm2.ps[index];

Ainsi, le code suivant remplacera xmm1.ps[1] par xmm2.ps[1] :

blendps xmml, xmm2, 00000010b

Une instruction tres utile est pblendvb (Variable Blend Packed Bytes). Elle tra-
vaille sur les octets d’'un registre SSE et utilise par défaut un masque de sélection
basé sur le registre xmmo :

// pblendvb xmml, xmm2
int i, byte;

a2 w N e [o Y, N N

0 N U AW N =

240 CHAPITRE 8. UNITES VECTORIELLES

(byte = 0, 1 = 7; i <= 127; i += 8, ++byte) {
xmml.b|[byte] (xmm0 .bits (i) == 1) ? xmm2.b[byte]
xmml.b[byte];

Elle permet de sélectionner les octets de xmm1 ou de xmm2 en fonction des octets
de poids fort de xmm@ positionnés a 0 ou 1.

Dans la méme veine, mais pour les valeurs flottantes, on trouve blenvps (Va-
riable Blend Packed Single Precision) :

blendvps xmml, xmm2 <xmmO0 >

Il existe une série d’instructions vpbroadcast(b,w,d,q) qui permettent de reco-
pier une valeur dans plusieurs emplacements d’un registre SSE ou AVX. Par exemple
vpbroadcastb xmm1, xmm1 recopie le premier octet du registre xmm1 dans les 15
autres emplacements du registre :

// vpbroadcastb xmml, xmml
(int index = 1; index <= 15; ++index) {
xmml .b[index] = xmml.b[0];

Enfin, I'instruction insertps xmm1, xmm2, imm8 réalise plusieurs opérations

1. en premier lieu, elle sélectionne 'une des 4 valeurs de la source xmm2 grace
aux bits 6 et 7 de la constante imm8

2. elle recopie ensuite cette valeur dans xmm1 a la position indiquée par les bits
4 et 5 de imm8

3. elle met enfin, en fonction des bits 0 a 3 positionné a 1 de imm8, les valeurs
correspondantes dans xmm1 a O

Le code qui suit donne comme résultat un registre xmm1 contenant les valeurs
[7.0, 3.0, 0.0, 0.0].

.data
a dd 1.0, 2.0, 3.0, 4.0
b dd 5.0, 6.0, 7.0, 8.0
.text
movups =xmml, [a]
movups xmm2, [b]

insertps xmml, xmm2, 10_11 0011b

On commence par charger dans xmm1 le vecteur [4.0, 3.0, 2.0, 1.0], puis dans
xmm2 le vecteur [8.0, 7.0, 6.0, 5.0]. On choisit alors la valeur d’indice 10, de xmm2,
c’est a dire 7.0 et on la recopie en position 11, de xmm1. La partie basse de la
constante imm8, soit 0011, indique que les valeurs d’indices 0 et 1 de xmm1 doivent
étre mises a zéro.

8.3. AVX, AVX2 241

8.3 AVX, AVX2

8.3.1 Spécificités

Sous le sigle AVX nous placons les jeux d’instructions AVX (Advanced Vector
eXtensions) et AVX2 256 bits. Nous ne nous intéresserons qu’en fin de chapitre a
’AVX 512 bits. Tout comme en architecture 32 bits, il existe 8 registres AVX de 256
bits nommés ymm@ a ymm7. Ce nombre de registres est doublé en architecture 64 bits
avec I'ajout de ymm8 a ymm15. Les principaux changements par rapport au SSE sont
les suivants :

e les instructions AVX commencent par la lettre v pour les distinguer des
instructions SSE

e les instructions AVX peuvent agir sur les registres ymm ou xmm et vont utiliser
la méme syntaxe

e cependant, une instruction AVX peut prendre une opérande supplémentaire
qui sera le registre de destination

Par exemple, en SSE, si on écrit paddd xmm1, xmm2, les quatre entiers de xmm2
sont ajoutés a xmm1, en d’autres termes on a xmm1.d[0:3] += xmm2.d[0:3]. Les
valeurs présentes dans xmm1 sont donc perdues. On aura le méme comportement si
on utilise vpaddd xmm1, xmm2.

; avec deux opérandes
paddd xmml, xmm2 ; xmml.d[0:3] = xmml.d[0:3] + xmm2.d[0:3]
vpaddd xmml, xmm2 ; xmml.d[0:3] = xmml.d[0:3] + xmm2.d[0:3]

Par contre, si on écrit vpaddd xmm3, xmm1, xmm2, le registre xmm3 recevra le
résultat de la somme de xmm1 et xmm2. Les registres xmm1 et xmm2 ne seront donc pas
modifiés.

; avec trois opérandes
vpaddd xmm3, xmml, xmm2 ; xmm3.d[0:3] = xmml.d[0:3] + xmm2.d[0:3]

8.3.2 Partie haute

Certaines instructions, comme insertps, dont nous avons parlé précédemment,
travaillent uniquement avec la partie basse des registres AVX. Cela est dii a la
constante imm8 qui interagit avec 'un des quatre flottants simple précision d’un
registre SSE. L’extension AVX de cette instruction vinsertps ne permet pas d’iden-
tifier les flottants dans la partie haute d’'un registre AVX.

Il est donc nécessaire pour transposer l'utilisation du SSE vers ’AVX de tra-
vailler sur la partie basse du registre AVX puis de déplacer la partie basse vers la

O O N AW N =

242 CHAPITRE 8. UNITES VECTORIELLES

partie haute. On dispose par exemple des instructions vinsertf128, vextractf ou
vpbroadcast qui réalisent ces manipulations.

En particulier, l'instruction vinsertf128 ymm3, ymm2, xmm1, @/1 copie ymm2
dans ymm3 puis remplace la partie haute (1) ou la partie basse (0) de ymm3 par les
valeurs de xmm1.

vextractf128 xmm1, ymm2, @/1, copie la partie basse (0) ou la partie haute (1)
de ymm2 dans xmm1.

La série d’instructions vpbroadcast(b/w/d/q) x/ymm, reg recopie les 8/16/32
ou 64 bits d’'un registre général respectivement vers tous les octets, mot, double
mots ou quadruples mots d’un registre SSE ou AVX.

Ainsi pour recopier 32 fois 'octet 0x85 dans le registre ymm1, on écrira :

mov eax, 0x85 ; ou mov al, 0x85
vpbroadcastb ymml, eax

8.3.3 Instructions singulieres

Certaines instructions n’ont pas le méme comportement en AVX et en SSE.
C’est le cas de haddps dont nous avons parlé Section 8.2.2. Nous avons vu que
l'utilisation de deux fois cette instruction sur le méme registre permet de calculer la
somme des quatre valeurs qu’il contient. Malheureusement cela ne fonctionne pas
avec les 8 valeurs 32 bits que contient un registre ymm lorsque I'on utilise vhaddps.

En effet, le code suivant :

.data
v dd 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0

.text
vmovups ymm0, [Vv]
vhaddps ymmO, ymmO

vhaddps ymmO, ymmO
vhaddps ymmO, ymmO

produira successivement les résultats :

Instruction ymmo

vmovups 8 7 6 5 4 3 2 1
vhaddps 15 11 15 11 7 3 7 3
vhaddps 26 26 26 26 10 10 10 10
vhaddps 52 52 52 52 20 20 20 20

Or on aimerait obtenir la somme des valeurs c’est a dire 36. Il faut alors procéder
comme suit :

N

O N AW N =

WONON RN NNN NN NN R e s s s s e
S ¥ ® N &6 G R BN = O Vv ® 9 o A W R = O

8.4. AFFICHAGE D’UN REGISTRE 243

vhaddps ymmO, ymmO ; ymmO = [15, 11, 15, 11, 7, 3, 7, 3]
vhaddps ymmO, ymmO ; ymmO = [26, ... , 26, 10, ..., 10]
vextractf128 xmml, ymmO, 1 ; xmml = [26, 26, 26, 26]
addps xmmO, xmml ; xmmO = [36, 36, 36, 36]

On réalise la somme horizontale deux fois comme en SSE, puis on transfert la
partie haute de ymm@ vers xmm1. Il suffit alors d’additionner les deux registres xmmo
et xmm1 pour avoir dans xmm@ le résultat escompté.

8.4 Affichage d’un registre

8.4.1 Architecture 32 bits

Nous présentons, ci-apres, deux macro-instructions qui permettent d’afficher
un registre SSE et qui peuvent étre adaptées pour les registres AVX. Il serait
intéressant d’en faire une librairie que I'on peut inclure lors du débogage de
certains programmes. Nous laissons cette tache au lecteur a titre d’exercice.

printf
.data

str_sse_int: db

‘[%d %d %d %d]\n', O
str sse flt: db ‘[£

$f $f %f %f]\n’, O

$macro print_sse_int 1
sub esp, 16
; affichage Intel
pshufd %1, %1, 00011011b
movdqu [esp], %1

push str sse_int
call printf
add esp, 20

; rétablir les valeurs initiales
pshufd %1, %1, 00011011b
%endmacro

$macro print_sse_flt 1

sub esp, 48 ; 16 + 48

movups [esp], %1 ; stocke le registre
fld [esp + 32]

fstp [esp + 24]

f1ld [esp + 36]

fstp [esp + 16]

f1d [esp + 40]

fstp [esp + 8]

fld [esp + 44]

[

fstp esp]

31
32
33

O 0 N o 1AW N =

RN NN NN NN B s R e s s e m ke
® N &6 1 K ® N = & © ® N o A W R = O

244 CHAPITRE 8. UNITES VECTORIELLES
push str _sse_ flt
call printf
add esp, 48+4

%$endmacro

La premiere macro appelée print_sse_int affiche un registre SSE passé en
parametre sous la forme de 4 entiers signés. Les entiers sont affichés dans 'ordre
décroissant des adresses mémoires, 'entier a 'adresse mémaoire la plus haute est
donc affiché en premier.

La seconde macro print_sse_f1lt affiche le contenu d’un registre SSE en consi-
dérant qu’il contient quatre flottants en simple précision, mais comme on affiche
des flottants, il faut les convertir en double précision avant I'affichage.

8.4.2 Architecture 64 bits

En mode 64 bits, le code est plus long et un peu plus complexe. Dans le cas
de l'affichage du registre en considérant qu’il contient quatre entiers, ces derniers
doivent étre passés en parametres. On doit donc préserver les registres rdi, rsi,
rdx, rcx et r8 car rdi contiendra la chaine du format d’affichage et les autres
registres les quatre entiers a afficher.

printf
default rel

.data
str sse_int: db " [%d %d %d %d]\n‘, O
str sse flt: db " [%f %f %f %£f]\n°, O
.text

$macro print_sse_int 1

sub rsp, 128+16+8+x6
mov [rsp], rdi

mov [rspt+8], rsi
mov [rspt+1l6], rdx
mov [rsp+24], rcx
mov [rsp+32], r8
mov [rsp+40], rax
lea rdi, [str_sse_int]
movdqu [rspt+56], %1
mov esi, [rsp+56]
mov edx, [rsp+60]
mov ecx, [rsp+64]
mov r8d, [rspt68]
Xor rax, rax

call printf WRT ..plt
mov rax, [rsp+40]
mov r8, [rsp+32]

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

8.5. INTRINSICS 245

mov rcx, [rspt24]

mov rdx, [rsp+16]

mov rsi, [rsp+8]

mov rdi, [rsp]

add rsp, 128+16+8+6
%$endmacro

$macro print_sse_flt 1

sub rsp, 128+5x16

movdqu [rsp+16], xmmO ; sauvegarde des registres
movdqu [rsp+32], xmml ; utilisé pour le passage
movdqu [rsp+48], =xmm2 ; des flottants

movdqu [rsp+64], xmm3

movdqu [rsp], %1

cvtss2sd xmm0, [rsp] ; convertion des flottants
cvtss2sd xmml, [rsp+4] ; simple précision en flottants
cvtss2sd xmm2, [rsp+8] ; double précision

cvtss2sd xmm3, [rsp+12]

lea rdi, [str_sse_ flt]

mov eax, 4

call printf WRT ..plt

movdqu xmm3, [rsp+64] ; restauration des registres

[
movdqu xmm2, [rsp+48]
movdqu xmml, [rsp+32]
movdqu xmmO, [rsp+16]
add esp, 128+5x16

%$endmacro

Pour ce qui est de I'affichage du registre sous forme de quatre flottants, on doit
préserver xmm@ a xmm3 car on va les utiliser pour passer les flottants que 'on doit
convertir en quatre valeurs double précision grace a l'instruction cvtss2sd. On
indique que quatre valeurs sont a afficher en placant la valeur 4 dans le registre
eax (ligne 48).

Chacune des macros commence par abaisser le sommet de pile de 128 octets
(afin de préserver la red zone du sous-programme dans lequel on se trouve) plus
le nombre d’octets nécessaires pour préserver les valeurs des registres qui seront
modifiés temporairement pour réaliser I'affichage.

8.5 Intrinsics

Les intrinsics sont un apport important pour toute personne qui ne désire
pas forcément écrire des programmes en assembleur. Les intrinsics sont en fait
une interface entre le langage C et les instructions assembleur vectorielles. Elles
autorisent I'écriture de sous-programmes C en utilisant les instructions vectorielles
au travers de 'appel de fonctions, un peu a la maniére des fonctions built-in
évoquées Section 1.1.

246 CHAPITRE 8. UNITES VECTORIELLES

Définition : Fonction intrinseque

Une fonction intrinséque est, dans la théorie des compilateurs, une fonction
disponible dans un langage de programmation donné et dont 'implémenta-
tion est assurée par le compilateur.

L’avantage des fonctions intrinseéques est double :

e on écrit directement en C, le code est donc portable et on dispose des
structures de contréle de haut niveau comme la boucle

e le compilateur se charge de I'optimisation du code
\ J

Néanmoins, on rencontre quelques difficultés lorsque I'on apprend a utiliser les
intrinsics pour trois raisons :

e il existe une réelle difficulté a connaitre le nom des fonctions par rapport aux
instructions assembleurs

e les parametres sont parfois mal décrits ou mal ordonnés (cf. _mm_set_ps)

e il est nécessaire de typer les données soumises aux instructions (__m128,
__m128i)

Heureusement, il existe un site web trés bien fait, U'Intel Intrinsics Guide °> qui
nous permet de retrouver les intrinsics en fonction de leur nom ou de I'instruction
assembleur qu’elles remplacent.

Selon le jeu d’instructions utilisé, il faudra inclure le fichier d’entéte de la
librairie C adéquat (cf. Table 8.2) :

Fichier Jeu

<mmintrin.h> MMX
<xmmintrin.h> SSE
<emmintrin.h> SSE2
<pmmintrin.h> SSE3
<tmmintrin.h> SSSE3
<smmintrin.h> SSE4.1
<nmmintrin.h> SSE4.2
<ammintrin.h> SSE4A
<wmmintrin.h> AES
<immintrin.h> AVX

TABLE 8.2 — Inclusion des fichiers entéte selon le jeu d’instructions SSE ou AVX utilisé

5. https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

8.5. INTRINSICS 247

8.5.1 Types et format des instructions

Comme les intrinsics sont des fonctions, il est nécessaire de redéfinir des types
afin d’indiquer au compilateur C la taille des variables qu’il manipule. Nous avons
fait figurer Table 8.3, les trois types qui sont utilisés.

Type Description Exemple d’instruction

__m128 1lou4floats mm add ps, mm add ss
__m128d 2 doubles ~mm_add _pd, mm_add sd
__m128i entiers _mm_add_epi32

TABLE 8.3 — Types intrinsics

Les instructions se basent généralement sur le format _mm_<oper>_<suffix> ou
oper est le type d’opération (add, sub, mul, ...) et suffix est donné Table 8.4. Par
exemple, epi32 représente 4 valeurs 32-bits et signifie Extended Packed Integers. Le
terme epu est utilisé pour les valeurs non signées (Unsigned).

nom type
ss 1 float
ps 4 floats
d double
i128 registre 128 bits
64, u64 2 x 64 bits

i32, u32, epi32, epu32 4 x 32 bits entiers
i16, ul6, epil6, epul6 8 x 16 bits
i8, u8, epi8, epu8 16 x 8 bits

TABLE 8.4 — suffixes des intrinsics

A titre d’exemple, voici quelques instructions et leur format :

__m128 _mm_add_ss(__m128 a m128 b) additionne les 2 flottants simple
précision en partie basse des registres vectoriels a et b

__m128 _mm_add_ps(__m128 a,
précision en parallele

__m128d _mm_add_pd(__m128d a
précision en parallele

__m128i _mm_add_epi32(__m128i a,
paralléle

__m128i _mm_and_si128(__m128i a
deux registres SSE

| J—

_m128 b) additionne 4 flottants simple

m128d b) additionne 2 flottants double

? ——

_m128i b) additionne 4 entiers en

m128i b) réalise un et binaire entre

[—

®w N AW N =

A W N =

R O

248 CHAPITRE 8. UNITES VECTORIELLES

On note que certaines instructions sont équivalentes, et bien que les formats de
données sur lesquelles elles agissent soient différents, elles ont le méme effet.

Pour en revenir a la fonction initiale de ce chapitre, qui consiste a additionner
deux vecteurs de quatre float, celle-ci serait traduite en intrinsics sous la forme :

void vector_ sum(float xx, float xy, float =*z) {
_ ml28 vx, vy, VvVz;

vx = _mm load ps(&x[0]); // vx.ps[0:3] = x[0:3]
vy = _mm_load ps(&y[0]); // vy.ps[0:3] = y[0:3]
vz = _mm_add ps(vx, vy); // vz.ps[0:3] = vx.ps[0:3] + vy.ps[0:3]
_mm_store_ps (&z[0], vz); // 2z[0:3] = vz.ps[0:3]

Sachant que les vecteurs x, y, z ont une taille de 4 éléments. En utilisant le
compilateur g++ avec 'optimisation -01 en 32 bits, le code précédent est traduit
en:

mov eax, [esp + 4]

movaps xmm0, [eax] ; charge x[0:3] dans xmmO
mov eax, [esp + 8]

addps xmm0, [eax] ; xmm0 += y[0:3]

mov eax, [esp + 12]

movaps [eax], xmmO ; z[0:3] = xmmO

On se rend alors compte que les vecteurs que 1'on avait défini dans la partie
intrinsics vx, vy,vz sont finalement soit ignorés (cas de vy), soit remplacés par des
registres SSE (cas de vx et vz).

On aurait pu éviter de déclarer les variables vx, vy, vz en écrivant simplement :

_mm_store_ps (&z[0], _mm _add ps(mm load ps(&x[0]), _mm load ps(&y[0])));

8.5.2 Travailler avec les flottants

8.5.2.1 Chargement et initialisation

Nous présentons, Table 8.5, les différentes possibilités offertes pour le char-
gement des données depuis la mémoire ou l'initialisation d’un registre avec des
flottants simple précision.

A titre d’exemple, la fonction _mm_set_ps utilisée ainsi :

#include <xmmintrin.h>
#include <pmmintrin.h>

float function (float a, float b, float ¢, float d) {

o e N o »

10
11

8.5. INTRINSICS 249
nom type [31 [2] [1]1 [O]
__m128 _mm_load_ss(float #*p) charge un réel 0 0 0 plo]

en partie basse
__m128 _mm_loadl1_ps(float *p) charge un réel plO] p[O0] pl[O] p[O]
et copie 4 fois
__m128 _mm_loadu_ps(float *p) charge 4 réels pl3] pl2] pl1l] plO]
non alignés
__m128 _mm_load_ps(float *p) charge 4 réels pl3] pl2] pl[1l] plO]
alignés
__m128 _mm_set_ss(float w) affecte un réel 0 0 0 w
en partie basse
__m128 _mm_setl1_ps(float w) affecte 4 fois w w w w
le méme réel
_m128 _mm_setzero_ps (void) meta Oles4valeurs O 0 0 0
__m128 _mm_set_ps(float z, affecte les 4 floats z y X w
float y, float x, float w)

ml28 x;

E] x|

float y;

= _mm_set_ps(a,
= _mm_hadd_ps (x, x) ;
= _mm_hadd ps (x, x) ;

b, c,

_mm_store_ss (&y, X);

return y;

d);

TABLE 8.5 — Chargement des flottants depuis la mémoire

sera traduite par gcc/g++ en architecture 32 bits avec option -03 par :

function:

sub
movss
movss
insertps
insertps
movlhps
haddps
haddps
movss
fld

add

ret

esp, 28

xmml, [esp + 36] ;
xmm0, [esp + 44] g
xmml, [esp + 32], 0x10 ;
xmmO, [esp + 40], 0x10 ;
xmm0, xmml g
xmm0, xmmO

xmm0, xmmO

[esp + 12], =xmmO

dword [esp + 12]

esp, 28

xmml =

xmmO
xmm1
xmm0
xmm0

0. 0 0O QO

250 CHAPITRE 8. UNITES VECTORIELLES

alors que les premieres instructions (lignes 3 a 7) peuvent étre remplacées par :

movups xmmO, [esp + 4]
pshufd xmmO, xmmO, 00011011b

Il est alors, dans certains, préférable d’écrire du code assembleur qui sera plus
rapide.
8.5.2.2 Stocker des flottants en mémoire

On retrouve les opérations similaires a celles de chargement comme celles de la
Table 8.6.

nom type [31 [2]1 [11 [O]

__m128 _mm_store_ss(float *p) stocke le réel plO]
en partie basse

__m128 _mm_storel_ps(float *p) stocke un réel p[0O] pl[0] p[O] plO]
et copie 4 fois

__m128 _mm_storeu_ps(float *p) stocke 4 réels p[3] pl2] pl[1l] pl[O]
non alignés

__m128 _mm_store_ps(float *p) stocke 4 réels p[3]1 pl2] pll] plO]
alignés

__m128 _mm_set_ss(float w) affecte un réel 0 0 0 w

en partie basse

__m128 _mm_set1_ps(float w) affecte 4 fois w w w w
le méme réel

__m128 _mm_setzero_ps (void) met a 0 les 4 valeurs O 0 0 0

__m128 _mm_set_ps(float z, affecte les 4 floats z y X w
float y, float x, float w)

TABLE 8.6 — Stockage des flottants en mémoire

8.5.3 Travailler avec les entiers

On trouve le méme genre d’instructions que pour les réels avec bien entendu
quelques différences ainsi que les instructions évoquées dans les sections pré-
cédentes. Concernant le chargement des données, on dispose, entre autre, des
intrinsics suivantes :

AW N

8.5. INTRINSICS 251

e __m128i _mm_load_si128(__m128i const* mem_addr) permet de charger 16
octets situés a 'adresse mem_addr multiple de 16 dans un registre SSE, il s’agit
de l'instruction movdga

e __m128i _mm_loadu_si128(__m128i const* mem_addr) permet de charger 16

octets situés a 'adresse mem_addr dans un registre SSE, il s’agit de I'instruction
movdqu

e __m128i _mm_loadu_si32(void const* mem_addr) charge en partie basse

d’un registre SSE la valeur 32 bits située a 'adresse mem_addr, il s’agit de
l'instruction movd

e __m128i _mm_loadu_si64(void const* mem_addr) charge en partie basse
d’un registre SSE la valeur 64 bits située a 'adresse mem_addr, il s’agit de
I'instruction movq

e __m128i _mm_set_epi32(int e3, int e2, int el, int e®) remplit un
registre SSE avec quatre valeurs entiere, e étant positionné en partie basse
du registre et e3 en partie haute

e __ml128i _mm_set1_epi32(int a) stocke quatre fois la valeur entiére a dans
un registre SSE

e void _mm_store_epi32 (void* mem_addr, __m128i a) stocke le registre SSE
a l'adresse indiquée qui doit étre multiple de 16

e void _mm_store_si128 (__m128i* mem_addr m128i a), équivalente a la

précédente

[J—

8.5.4 Exemple de programme

On considére deux vecteurs d’entiers u et v de size éléments et on réalise
Paddition u[i] += v[i].

La premiere version qui n’utilise pas les intrinsics est évidente :

void add_no_SSE (int *u, int xv, int size) {
(int 1 = 0; i < size; ++i) {
uli] += v[i];

La seconde qui utilise les intrinsics, et, dans notre cas, les registres SSE de 128
bits, nécessite de déplier la boucle par 4.

void add_SSE (int *u, int xv, int size) ({
int i = 0;
(; 1 < size & ~3 ; 1 += 4) {
// charger quatre entiers de chaque tableau
~ ml28i x1 = mm loadu sil28 ((_ ml28ix) &ul[i]);
~ ml28i x2 = mm loadu sil28 ((_ ml28ix) &v[i]);

10
11
12
13
14
15
16
17
18
19
20

252 CHAPITRE 8. UNITES VECTORIELLES

// additionner en parallele de quatre entiers
x1l = mm add_epi32 (x1, x2);

// stocker le résultat
_mm _storeu_sil28((_ ml28ix) &u[i], x1);

// dernieéres itérations
(i < size) {
uli] += v[i];
++1i;

A chaque itération de la boucle on charge dans le vecteur x1 les éléments
uli:i+3] et on fait de méme avec x2 qui stocke v[i:i+3]. On réalise ensuite
l’addition de x1 avec x2 et on met le résultat dans x1. Puis, en fin de boucle, on
stocke le résultat contenu de x1 dans u[i:i+3] en mémaoire.

La version AVX demande d’utiliser des intrinsics qui débutent par _mm256 et de
déplier la boucle par 8 :

void add _AVX (int xu, int *v, int size) {
int i = 0;
(; 1 < size & ~7 ; i += 8) {
// charger huit entiers de chaque tableau
_ m256i x1 _mm256_loadu_si256 ((_ m256ix) s&ul[i]);
_ m256i x2 = _mm256_loadu_si256((_ m256ix) &v[i]);

// additionner en parallele
x1l = mm256_add epi32(x1l, x2);

// stocker le résultat
~mm256_storeu _si256 ((_ m256ix) &ul[i], x1);

// dernieres itérations
(i < size) {
uli] += v[i];
++1i;

La Table 8.7 rapporte les temps d’exécution d'un test de performance avec une
version non vectorisée (no_sse) et les version vectorisée en SSE et AVX. Les lettres
a et u indiquent si les données sont alignées ou non alignées.

On note donc que la vectorisation permet de diminuer le temps de calcul, mais
également que le fait d’aligner ou non les données peut n’avoir aucune influence
(Ryzen 5), ou diminuer le temps de calcul (Xeon), ou alors 'augmenter (i3).

8.6. AVX 512 253

Méthode Intel AMD Intel
Core i3 Ryzen 5 Xeon Silver

6100 3600 4208

add_no_sse 5.61 4.43 8.40
add_sse_u 2.33 2.20 2.94
add_avx_u 2.32 2.18 2.72
add_sse_a 2.62 2.19 2.67
add_avx_a 2.41 2.17 2.59

TABLE 8.7 — Temps d’exécution en secondes pour le calcul de la somme de vecteurs de
131_079 entiers répété 100_000 fois

8.6 AVX 512

8.6.1 Spécificités

L’AVX 512 a été proposé par Intel en 2013, puis a ensuite été implantée dans les
Xeon Phi et différents processeurs haut de gamme de type Skylake X comme le Core
i9 7980XE. Plusieurs catégories du jeu d’instruction existent, on en dénombre pres
d’une vingtaine comme ’AVX512-F (Foundations), ’AVX512-BW (Byte and Word
Instructions) ou encore ’AVX512-VNNI (Vector Neural Network Instructions) dédié a
I'apprentissage artificiel par réseau de neurones.

Par exemple, sur un Intel Xeon Silver 4208 on trouve les jeux suivants : AVX512-
F, AVX512-DQ, AVX512-CD, AVX512-BW, AVXx512-VL et AVX512-VNNI.

On dispose avec 'AVX 512 de 32 registres de 512 bits nommés zmm@ a zmm31.
On note également I'apparition de 8 registres de masque nommés ko a k7 (k@ ayant
un réle particulier) qui permettent de sélectionner les octets, mots, double ou
quadruple mots que I'on utilise dans une opération. Ces registres ont chacun une
taille de 64 bits si on dispose du jeu d’instructions AVX512-BW. L’ensemble des
instructions qui manipulent les registres de masque commence par la lettre k.

Certains testeurs ont remarqué que ’AVX512 peut causer des problemes de
ralentissement dans certains cas. Ces ralentissements seraient diis au fait que les
unités de traitement AVX512 fonctionnent a une fréquence inférieure a celle des
unités de traitement de 'AVX2 pour certaines instructions qui demandent un calcul
intensif ou pour des portions de code qui n’utilisent que des instructions AVX512.
L’abaissement de la fréquence consiste probablement a diminuer (ou tout au moins
a ne pas augmenter) la dissipation thermique.

Une autre explication, trouvée sur le site d’Intel, donne pour cause probable
le fait que les processeurs modernes disposent de trois unités de traitement AVX2
(ports pO, pl, p5) alors qu’il se limite a deux unités de traitement AVX512 car

254 CHAPITRE 8. UNITES VECTORIELLES

le port p1 serait rendu non utilisable quand des instructions AVX512 sont dans
I'ordonnanceur.

Il est également recommandé d’utiliser I'instruction vzeroupper apres utilisation
des instructions AVX512 car le processeur vérifie si les bits les plus significatifs des
registres vectoriels sont propres (initialisés a zéro) ou sales (contenant potentielle-
ment des données). Lorsque les registres sont propres, le processeur peut traiter les
registres de 128 bits comme de véritables registres de 128 bits. Néanmoins, si le
registre est sale, le processeur doit en fait traiter le registre comme un registre de
512 bits. On conseille également d’utiliser vzeroupper avant de passer d'un code
AVX a un code SSE. La documentation Intel indique que cela permet d’éviter les
penalités (soit a peu pres 70 cycles) liées a la performance engendrée par les fausses
dépendances (it will eliminate performance penalties caused by false dependencies),
ce qui n’est pas tres explicite, on aimerait savoir a quoi correspondent ces fausses
dépendances.

De plus amples explications sont données sur divers blogs.

8.6.2 Manipulation des masques

On utilise 'instruction kmov, suffixée par une quantité (B,W,D,Q), pour manipu-
ler les registres de masque entre eux ou pour échanger une valeur de masque avec
un registre général.

Les autres opérations de manipulation des registres de masque sont :

e l'opération d’addition (kadd),
e les opérations logiques (kand, kandn, kor, kxor, kxnor),
e des opérations de test (ktest, kortest),

de décalage (kshiftl, kshiftr),

et enfin des opérations de décompactage (kunpck)

8.6.3 Données vectorielles

En ce qui concerne les données vectorielles, on utilise les mémes opérations
qu’en AVX ou AVX2 avec la possibilité de combiner ces instructions avec un masque,
ce qui peut rendre certains traitements plus simples a coder. On pourra se référer
aux Chapitres 14 et 15 pour de plus amples explications.

A titre d’exemple, voici dans le cadre de la parcimonie, comment utiliser les
instructions AVX512. On considere que le registre zmmo@ a été mis a 0 et que zmm3
contient le résultat d'un et binaire en parallele entre les valeurs contenues dans
les registres zmm1 et zmm2. De la méme maniere, zmm4 contient le résultat d'un ou
binaire en parallele entre zmm1 et zmm2. Pour obtenir le résultat final qui consiste

O 0 N oy 1AW N =

=
o

[un

O N L A~ WwN

HowWN

8.6. AVX 512 255

a compter le

nombre d’octets a 0 dans zmm3 et a les additionner a eax, puis a

remplacer les octets de zmm3 qui sont a 0 par ceux de zmm4, on utilise :

vpcmpegb kl, zmmO, zmm3 ; compare zmm3 a zmmO = [0,...,0]

; et affecte kl en consequence

vmovdqu8 zmm3 {k1l}, zmm4 ; selectionne les octets de zmm4 en
; utilisant k1 et remplace dans zmm3

vmovdqu8 [rdx + r9], zmm3 ; affecte le résultat final

kmovqg r8, k1l ; met le masque k1l dans r8

popcnt r8, r8 ; compte le nombre de bits a 1

add eax, r8d ; additionne a eax

On fait usage en premier lieu de I'instruction de comparaison octet par octet
vpcmpegb en indiquant le masque k1. Les registres zmm@ et zmm3 ne seront donc pas
modifiés et chaque bit i de k1 sera positionné a 1 si le /éme bit de zmm3 est égal a
0. L’instruction suivante remplace chaque octet i de zmm3 par l'octet i de zmm4 si le
ieéme bit de k1 est a 1. On stocke ensuite le résultat en mémoire. Enfin, on place k1
dans le registre 64 bits r8 afin de compter le nombre de bits a 1 de k1 en utilisant
I'instruction popcnt. Ce résultat est ensuite ajouté a eax qui comptabilise le nombre

de mutations,

c’est a dire dans le cas présent, le nombre d’octets a 0 apres calcul du

et binaire entre zmm1 et zmm2.

Voici un autre exemple de code qui utilise le mnémonique vcompressps avec un
masque de sélection. On désire réaliser le traitement suivant en C :

int compres

s (float xx, float =xy) {

int count = 0;

(int 1 = 0; 1 < 8; ++i) {
(x[1i] > 0.0) {
ylcount++] = x[i];

}

}
count;

Etant donnés deux vecteurs de 8 float, on désire sélectionner les éléments de z

qui sont supé

rieurs a 0 et les recopier dans y avec une contrainte qui impose qu'’ils

doivent étre positionnés les uns a la suite des autres. On désire également retourner
le nombre d’éléments recopiés. La traduction en assembleur avec des instructions

AVX512 utilis

e l'instruction de comparaison cmpps qui stocke dans le masque k1 les

éléments qui correspondent au critere de comparaison, en 'occurrence les éléments

qui vont étre

vXorps
vmovdqu
vcmpps
knotqg

supérieurs a 0.

ymmO, ymmO ; ymmO = [0.0, ..., 0.0]
ymml, [rdi] ;o ymml <- x[0:7]

kl, ymmO, ymml, 5 ; compare ymml[i] & ymmO[i]
kl, k1 ; choix des éléments a garder

O ® N o W

10
11

256 CHAPITRE 8. UNITES VECTORIELLES

vcompressps ymmO {kl}, ymml ; recopie des éléments de ymml
; vers ymmO

vmovdqu [rsi], ymmO ; stockage dans y

kmovqg rax, kl ; compte le nombre d'éléments

popcnt rax, rax ; sélectionnés

vzeroupper

ret

Comme indiqué dans la documentation Intel °, on doit inverser le masque de
k1 puis recopier les bits qui seront sélectionnés par vpcompressps. Pour compter le
nombre d’éléments recopiés, il suffit de comptabiliser grace a 'instruction popcnt
le nombre de bits dans k1 apres I'avoir inversé (ligne 4). Pour cela, on transfere k1
dans rax (ligne 8) et on applique popcnt sur rax.

Sur un Intel Xeon Silver 4208, un test de performance donne les résultats
suivants (le code C est compilé avec gcc 8.3.0) :

e fonction C compilée avec gcc -03 -march=native (avec AVX512) : 4,31 s

e fonction assembleur AVX512 écrite a la main : 1,77 s

8.7 AVX 10

Au mois de Juillet 2023, Intel a introduit ’AVX10 (Advanced Instruction Exten-
sions 10) qui apparait comme un sur-ensemble de 'AVX-512 que pourrait également
supporter des processeurs avec des registres de 256 bits. En fait, avec I'introduction
d’une architecture hybride avec des P-Core et E-Core avec I'arrivée d’Alder Lake la
12éme génération de processeurs Core d’Intel en 2021, l'utilisation de ’AVX devient
problématique car les P-Cores sont capables de gérer de 'AVX-512 alors que les
E-Cores ne gérent que ’AVX2. On a donc deux codes incompatibles actuellement.
Afin de simplifier I'écriture du code et pouvoir le transposer sur les E-Cores il
semble intéressant de pouvoir reprendre les principes de 'AVX-512 et le transposer
a ’AVX2, notamment l'utilisation de masques qui rend le code plus compréhensible.

La premiere version nommeée AVX10.1 doit permettre la transition vers le 256
bits et ne supportera donc que le 512 bits sur les processeurs Xeon Granite Rapids.
La version AVX10.2 devrait parachever le support pour tous les processeurs qui
supporteront '’AVX2.

6. The greater-than relations that the processor does not implement require more than one
instruction to emulate in software and therefore should not be implemented as pseudo-ops. (For
these, the programmer should reverse the operands of the corresponding less than relations and
use move instructions to ensure that the mask is moved to the correct destination register and that
the source operand is left intact.)

8.8. CONCLUSION 257

8.8 Conclusion

Vectoriser son code est une opération peu cotliteuse et qui permet d’obtenir
une amélioration importante en terme de diminution du temps de calcul. On
pourra consulter les chapitres qui concernent les différentes études de cas que
nous présentons pour constater que la vectorisation est un outil incontournable de
lefficacité.

8.8.1 Que retenir?

> les unités vectorielles sont qualifées de SIMD (Single Instruction Multiple Data)
et permettent de paralléliser les calculs en effectuant la méme opération sur
des données différentes

> les unités SSE permettent de traiter 128 bits alors que les unités AVX sont
capables de traiter 256 bits de différents formats allant de I'octet au nombre
a virgule flottante double précision

> la technologie AVX apporte généralement, dans la plupart des traitements,
un gain négligeable mais peut, dans certains cas, se révéler deux fois plus
efficace que le SSE

> les intrinsics sont un moyen détourné pour permettre au programmeur d’utili-
ser les instructions assembleurs liées a la vectorisation tout en programmant
en C. Elles assurent la portabilité du code tout en autorisant 'amélioration de
l'efficacité des traitements de maniere importante.

> les registres de ’AVX 512 sont au nombre de 32 et se nomment zmm@ a zmm1.

> avec 'AVX 512 on utilise des bits de masque (k@ a k7) qui définissent les
emplacements dans un registre de 512 bits qui devront étre sélectionnés pour
une opération ultérieure
8.8.2 Compétences a acquérir
Au cours du temps et au fil des différents projets de programmation que vous

pourrez rencontrer il faudra tenter de vectoriser les traitements les plus lents. Pour
cela il faut connaitre les instructions vectorielles.

8.9 Exercices

Exercice 35 - Implantez, en utilisant les registres SSE, la fonction iota définie par :

v AW -

R L 2

O 0 N o 1AW N =

= e
N = O

258 CHAPITRE 8. UNITES VECTORIELLES

void iota(float x*t, int n) {
(int i=0; i<n; ++i) {
t[i] = (float) 1i;

On commencera par écrire une version dépliée par 4 de la fonction dans le cas
général (c’est a dire quand n n’est pas multiple de 4), puis on traduira la partie
vectorielle en utilisant addps et pour les itérations restantes on utilisera addss.

On peut faire en sorte que qu’initialement le registre xmm1 = [4, 3, 2, 1] et
que le registre xmm@ = [3, 2, 1, @].

A chaque itération on stocke xmm@ a I'adresse de t[i] puis on augmente i de 4
et on ajoute xmm1 a xmmo.

Exercice 36 - Donnez une version intrinsics de la fonction iota.

Exercice 37 - Donnez une version vectorielle de la fonction suivante qui convertit
une chaine de caracteres en majuscules :

void string to_upper (char *s, size_t size) {
(size_ t i = 0; i < size; ++i) {
(isalpha(s([i])) s[i] = toupper(s[i]);

Exercice 38 - Donnez une version vectorielle de la fonction suivante qui convertit
une chaine de caractéres en minuscules et retourne le nombre de changements
effectués :

size_t string to_lower (char *s, size_t size) {
size_t changes = 0;
(size_ t i = 0; i < size; ++i) {
(isalpha(s[i])) {
(islower(s[i])) {
s[i] = tolower(s[i]);
++changes;

changes;

Chapitre 9

Algebre de Boole

2B or not(2B)

la est la question !

9.1 Introduction

Nous rappelons que ce chapitre est quelque peu digressif par rapport a 'appren-
tissage de la programmation en assembleur mais il se base sur I'algebre de Boole
qui utilise le et, le ou et le non, opérations disponibles en assembleur en tant que
mnémoniques and, or, not.

L’algebre de Boole, du nom du mathématicien, logicien et philosophe britan-
nique George Boole (1815-1864), est une partie des mathématiques qui s’'intéresse
a une approche algébrique de la logique, alors que la logique se fonde sur des
systemes de réécriture qui consistent a manipuler des symboles. La logique possede
bien évidemment un volet sémantique et I'algébre de Boole vient renforcer la
sémantique logique en remplacant le vrai et le faux par le 1 et le 0, le et et le ou
par les opérateurs + et - (addition et multiplication).

Cette vision arithmétique de la logique a permis de mettre au point un systéme
de calcul qui possede des applications dans la mise au point de circuits électroniques
et autorise a aborder les problemes de la logique sous un angle différent, ce qui
peut, dans certains cas, donner la possibilité de résoudre un probléme beaucoup
plus simplement ou rapidement. Nous en verrons un exemple en fin de chapitre
avec le probleme des pigeons.

Concernant les circuits électroniques ce sont eux qui exécutent les mnémoniques
de I'assembleur comme add, mul, div, ... Nous verrons, Section 9.6, comment on
implante un demi-additionneur et un additionneur.

On suppose que le lecteur possede des notions de logique propositionnelle. Si
ce n’est pas le cas, nous recommandons la lecture des premiers chapitres de [23].

259

260 CHAPITRE 9. ALGEBRE DE BOOLE
9.2 Définition

Soit un ensemble A = {0,1} pour lequel on a 0 < 1. On définit alors les
opérations suivantes sur A :

e l'addition : a + b dont la sémantique est maz(a, b)
e la multiplication : a - b = min(a, b)

e la complémentation: 0 =1et1 =0

Une variable complémentée T est également dite signée ou négative.

Le résultat des opérations + et - apparait Table 9.1 d’apres la sémantique que

nous avons donnée.

= = O O s
—_ O = O | =
= = = O B
—_ O O O

TABLE 9.1 — Interprétation semantique des opérations + et .

Le quadruplet (A, +, -, T) est appelé algébre de Boole s’il respecte les axiomes
suivants :

1. Paddition et la multiplication sont commutatives et associatives :

a+b=b+a
a-b=b-a
(a+b)+c=a+(b+c¢)
(a-b)-c=a-(b-c)

2. 0 est élément neutre pour I'addition et 1 est élément neutre pour la multi-
plication :

O+a=a
l-a=a

3. T'addition et la multiplication sont distributives 'une par rapport a l'autre :

(a+b)-c=a-c+b-c
(a-b)+c=(a+c) - (b+c)

9.3. FONCTION BOOLEENNE, TABLE DE VERITE 261

4. la complémentation est telle que @ = a et vérifie les propriétés suivantes :

Si l'on rapporte ces opérations a la logique, alors :

e 1 indique le caractére vrai d’une propriété ou d’'un énoncé

0 indique le caractére faux

I'addition (+) correspond au ou

la multiplication (.) correspond au et

la complémentation @ correspond a non (noté — en logique), i.e. le contraire
de a

Ainsi, 'expression a + @ = 1 peut s’interpréter : dire qu'une chose est vraie ou
n’est pas vraie est toujours vrai. Je peux par exemple remplacer a par 'énoncé il
pleut, et donc, dans ce cas, il est vrai que : il pleut ou il ne pleut pas.

De la méme maniere « - @ = 0 signifie qu’on ne peut pas dire une chose et son
contraire. Je ne peux pas a la fois étre grand et ne pas étre grand.

C’est grace a cette modélisation de la logique sous forme d’opérations arith-
métiques que I'on peut simplifier certains traitements modélisés sous forme de
fonctions booléennes.

9.3 Fonction booléenne, table de vérité

On appelle fonction booléenne, une application de .A™ dans A :

(1'17332,"' 7$n) —>f([E1,IIZ'2,"' 7xn)

La maniéere la plus simple de définir une fonction booléenne f est de donner sa
table de vérité, c’est a dire, 'ensemble des n-uplets :

($17x27 e ,.Tn,f<x1,l’2, e ,In))

Les variables z; prenant leurs valeurs dans .4 = {0,1}, une fonction de n
variables posseédent donc card(.A)" = 2™ lignes, avec Clard() qui donne la cardinalité
d’un ensemble.

Prenons par exemple une fonction f(z,y, z), définie par sa table de vérité,
comme suit :

262

CHAPITRE 9. ALGEBRE DE BOOLE

Ligne = y =z | fi(z,y,2)

0

NOUu A WODN R

0

- == O O O

0

= = OO0 R K~k O

R O = O =R O = O

1

_ =0 O O O

A partir de la table de vérité d’'une fonction, on est en mesure de donner une
expression de celle-ci sous forme algébrique en tant que somme de mondmes :

e il suffit d’exprimer les monomes pour les lignes pour lesquelles la fonction

fl(ZC,y,Z) =1

e si une variable est a 0 sur cette ligne, on utilise son complément

Avec 'exemple précédent, on obtient :

filz,y,2) =TYZ+Ty.z+ ryZ+ xy.2
——

Ligne0

e Ve S
Ligne3

Ligne6 Ligne7

On remarque dans la table de vérité que les variables =, y et z suivent la
notation binaire et que pour la ligne 6, on a bien z = 1,y = 1, 2 = 0 qui correspond

a 110, = 6.

L

Il existe un moyen plus simple et plus rapide de décrire la table de vérité
d’une fonction booléenne en indiquant les lignes de la table de vérité qui
comportent des 1 et qui définissent la fonction. Ainsi, une fonction f peut
étre est décrite par : f(z,y,2,t) = (3,4,5,6,7,9,13,14,15) ou encore par
flz,y,2,t) = (3—7,9,13 — 15), ol I'expression 3 — 7 signifie de 3 a 7.

9.3.1 Fonctions de deux variables

Dans le cas particulier des fonctions a 2 variables f(z,y), on peut définir 16
fonctions différentes dont certaines sont identifiée par un nom. On retrouve notam-

ment :

e or(z,y),cestadireleou:z+y

e and(z,y),leet:x -y

(3 I N

9.3. FONCTION BOOLEENNE, TABLE DE VERITE 263

e nor(z,y) =or(x,y),le nonou:z+y

e nand(z,y) = and(z,y),le nonet: Ty

e zor(x,y), le ou exclusif qui est vrai uniquement si 'une de ses opérandes est
vraie : T-y+x-y=xdDy

9.3.1.1 La fonction and(z,y) (ET logique)

Le ET logique (voir Table 9.2) vaut 1 uniquement si ses deux opérandes z et y
valent 1.

— = O O s
= O = O S
=
~
=
= O O O e
<
SN—

TABLE 9.2 — La fonction and(z, y)

En d’autres termes, dans un programme, pour que la condition (x and y) soit
vraie, il faut que les deux sous-conditions x et y soient vraies.

((0 < a) and (a < 11)) {
// a est compris entre 1 et 10

} {
// a est en dehors de l'intervalle [1..10]

9.3.1.2 La fonction or(z,y) (OU Logique)

Le OU logique (voir Table 9.3) vaut 0 uniquement si ses deux opérandes x et y
valent 0.

En d’autres termes, pour que la condition (x or y) soit vraie, il faut que I'une
des deux sous-conditions x ou y (ou les deux) soient vraies.

v A W N =

v A W N =

264 CHAPITRE 9. ALGEBRE DE BOOLE

TABLE 9.3 — La fonction or(z, y)

> 10) or (a < 1)) {

// a est en dehors de 1l'intervalle [1..10]
{
a

//

est compris entre 1 et 10

9.3.1.3 La fonction xor(z,y) (OU Exclusif Logique)

Le OU Exclusif logique (voir Table 9.4) vaut 0 uniquement si ses deux opérandes
x et y ont la méme valeur.

x‘y‘ror(a:,y)
00 0
01 1
‘10 1
11 0

TABLE 9.4 — La fonction zor(z, y)

En d’autres termes, pour que la condition (x xor y) soit vraie, il faut que 'une
des deux sous-conditions x et y soit vraie, mais pas les deux en méme temps.

((est_un_poisson(a) xor vole(a))) {

// élimine les poissons volants

// Traite les poissons ou les animaux qui volent
// mais pas les deux en méme temps

9.3.1.4 Lois de De Morgan

Les lois de De Morgan (mathématicien et logicien britannique, 1806-1871)
permettent d’exprimer la transformation de la négation d’'un ET ou d’un OU logique.

9.4. SIMPLIFICATION DES FONCTIONS BOOLEENNES 265

e NON(x ET y) est équivalent a NON(x) OU NON(y), que 'on peut énoncer
sous la forme : le complémentaire du produit est la somme des complémen-
taires :

TY=7+Y

e NON(x OU y) est équivalent a NON(z) ET NON(y), que 'on peut énoncer
sous la forme : le complémentaire de la somme est le produit des complémen-
taires :

rT+y=Ty

Par exemple, soit la condition (¢ < a) and (a < 11) vue précédemment dans
I'exemple sur le ET. 1l existe différentes manieres d’en prendre la négation :

e not((0 < a) and (a < 11))

not(@ < a) or not(a < 11), transformation par De Morgan

(0 >= a) or (a >= 11), application du not sur chaque sous-condition
e (a<=0) or (a>=11)
(a<1)or (a>10)

9.4 Simplification des fonctions booléennes

L’intérét de I'algebre de Boole est qu’elle permet de simplifier les fonctions
booléennes comme on le ferait d'une expression algébrique sur les entiers ou les
réels.

9.4.1 Regles de simplification algebriques

Deux fonctions booléennes sont dites identiques si elles possedent la méme
table de vérité. Cette propriété nous permet d’établir un certain nombre d’identités
et de regles de simplification :

Loi Forme + ’ Forme -
élément neutre (R1) r+0=ux (R2) r-l=ux
d’idempotence (R3) r+r=ux (R4) rT-r=ux
d’inversion (R5) r+T=1 (R6) r-T=0
d’absorption (R7) r+zr-y==a (R8) r-(r+y) ==
de De Morgan (R9) rT+y=T-y 10 T-y=7T+7y

(R10)
de commutativité = (R11) r+y=y+z (R12)
d’associativité (R13) z+(y+2)=(x+y)+2 (R14) - (y-2)=(x-y) 2
de distributivit¢ | (R15) z-(y+z2)=z-y+az-z (R16) (

266 CHAPITRE 9. ALGEBRE DE BOOLE

Essayons d’appliquer ces regles pour simplifier la fonction fo(x,y, z) :

folv,y,2) =Ty 24T -y-Z+x-2

Cette fonction peut étre réécrite sous une forme simplifiée en :

folz,y,2) =Ty -24+T-y-Z+x-z
=T-y-(z+2)+x-z (factorisation)
=7-y-14+z-2 (Rb)
=T yt+xr-z

La fonction ainsi réduite possede deux termes et est plus facile a concevoir sous
forme de schéma électronique car elle utilise moins de symboles donc moins de
portes logiques. Ces portes logiques sont implantées sous forme de transistors. Si
on utilise moins de transistors on peut réduire la taille des circuits électroniques.

On utilise également d’autres formules de simplification parmi lesquelles :

(R17) r+T-y = x4y
(R18) z-y+T-z+y-2 = o -y+T-2

9.4.2 Méthode des tableaux de Karnaugh

La méthode des tableaux de Karnaugh a été développée par Maurice Karnaugh,
ingénieur américain en télécommunications aux Bell Labs en 1953. 1l s’agit d'un
procédé de simplification visuel, pratique, qui ne s’applique qu’a des fonctions
booléennes composées au maximum de 6 variables, car au dela, cela devient
extrémement complexe de visualiser les simplifications. Elle consiste a représenter
sous une forme particuliere la table de vérité de la fonction afin de procéder a des
regroupements qui correspondent a I’élimination d’une variable qui apparait sous
une forme positive dans un terme et négative dans un autre terme :

La simplification est réalisée en deux étapes :

1. on commence par créer un tableau de Karnaugh de la fonction a simplifier

2. puis on simplifie 'expression par réunion de 2" cases adjacentes (c’est a dire
par groupe de 2,4, 8,16, 32) en évitant les regroupements redondants

9.4. SIMPLIFICATION DES FONCTIONS BOOLEENNES 267

9.4.3 Création et remplissage du tableau de Karnaugh

Nous présentons Figures 9.1, 9.2, deux agencements d’'un tableau de Karnaugh
pour une fonction de trois variables. La Figure 9.3 représente, quant a elle, une
représentation pour une fonction de quatre variables.

On remarque que les lignes ou les colonnes ont une organisation particuliere :
quand on passe d’une ligne (ou d’'une colone) a la suivante (ou la précédente) on
ne change le signe que d’une seule variable.

fxyz)| Z z
— Xyl o 1
d
Xyl 2 3
X
x|
Xyl 6 7

FIGURE 9.1 — Tableau de Karnaugh pour une fonction de 3 variables (version 1)

fxy2)| vz | vz | yz | vz

x|
o
-
w
N

FIGURE 9.2 — Tableau de Karnaugh pour une fonction de 3 variables (version 2)

Dans chaque case des tableaux nous trouvons le numéro de la ligne de la table
de vérité qui lui est associé. Ainsi pour la Figure 9.3, I'expression x-¢-z-v correspond
en binaire a 1001, soit 9 en décimal. La valeur 9 se trouve donc a I'intersection de
la ligne x - y et de la colonne z - v.

Pour remplir le tableau de Karnaugh on ne garde que les numéros des cases qui
correspondent a des valeurs pour lesquelles la fonction booléenne vaut 1.

268 CHAPITRE 9. ALGEBRE DE BOOLE

fxyzVv)| zZv | Zv ZV zv
xy| o 1 3 | 2
Xyl 4 5 7 | 6

X.y 12 13 15 14

FIGURE 9.3 — Tableau de Karnaugh pour une fonction de 4 variables

9.4.4 Simplification du tableau de Karnaugh

Comme indiqué précédemment, on regroupe les 2" cases adjacentes. Dans
certains cas il n’est pas possible de regrouper des cases du tableau car elles ne sont
pas adjacentes, on n’aura donc aucune simplification pour la case en question.

Tableau de Karnaugh : adjacence de deux cases

On peut définir I'adjacence de deux cases du tableau par le fait que leurs
expressions algébriques ne different que par le signe d’une seule variable. Par
exemple :

e r-y-zetx-y-zsont adjacentes car elles ne different que par le
changement de signe de y en 3y

e alors que z -y - z et x - 3 - z difféerent par le changement du signe de
deux variables y et z et ne sont donc pas adjacentes

g J
fxyzv)|| zZv | Zv ZV zv
XY | { o) [I 3| (2
ZVv
X 4 5 [7 6 L+
YL)/ Y
— = e Y _
xzxyll| 12 [(13|] 15]|] |14]| X2V
xy| 8) 9 11 10
/ \ / A\, J

A% X.y.Z

FIGURE 9.4 — Exemples d’adjacence dans un tableau de Karnaugh

9.4. SIMPLIFICATION DES FONCTIONS BOOLEENNES 269

La Figure 9.4 représente plusieurs situations d’adjacence. Pour une tableau de
quatre variables, on peut regrouper les variables adajacentes par deux, quatre, huit
ou seize. On a donc adjacence si, partant d’'une case, on atteint une autre case :

e en passant d’une ligne a la suivante ou la précédente

e en passant d’'une colonne a la suivante ou la précédente

Il nous suffit alors de regrouper des cases adjacentes afin de simplifier des

expressions.

Tableau de Karnaugh : adjacence de plusieurs cases

Plusieurs cases sont adjacentes si elles sont au nombre de 2" et qu’elles
forment un carré ou un rectangle.

Attention : il est possible d’utiliser plusieurs fois la méme case pour faire des
regroupements différents. Cependant, si on regroupe des cases contenues dans un
regroupement déja effectué alors on produit un terme inutile ou redondant.

9.4.4.1 Exemple simple de simplification par tableau de Karnaugh

Voyons cela sur un exemple concret. Considérons la fonction booléenne donnée
par I'expression algébrique :

f4(£c,y, Z) =

8 8 8
< @
o w
+ +
8 8l
e <
al

|
+
Le tableau de Karnaugh de cette fonction est représenté Figure 9.5.

La case 0 n’étant adjacente a aucune autre, elle restera seule et ne subira
aucune simplification. Les cases (3,7), (6,7) et (5,7) sont adjacentes on va donc les
regrouper :

e pour3et7,onaz-y-z+z-y-2=(T+x)y-2=9y-2

e pourS5et7,onaz-g-z+x-y-z2=UY+y) -x-z2=x-2

<

epourb6et7,onas-y-z2+z-y-2=Z+z2)-v-y=x-y

Comme indiqué précédemment, bien que les cases 3,5, 6, 7 soient adjacentes,
on ne peut pas les regrouper car elles ne forment pas un carré ou un rectangle.
Notamment 3 n’est pas adjacente a 5 ou 6. Au final, on obtient la simplification :

filw,y,2) =TG- Z+y-z+g-z+z-y
—_——— ~— N
0 347 5T 647

270 CHAPITRE 9. ALGEBRE DE BOOLE

FIGURE 9.5 — Tableau de Karnaugh de f4(z,y, z)

9.4.4.2 Exemple plus problématique

On considere la fonction de 3 variables f5(z,y,2) = (1,3,6,7)
Le tableau de Karnaugh de cette fonction est représenté Figure 9.6.

Si l'on y préte pas attention, on peut envisager de réaliser les regroupements
suivants :

e o= (1,3
e 3=(3,7)
e 0=(6,7)

On obtiendra alors la simplification :

folwy,2) =T 2ty 242y

Cependant, comme le montre les regroupements sur la Figure 9.6, le terme
associé a est redondant, puisque le recouvrement avec « et § suffit a regrouper
tous les termes. On peut effectivement montrer que le terme [est redondant et
donc inutile par simplification algébrique :

Tz+yz+zy = Tz4+yz-@T4+z)+ay 1= (x+7)

Tz +Tyz +xyz+xy (developpement)
= Tz-(1+y)+ay- (14 2) (factorisation)
e Tz + 2y

9.5. REPRESENTATION DES PORTES LOGIQUES 271

fS(X,y,Z) E Z
Xy ‘ 1 | QO
—_ el

I3
X.y |6 |7|
_
Xyl 5

FIGURE 9.6 — Tableau de Karnaugh de f5(z,y, 2)

Il s’agit en fait d'une simplification qui s’apparente a la formule (R18) vue
précédemment.

9.5 Représentation des portes logiques

Les expressions booléennes sont représentables de maniere graphique en utili-
sant des portes logiques. Les portes logiques sont généralement représentées par
des symboles composés d’une ou plusieurs entrées et d’'une sortie. Pour relier deux
portes il suffit de relier la sortie de 'une a 'une des entrées de la seconde.

AB A A+B
B _
o ﬁ g bo A+B

A >0 A gj A'B

FIGURE 9.7 — Représentation des portes logiques

W > W >

Par exemple, la fonction fs(z,y,2) =T -y-2+T-y-Z+ x - z est représentée
Figure 9.8.

272 CHAPITRE 9. ALGEBRE DE BOOLE

=D =
A

FIGURE 9.8 — Conception de la fonction F

9.5.1 Universalité des portes NAND et NOR

Les expressions booléennes se résument a des combinaisons entre trois types
de portes couramment utilisées : NOT, AND, et OR. On remarquera que ces trois
portes sont modélisables en fonction d’un seul type de porte : la porte NAND.

A {} A

R

A {DQL
{j@f} A+B

B

FIGURE 9.9 — Portes NOT, AND et OR en fonction de portes NAND

]
I

8
8

8

T+y=7T-1-7-7

On peut également écrire les portes NOT, AND et OR en fonction de portes NOR
(cf. figure 9.10).

9.6. ALGEBRE DE BOOLE ET CIRCUITS 273

A—[% A

B

b) o) Do avn

FIGURE 9.10 — Portes NOT, AND et OR en fonction de portes NOR

9.6 Algebre de Boole et circuits

L’algebre de Boole permet de modéliser le fonctionnement des circuits logiques
et d’en simplifier I'implantation. Nous prendrons ici 'exemple de I'additionneur et
du demi-additionneur qui sont deux circuits logiques tres simples.

9.6.1 Le demi-additionneur

Le demi-additionneur est un circuit logique qui comporte deux entrées (r et
y) et deux sorties et qui a pour but de calculer la somme x + y. Les deux entrées
correspondent aux deux bits a additionner et les sorties a la somme S ainsi que
la retenue en sortie R, qui peut étre générée. S et R, sont donc des fonctions
booléennes dont la table de vérité est donnée Table 9.5.

TABLE 9.5 — Table de vérité du demi-additionneur

Les fonctions S et R, s’expriment donc sous forme algébrique par :

Sxy) = T-y+r-y =Dy
Rs(‘rhy) = Xy

274 CHAPITRE 9. ALGEBRE DE BOOLE

9.6.2 L’additionneur

Un additionneur est un circuit qui comporte trois entrées et deux sorties. Il
calcule la somme de ses trois entrées. Les trois entrées sont z, y et la retenue
en entrée R, qui correspond a un calcul précédent. Les deux sorties sont comme
précédemment S et R,. La table de vérité de 'additionneur est donc la suivante :

8
&
&

_ = == 0 0O OO0
= = O O = = O O s
R OO Rr O R~ O |
_ = = O R O OO

— O = O = O = O

TABLE 9.6 — Table de vérité de 'additionneur

Le calcul en décimal est équivalenta z +y + R, = R, x 2+ S.

A

A DD
e 6 |
%

R

S
FIGURE 9.11 — Demi addi- R
tionneur FIGURE 9.12 — Additionneur complet

Les fonctions booléennes S et R, pour 'additionneur (complet) s’expriment
sous forme algébrique par :

S(z,y,R.) = xdyd R,
Rs(xvvat?) - ‘Ty+<'r@y)R€

9.7. ALGEBRE DE BOOLE ET ARITHMETIQUE 275

9.6.3 Le soustracteur

Conformément aux regles énoncées Section 2.3.3, on obtient la table de vérité
suivante :

=y
®
8
&

= = = = O O O O
—_ O = O = O = O s
—_ O O~ O R Rk O |99
_H O R, M2, OORO

== - OO O = = O O

TABLE 9.7 — Table de vérité du soustracteur

Le calcul en décimal est équivalenta R, x 2+z —y = R, + S.

Les fonctions booléennes S et R, pour le soustracteur s’expriment sous forme
algébrique par :

S(z,y,R.) = zdy®d R,
Ry(xz,y,R.) = T-y+xdy-R.

On obtient donc pour S la méme formule que pour 'additionneur.

9.7 Algebre de Boole et arithmétique

Il est possible d’exprimer les portes logiques sous forme de formules arithmé-
tiques. Considérons deux variables entieres x et y qui prennent leur valeurs dans
I'intervalle [0, 1]. Alors, les portes logiques de base peuvent s’exprimer ainsi :

e not(r)=1—=x

e or(z,y) =z +y—(zxy)

e and(x,y) =z Xy

o zor(z,y) =x+y—(2xzxy)

Pour évaluer des expressions booléennes en C, on peut utiliser les opérateurs
classiques comme && (and), | | (or), associés aux booléens ou les opérateurs binaires
&, |. Il est également possible de passer par les expressions arithmétiques :

O O N AW N -

= e
=]

O o N AW N -

-
(=}

276 CHAPITRE 9. ALGEBRE DE BOOLE

int notl (int x) { 1 - x; }

int or2(int x, int y) { X +y - xXxy; };

int and2 (int %, int y) { Xxy; };

int xor2 (int x, int y) { X +y — 2xx*xy; |}

int or3(int x, int y, int z) { or2(x, or2(y,z)) ;}
int and3(int x, int y, int z) { X*y*Z; }

Ainsi pour obtenir la table de vérité de la fonction booléenne f(z,y,z) =
T.y.Z+ x.y.Z + x.y.Z + T.j.Z, on pourra écrire le code suivant :

(int 1 = 0; i < 8; ++i) {

int x = (1 & 4) >> 2 ;

int y = (1 & 2) >> 1;

int z =i ¢ 1;

int vl = or2(and3 (notl(x),y,notl(z)), and3(x,notl(y),notl(z)));
int v2 = or2(and3(x,y,notl(z)), and3(notl(x),notl(y),notl(z)));
int £ = or2(vl, v2);

cout << x << " " K<y << "MKz <" " <K< f << endl;

9.8 Algebre de Boole et logique

Dans cette section nous tentons de montrer le lien qui existe entre logique
propositionnelle et algebre de Boole en nous basant sur le probleme des pigeons.

9.8.1 Définition du probleme

On s’intéresse au probleme des pigeons, également appelé tiroirs et chaussettes,
qui est finalement un probleme d’affectation ou de mise en correspondance ou
d’injection, c’est a dire que tout élément de 'espace d’arrivée possede au plus un
antécédent.

Probleme des pigeons

Etant donné n pigeons et ¢ pigeonniers, chaque pigeon devant trouver un
pigeonnier et un pigeonnier ne pouvant accueillir qu’au maximum un seul
pigeon, restera t-il des pigeons sans pigeonnier ?

Ce probleme est tres simple a résoudre du point de vue des mathématiques
puisqu’il suffit que n < ¢ pour qu’il ait une solution et que toute permutation d’'une

9.8. ALGEBRE DE BOOLE ET LOGIQUE 277

solution est également une solution.

9.8.2 Modélisation du probleme en logique

Pour modéliser le probleme en logique propositionnelle, il faut utiliser un
ensemble de variables propositionnelles et exprimer des clauses entre les variables.
On rappelle qu'une clause est une disjonction de variables propositionnelles, ces
dernieres sont donc séparées par le symbole \V qui correspond au ou. Un probleme
est alors un ensemble de clauses liées par le symbole A qui correspond au et. Si le
probléme posséde une solution, on dit également qu’il est satisfiable, alors toutes
les clauses sont interprétées a vrai.

On utilisera une matrice de n x ¢ variables propositionnelles pour représenter
le probleme des pigeons :

1,2 q

ry Xy Ty

2 .2 q

D% I BT L3
(TL, q) -

1 2 q

Si la variable x] est a vrai cela signifie que le pigeon i est dans le pigeonnier ;.
Cela implique donc que les variables «}, ..., 2/™" ... 27 sont & faux. En d’autres

termes, le pigeon étant dans le pigeonnier j, il ne peut pas étre dans les autres
pigeonniers.

On doit donc exprimer deux types de contraintes :

e contrainte de type Ctr; (sur les lignes) : un pigeon est dans un et un seul
pigeonnier

e contrainte de type C'tr¢ (sur les colonnes) : un pigeonnier contient au plus
un pigeon, il peut donc ne pas en contenir si n < ¢

Dans le cas oun = 3 et ¢ = 3, le probleme est modélisé comme suit, on renomme
les variables afin de faciliter I’écriture des clauses :

a b c i 2t
X3,3)=|d e f|=]|a 22 a3
g h i i xi

e le pigeon 1 est dans un seul pigeonnier (4 clauses) :

aVbVce
—a V —b
-a V e
—bV —e

278 CHAPITRE 9. ALGEBRE DE BOOLE

le pigeon 2 est dans un seul pigeonnier (4 clauses) :

dVveVf
=d VvV —e
—dV ~f
—eV ~f

le pigeon 3 est dans un seul pigeonnier (4 clauses) :

gV hVi
—gV —h
—g V
—hV i

le pigeonnier 1 contient au plus un pigeon (3 clauses) :

—a V —d
—|CL\/—|g

le pigeonnier 2 contient au plus un pigeon (3 clauses) :

—-bV —e
-bV —h
—eV —h

le pigeonnier 3 contient au plus un pigeon (3 clauses) :

—|C\/—|f
—cV i
—f Vi

soit un total de 21 clauses pour n = 3 et ¢ = 3.

Le nombre de clauses générées est défini par la formule :

qg—1 n—1
nx<1+2i)+q><(z)
i=1 i=1

Sin = q = 10, on génere 910 clauses.

9.8.3 Résolution du probleme en logique

Pour résoudre ce probléme en logique il faut utiliser un solveur ou un dé-
monstrateur automatique de théoreme comme Otter (Organized Techniques for
Theorem-proving and Effective Research, [20]).

9.8. ALGEBRE DE BOOLE ET LOGIQUE 279

La méthode qui permet de résoudre le probleme sous forme de clauses consiste
a appliquer la regle dite du Principe de Résolution définie par John Alan Robinson
[24].

A partir d’'une clause qui possede une variable propositionnelle p et une autre
clause qui posséde la variable sous forme négative (—p), on génére une nouvelle
clause :

pV L -pV M
LV M

L et M étant des variables propositionnelles séparées par le symbole V.

On applique cette regle entre toutes les clauses quand cela est possible. On va
donc générer un ensemble de plus en plus important de clauses a mesure que le
nombre de pigeons et de pigeonniers augmentent. Les nouvelles clauses ajoutées a
I'ensemble initial seront utilisées pour générer encore plus de clauses. Il se peut
que l'on génere plusieurs fois la méme clause, dans ce cas, si elle existe déja, on
ne l'ajoutera pas. On n’ajoutera pas également les tautologies qui sont de la forme
—-pVpV L, car dans ce cas —p V p = 1, il en résulte alors que 1 vV L = 1.

On terminera dans les deux cas suivants :

e soit le probléme possede des solutions, on dit qu’il est satisfiable, et arrivera
un moment ou on ne générera pas de nouvelle clause

e soit le probléme n’a pas de solution, il est insatisfiable, et on génerera la
clause vide :
p P
1

Si le probléme est insatisfiable c’est qu'on a pu générer a partir d’'un sous-
ensemble de clauses la clause qui se résume a un seul littéral p, et qu’a partir d’'un
autre sous-ensemble on a généré son contraire. Le probléme est donc insatisfiable
car on ne peut affirmer une chose et son contraire.

Par exemple dans le cas ou p = 3 et ¢ = 2, le probléeme n’a pas de solution et la
résolution se fait en 18 étapes. Voici la preuve trouvée par Otter :

[1 -p1_2| -p2_2.
(] -p1_2| -p3_2.
9 [] -p2_2| -p3_2.
10 [p1_1|p1_2.
11 [] p2_1|p2_2.
12 [1 p3_1|p3_2.
13 [hyper,11,7,10] p1_1|p2_1.

280 CHAPITRE 9. ALGEBRE DE BOOLE

14 [hyper,12,9,11] p2_1|p3_1.
15 [hyper,12,8,10] p1_1|p3_1.
16 [hyper,15,6,13] p1_1.

17 [hyper,16,5,14] p2_1.

18 [hyper,17,4,16] $F.

Les variables 27 sont renommées en pi_j car Otter considére que le symbole x est
une variable du calcul des prédicats et non une variable du calcul propositionnel.

Otter utilise ici une regle appelée hyper-résolution (HR) qui est dérivée du
Principe de Résolution et on génere la clause vide, matérialisée par $F. Par exemple,
la clause 13 est obtenue par :

clause 10 clause 7 clause 11
) 1 2I ' 2 2I 2 1
P11V PV —p; Py VDo
piVP - piV-ps PV
0 0
(HR)
piVps

A mesure que p et ¢ augmentent, le nombre de clauses augmente et la résolution
prend plus de temps. Si on prend p = 5 et ¢ = 4, Otter prouvera qu’il n’y a pas de
solution en 142 étapes.

9.8.4 Modélisation sous forme de contraintes de cardinalité

Pour résoudre plus simplement ce probleme, on peut le modéliser sous un autre
formalisme qui utilise des contraintes de cardinalité [6] *. Nous utilisons ici une
spécialisation de 'opérateur pour la logique :

#(a, 8,{L})

ol « et 3 sont des entiers positifs ou nuls tels que 0 < o < et L est une liste de
variables booléennes. La contrainte signifie qu’au minimum « et au plus /3 variables
de L sont vraies.

On modélise alors le probleme par une matrice de variables booléennes X (n, q),
telles que =] = 1 signifie que le pigeon i est dans le pigeonnier j. Le probléeme des
pigeons s’exprime alors par deux types de contraintes :

1. Opérateur introduit dans le cadre de la Programmation Logique avec Contraintes par Pascal
Van Hentenryck et Yves Deville en 1991.

9.8. ALGEBRE DE BOOLE ET LOGIQUE 281

e un pigeon est dans un et un seul pigeonnier (contrainte de type C'try) :
#(1,1,{x},...,z%})
‘#‘(1, 1 {zl, ... x1})

e un pigeonnier accueille au plus un pigeon (contrainte de type Ctr¢) :
#(0,1,{z}, ...,z })

#(0,1,{zf,...,22})

9.8.5 Contraintes #(1,1) et #(0, 1)

A quoi correspondent les contraintes #(0, 1, {L}) et #(1, 1, {L}) et peut-on les
traduire en calcul propositionnel ?

Par exemple pour la contrainte #(1, 1, {z,y, z}), on peut utiliser une table de
vérité et modéliser la contrainte de cardinalité sous forme d’une fonction booléenne

ce(x,y, z) -

0 O 0 O 0
1 0O O 1 1
2 0 1 0 1
3 0 1 1 0
4 1 0 O 1
5 1 0 1 0
6 1 1 O 0
7 1 1 1 0

On a donc cc(z,y, z) = 1 pour les lignes 1, 2 et 4 de la table de vérité car cela
correspond aux cas ou seule I'une des variables est a 1 parmi z, y et z. On obtient
alors I'expression de la fonction :

ce(x,y,2) =TY.z+TYyzZ+ryz

Il s’agit la d’'une somme de produits, en logique propositionnelle on parle
de disjonctions (+) de conjonctions (.). Or les clauses sont des conjonctions de
disjonctions et donc, si on veut obtenir des clauses, on doit prendre la négation du

complémentaire de cc(z, y, z) soit cc(x,y, z) . On va donc dans un premier temps
simplifier cc(x, y, z) puis en prendre le complémentaire.

282 CHAPITRE 9. ALGEBRE DE BOOLE

On peut réaliser la simplification de maniere algébrique mais elle prend plus de
temps que la méthode du tableau de Karnaugh. Il s’agit du tableau de la Figure 9.5
vue précédemment.

ce(r,y,2) = T-§-zZ2+y-z+x-z2+x-y
= (r+y+z2)-@G+2) - @T+2) (T+7)
Un contrainte de cardinalité #(1,1,{L}) ou Card(L) = k, remplace donc 1 +

-1 . . \ A . .
Zle i clauses, ce qui est tres avantageux, et cette méme contrainte de trois
variables est équivalente en logique a :

(xVyVz)A(—yV-z)A(nzV-—z)A(—zV-y)

9.8.6 Résolution avec des contraintes de cardinalité

On peut vérifier la consistance (ou I'inconsistance) du probléme en utilisant un
systeme de déduction comme celui de [23] (cf. pages 80 et 81). On utilise la regle
d’extension (Fzt) définie ainsi :

#(alv 517 {Ll}) #(OQ» 527 {LZ})
#(on + ag, B + Bo, {L1 U Ly })

On remplace deux contraintes de cardinalité par une seule en faisant en quelque
sorte la somme des deux contraintes initiales. Pour cela, il est généralement préfé-
rable de faire en sorte que L; N Ly = 0.

Si on applique la régle (Ext) sur 'ensemble des contraintes liées a C'try, puis
sur 'ensemble des contraintes liées a C'tr¢, on obtient respectivement :

e un pigeon est dans un et un seul pigeonnier Ctry, :
e un pigeonnier accueille au plus un pigeon Ctre :

#(0,¢,{X(n,q)})

Le probléme se résume donc a ces deux contraintes. La régle d’inconsistance
(Inc;) permet de déduire rapidement si le probleme posséde ou pas une solution.
Cette regle stipule que si on dispose de deux contraintes de cardinalité sur le
méme ensemble de variables alors on a une inconsistance (donc pas de solution) si
l'intersection des intervalles [y, 1] et [, 52] est vide :

#(a1, B1,{L}) #(aa, B2, {L})

[aly 51] N [042, 52] =0 1

Et c’est bien le cas pour ce probleme :

9.8. ALGEBRE DE BOOLE ET LOGIQUE 283

e sin > ¢ le probleme n’a pas de solution et l'intersection des intervalles est
vide, la regle d’inconsistance peut étre appliquée et son résultat (1) indique
que le probléme n’a pas de solution

e par contre si n < ¢, 'intersection des intervalles est non vide, la régle ne sera
pas appliquée et le probleme posséde des solutions

9.8.7 Solveur

Il est tout a fait envisageable de créer un solveur en logique qui se base sur les
contraintes de cardinalité. Toute clause de la forme z; V ...V x,, peut étre traduite
par une contrainte de la forme :

#(,n,{x1,...,2,})

L’intérét des contraintes de cardinalité est qu’elles nous permettent de déduire
la valeur de certaines variables booléennes. Par exemple dans le cas des pigeons,
dés qu'une variable d’une contrainte #(1,1,{L}) ou #(0,1,{L}) est vraie (donc
égale a un), on peut en déduire que toutes les autres variables de L doivent étre
affectées a la valeur 0.

A titre de comparaison, voici, Table 9.8, quelques résultats sur un AMD Ryzen 5
3600 concernant la recherche de toutes les solutions du probleme des pigeons avec
deux solveurs tres simples : le premier gere des clauses et le second des contraintes
de cardinalité. Dans le cas des contraintes de cardinalité, on utilise la déduction
des valeurs des variables comme évoqué au paragraphe précédent.

Nombre de Nombre de Nombre de Solveur Solveur Facteur
Pigeons Pigeonniers Solutions Clauses Contraintes d’Amélioration
n q Temps (s) Temps (s)
10 10 3628800 428 7 x 61
10 9 0 44 0,7 X 62
11 11 39916800 6728 87 X77
11 10 0 644 7 x 92

TABLE 9.8 — Temps de résolution en secondes de deux solveurs pour le probleme des pigeons

La premiére, deuxiéme et troisieme colonnes de la Table 9.8 indiquent respecti-
vement le nombre de pigeons, de pigeonniers et le nombre de solutions trouvées.
Dans le cas de problemes insatisfiables, on n’a aucune solution. Les colonnes quatre
et cinq donnent le temps de résolution en secondes avec un solveur simple basé sur
des clauses et un solveur avec contraintes de cardinalité. Enfin, la derniére colonne
indique le facteur d’amélioration qui est défini comme le rapport entre le temps
de résolution avec le solveur a base de clauses et le temps de résolution avec le
serveur a base de contraintes.

284 CHAPITRE 9. ALGEBRE DE BOOLE

Il est indéniable que I'utilisation des contraintes de cardinalité apporte un gain
substantiel lors de la résolution du probléme. Dans le cas ot le probléme ne posséde
pas de solution, le temps de résolution avec le solveur a base de contraintes de
cardinalité pour 10 pigeons et 9 pigeonniers est de 0,7 seconde, soit un facteur
d’amélioration de 44/0,7 = 62. On prend donc 62 fois moins de temps pour résoudre
le probléeme. A mesure que le nombre de pigeons et pigeonniers augmentent, le
facteur d’amélioration augmente également.

9.9 Conclusion

Au travers de ces deux exemples que sont les circuits électroniques comme
I'additionneur et la résolution du probleme des pigeons en logique, nous avons vu
comment |’algebre de Boole pouvait nous aider a simplifier certaines expressions
algébriques. Pour les circuits électroniques, nous pouvons diminuer le nombre
de portes logiques nécessaires a leur implantation sur le silicium. Concernant
la logique, on peut créer un solveur assez simple basé sur les contraintes de
cardinalités ou sur des clauses mais les contraintes de cardinalités, dans le cas de
problémes structurés comme les pigeons ou le probléme de Ramsey ? vont permettre
de simplifier la recherche en déduisant les valeurs a affecter a de nombreuses
variables.

9.10 Exercices

Exercice 39 - Démontrez algébriquement les égalités suivantes :

@YZ+YZ+YZ+Y-Z
(b) AB+AB+A-B=A+
(c) A+AB+AC+A-B-C=4
(d AB+A-C-D+A-BD+ A-
() XY +XZ+YZ=XY+XZ
) X+XY=X+Y

Exercice 40 - Simplifiez les expressions suivantes :
(a) ABC + ABC + AB
(b) (A+ B)(A+ B)
(¢) (A+ B+ AB)(AB + AC + BO)

2. Le probleme de Ramsey, d’aprés Frank Ramsey mathématicien, économiste et logicien anglais
(1903 - 1930) consiste a colorier les arcs d’un graphe complet a I'aide de trois couleurs sans qu’il
n’existe de triangle monochromatique.

9.10. EXERCICES 285

d X+Y(Z+X+2)
() WX(Z+YZ)+X(W+WYZ)

Exercice 41 - Simplifiez les fonctions suivantes a I'aide d’un tableau de Karnaugh
(a) F(X,Y,Z)=(1,3,6,7)
(b) G(X,Y,Z)=(0,3,4,5,7)
(¢) H(A,B,C,D)=(1,5,9,12,13,15)

Nous décrivons dans le reste de cette section quelques exercices qui demandent
une certaine maitrise de la programmation en C/C++. Ils sont réservés au program-
meur expérimenté.

Exercice 42 - Ecrire un programme appelé pigeon_hole_generator.exe qui prend
en parametres le nombre de pigeons, le nombre de pigeonnier ainsi que la méthode
de génération. On génerera le probléeme sous forme de clauses ou de contraintes de
cardinalité. Lors de la génération du probléme on donnera le nombre de variables
propositionnelle ainsi que le nombre de clauses ou le nombre de contraintes. Ainsi
pour trois pigeons et trois pigeonniers, on obtient pour les clauses :

clauses
9 21
3123
2 -1 -2

~
©o

M °r °r °r & & 1 1 1 1
A W WO NN A= =00 N
|
(6]

Ici, on a 9 variables propositionnelles numérotées de 1 a 9 et 21 clauses. Chaque
clause est décrite par le nombre de variables qui la composent, puis le numéro des
variables, précédées du signe - si elle apparait dans clause sous forme négative (—).

286 CHAPITRE 9. ALGEBRE DE BOOLE

Sous forme de contraintes de cardinalité, on aura :

constraints
96

113123
113456
113789
013147
013258
213369

On obtient 9 variables, 6 contraintes. Chaque contrainte est décrite par le
nombre minimum et maximum de variables a vrai, puis le nombre de variables et
la liste des variables.

Exercice 43 - Ecrire un programme appelé clauses_solver.exe qui prend en
parametre un fichier qui contient un ensemble de clauses et résoud le probleme de
maniere récursive en tentant d’instancier la prochaine variable a vrai, puis a faux.
Initialement les variables sont non instanciées.

Exercice 44 - Ecrire un programme appelé constraints_solver.exe qui prend
en parametre un fichier qui contient un ensemble de contraines de cardinalité
et résoud le probleme de maniere récursive en tentant d’instancier la prochaine
variable a vrai, puis a faux. On pourra mettre en place la déduction en vérifiant que
si le nombre de variables a vrai est égal au nombre maximum (/) alors toutes les
autres variables non instanciées sont positionnées a faux.

Chapitre 10

Etudes de cas

10.1 Introduction

Avant d’aborder les différentes études de cas dont le but est de traiter les
points cruciaux que nous avons évoqués, nous allons détailler dans ce chapitre les
caractéristiques communes a chacune de ces études de cas que nous qualifions
également de projets car il s’agit en fait de projets de programmation.

Jai tenté d’établir une sorte de squelette de projet en utilisant la méme organi-
sation des répertoires ainsi que les mémes scripts shell et PHP. Les diverses actions
(compilation, exécution des tests de performance, ...) sont automatisées au moyen
de I'utilitaire make ainsi que du makefile associé.

Chaque projet est concu autour d’'un ensemble d’implantations, appelées mé-
thodes, d’'un traitement informatique. L'une de ces méthodes est un sous-programme
dit de référence qui nous permet de vérifier que les autres méthodes sont correctes
et produisent le méme résultat. Chaque nouvelle méthode tente d’apporter une
amélioration par rapport a la méthode de référence en

e utilisant une réécriture du code C (dépliage, élimination des if, vectorisation
par intrinsics)

e ou en codant la fonction C en assembleur (dépliage, élimination des if,
vectorisation)

10.2 Organisation des sources et binaires

Les sous-répertoires de chaque projet sont les suivants :

e le sous-répertoire cfg contient des fichiers de configuration utiles a la compi-
lation

e le sous-répertoire src contient le code source, c’est a dire les fichiers C/C++ et
les fichiers assembleur

287

288

CHAPITRE 10. ETUDES DE CAS

le sous-répertoire build contient les fichiers générés lors de la compilation
e build/obj contient les fichiers objets (. o)
e build/bin contient les exécutables (.exe)

le sous-répertoire results contient les fichiers de données et graphiques
générés lors de I'exécution des tests de validité et de performance, on trouve
un répertoire par processeur

le sous-répertoire output contient les fichiers générés par le script table.php
qui permet de générer des tableaux de donnée a partir des résultats obtenus

L’arborescence est donc la suivante :

build
bin
obj
cfg
output
results
L Intel-Celeron-CPU-N3050-1_60GHz
src

Dans le répertoire principal on trouvera un fichier README ainsi qu’un fichier

INST

ALL. Le but du fichier README est de renseigner l'utilisateur sur 'objectif du

projet ainsi que de lui donner un acces rapide aux fonctionnalités de base du projet.

Le fi

chier INSTALL, quant a lui, décrit comment installer le projet, en d’autres

termes, comment le compiler et quels programmes annexes doivent étre installés.

L

e choix a été fait de rédiger 'ensemble des sources en anglais ainsi que les

fichiers README et INSTALL de maniere a ce qu’ils puissent étre utilisés, voire modifiés
par un large public. L’ensemble des fichiers est sous Licence GNU.

10.2.1 Cibles make

On considere que le lecteur possede des connaissances de base liées a la création

d’un

makefile. Les différentes cibles (targets) de make sont les suivantes :

configure appelle le script cpu_technos.sh (cf. ci-apres)

build permet de générer les exécutables au format release c’est a dire avec
les options de compilations sensées générer du code performant; on obtient
le méme résultat en lancant make sans arguments

debug génére les exécutables en incluant les informations nécessaires au
débogage
clean supprime les fichiers objets et les exécutables

10.2. ORGANISATION DES SOURCES ET BINAIRES 289

e validity exécute les tests de validité afin de vérifier que les fonctions donnent
le méme résultat pour un test de base

e performance exécute les tests de performance ce qui permet de déterminer
quelle fonction est la meilleure

e archive génére une archive de 'ensemble des fichiers du projet

10.2.2 Scripts shell et PHP

On dispose dans le répertoire du projet d'un ensemble de scripts :

e cpu_name.sh récupére le nom du microprocesseur en éliminant certains ca-
racteres inutiles, en remplacant les espaces par le signe moins (’-’), cet
identifiant est ensuite utilisé pour créer un sous-répertoire dans le répertoire
results afin de stocker les résultats spécifiques au microprocesseur

e cpu_technos.sh détermine quelles technologies (SSE2, SSE4.1, SSE4.2, AVX2,
POPCNT, BMI, FMA) sont implantées au niveau du microprocesseur afin
de savoir si on peut utiliser leurs jeux d’instructions. Ce script génere en
conséquence les fichiers src/asm_config.inc, src/cpp_config.inc ainsi que
cpu_technos.mak

e validity_test.php réalise un test de validité en vérifiant pour différents
parametres que les méthodes donnent le méme résultat que la fonction de
référence

e performance_test.php réalise un test de performance afin de déterminer
pour différents parametres quelle est la méthode la plus efficace puis appelle
le script performance_graph.php afin de générer un graphique des données
obtenues en utilisant gnuplot

e table.php, comme indiqué précédemment, ce script permet de générer dans
le sous-répertoire output des tableaux de données au format CSV (Comma
Separated Values), HTML ou LaTeX

Cette liste est non exhaustive, on trouvera également en fonction de I'angle
d’attaque de 1'étude de cas des scripts spécifiques. Par exemple, dans le cas du
produit de matrices nous avons ajouté un script nommé samples_test.php qui
génere les temps d’exécution du produit de la méthode de référence pour différentes
dimensions de la matrice afin de démontrer que la méthode de référence est sensible
a la dimension.

10.2.3 Fichiers sources

Dans le répertoire des fichiers sources, on trouve un fichier common . h qui contient
les définitions de types, constantes et fonctions communes a I’ensemble des sources.
On trouvera également les fichiers cpp_config.h et asm_config. inc, générés par le

N O

290 CHAPITRE 10. ETUDES DE CAS

script cpu_technos. sh, qui définissent des macro instructions liées aux différentes
technologies implantées au sein du microprocesseur. Ainsi, si le microprocesseur
posseéde la technologie SSE 4.2 on définit la macro CPU_SSE42_COMPLIANT. Ces
macro instructions peuvent étre utilisées par la suite pour inclure le code d’'une
méthode utilisant le jeu d’instructions SSE 4.2.

J'utilise également cpu_timer.h et cpu_timer.cpp qui définissent la classe
CPUTimer qui est un chronometre basé sur 'instruction rdtsc (ReaD TimeStamp
Counter) afin de lire le nombre de cycles d’horloge du processeur et calculer par
différence le nombre de cycles utilisés lors de 'exécution de chaque méthode.

La classe SignalHandler a été implantée et elle est chargée d’intercepter la
plupart des exceptions levées par la commande signal comme par exemple SIGFPE
(cf. fichiers signal_handler.h et signal_handler.cpp). Pour utiliser cette classe et
intercepter différents signaux il suffit de déclarer une instance de la classe au tout
début de la méthode main dans le fichier src/main.cpp :

int main(int argc, char xargv[]) {
SignalHandler sh;

Le fichier src/main.cpp qui contient le programme principal se base sur getopt
afin de gérer les options en ligne de commande du programme. Parmi les options
communes a tous les projets on trouve :

e -h ou ~help pour obtenir 'aide du programme exécutable
e -1 ou-list donne la liste des méthodes

e -t ou —test réalise un test de 'ensemble des méthodes et indique si une
méthode produit un résultat différent de celui de la méthode de référence

e -mou -method permet de choisir la méthode a tester en donnant son identifiant
entier, la méthode de référence ayant pour valeur 1

e -n ou -name permet de sélectionner une méthode en précisant son nom

e -v ou -verbose introduit le mode verbeux, c’est a dire que I'on affichera des
informations supplémentaires lors de 'exécution

Le reste des fichiers contient le code source des différentes implantations de la
fonction de référence.

10.3 Redéfinition des types et constantes

Afin de simplifier 'écriture du code et sa compréhension, j’ai pris pour habitude
de redéfinir les types utilisés (fichier src/common.h). Ainsi plutét que d’utiliser
unsigned int, size_t ou uint32_t pour définir un type entier non signé, jutilise

[

10.4. TESTS ET MATERIELS 291

u32 pour Unsigned 32 bits. De la méme maniere, le type float du langage C est
renommé en 32 :

uint8_t u8;
uint32_t u32;
int32_t 1i32;
float £32;
double £f64;

10.4 Tests et matériels

10.4.1 Matériels

L’ensemble des méthodes que nous allons implanter seront testées sur différents
matériels afin d’étudier I'influence de telle réécriture, de telle technologie par rap-
port a une autre, ou l'influence de la taille des caches. La liste des microprocesseurs
utilisés figure Tables 10.1, 10.2, 10.3. Nous avons séparé les matériels en trois
catégories :

e les processeurs produits avant 2015, qualifiés d’architectures anciennes,
e ceux produits entre 2015 et 2019, qualifiés d’architectures modernes
e et ceux produits en 2020 et apres, qualifiés d’architectures récentes

Il s’agit ici d’ordinateurs personnels ainsi que d’ordinateurs disponibles a 1’'Uni-
versité d’Angers dotés de microprocesseurs comme I'Intel i7 8700 ou I'Intel Xeon
Silver 4208 qui dispose du jeu d’instructions AVX512.

Marque Intel Intel Intel AMD Intel Intel
Modele Pentium D Core 2 Corei7 PhenomII Corei5 Corei7
Sous-modele 925 Q9300 860 1090 T i5 3570k 4790
Année 2006 2008 2009 2010 2012 2014
Architecture Presler = Yorkfield Lynnfield Thuban Ivy Bridge Haswell
Lithographie (nm) 65 45 45 45 22 22
Fréquence de base (GHz) 3000 2500 2800 3200 3400 3600
Fréquence de boost (GHz) 3000 2500 3460 3600 3800 4000
Cores 2 4 4 6 4 4
Threads 2 4 8 6 4 8
Cache L1i (ko) 12 32 32 64 32 32
Cache L1d (ko) 16 32 32 64 32 32
Cache L2 (ko) 1024 3072 256 512 256 256
Cache L3 (Mo) — — 8 6 6 8

TABLE 10.1 — Caractéristiques des matériels : architectures anciennes (avant 2015)

Nous donnons pour chaque microprocesseur les informations suivantes :

292 CHAPITRE 10. ETUDES DE CAS

e la marque du microprocesseur (Intel ou AMD)

¢ le modele, par exemple Core 2

e le sous-modele, par exemple Q9300

e l'année de production

e le nom de I'architecture du microprocesseur

e la finesse de gravure (Lithographie) en nanometres

e la fréquence de base en GHz ainsi que la fréquence maximale (boost)

e le nombre de coeurs et de threads

e les tailles des différents caches

Marque Intel AMD Intel Intel AMD

Modele Corei3 Ryzen7 Core i5 Corei7 Ryzen 5
Sous-modele 6100 1700X 7400 8700 3600

Année 2015 2017 2017 2017 2019 2019
Architecture Skylake Zen Kaby Lake Coffee Lake Zen2 Cascade Lake
Lithographie (nm) 14 14 14 14 7 14
Fréquence de base (GHz) 3700 3400 3000 3200 3600 2100
Fréquence de boost (GHz) 3700 3800 3500 4600 4200 3200
Cores 2 8 4 6 6 8
Threads 4 16 4 12 12 16
Cache L1i (ko) 32 64 32 32 32 32
Cache L1d (ko) 32 32 32 32 32 32
Cache 1.2 (ko) 256 512 256 256 512 1024
Cache L3 (Mo) 3 8+8 6 12 16+16 11

TABLE 10.2 — Caractéristiques des matériels : architectures modernes (2015 a 2019)

10.4.2 Tests

Nous avons défini deux types de tests principaux :

e le test de validité qui comme indiqué précédemment vérifie que ’ensemble
des méthodes implantées produisent le méme résultat et assure ainsi qu'une
méthode tres rapide ne I'est pas parce qu’elle est boguée

e le test de performance qui en faisant varier certains parametres (dimension
des matrices, taille des vecteurs) évalue le temps d’exécution de chacune des
méthodes afin de générer par la suite un graphique qui permet de déterminer
visuellement quelles méthodes sont les plus performantes

Pour évaluer le temps d’exécution d'une méthode deux facteurs sont a prendre
en compte :

10.4. TESTS ET MATERIELS 293

Marque Intel AMD Intel
Modéle Corei7 Ryzen5 Corei5
Sous-modele 10850H 5600g 12400F
Année 2020 2021 2022
Architecture Comet Lake Zen3 Alder Lake
Lithographie (nm) 14 7 Intel 7
Fréquence de base (GHz) 2700 3900 2500
Fréquence de boost (GHz) 5100 4400 4400
Cores 6 6 6
Threads 12 12 12
Cache L1i (ko) 32 32 32
Cache L1d (ko) 32 32 48
Cache L2 (ko) 256 512 1280
Cache L3 (Mo) 12 16 18

TABLE 10.3 — Caractéristiques des matériels : architectures récentes (2020 et suivantes)

e le premier concerne ce que 'on mesure

e le second tient a la maniére dont on mesure

10.4.2.1 Quantités mesurées

Nous reportons deux mesures lors des tests : le temps d’exécution du programme
ainsi que le nombre de cycles de 'exécution d’'une méthode. Mais c’est le temps
d’exécution du programme qui est utilisé pour générer les graphiques des tests de
performance et comparer l'efficacité de chaque fonction.

Pour obtenir le temps d’exécution du programme nous utilisons la commande
/usr/bin/time qui est différente de la commande time de la plupart des shells.
Notamment elle permet de spécifier un format d’affichage grace a 'option -f. Nous
reportons le user time. Le nombre de cycles lié a 'exécution d’'une méthode est
obtenu grace a la classe CPUTimer et ne prend donc pas en compte I’allocation des
données et leur initialisation.

10.4.2.2 Comment mesurer

Pour les méthodes qui s’exécutent en quelques millisecondes se pose un réel
probleme d’évaluation car les temps d’exécution peuvent parfois varier de ma-
niére importante entre deux exécutions successives. Cela tient a différents facteurs
comme la variation des fréquences qui dépend du nombre de processus qui tournent
en parallele par exemple. Nous avons vu, Section 3.3.1; que la fréquence de fonc-
tionnement est maximale si le microprocesseur est sollicité par un seul processus
mais qu’elle diminue si plusieurs processus sont actifs. Il est donc préférable lorsque

294 CHAPITRE 10. ETUDES DE CAS

I'on réalise les tests de performance de ne pas utiliser souris et clavier et éviter tout
traitement en tache de fond qui viendrait perturber les résultats.

Afin d’obtenir une valeur proche de la réalité il est nécessaire de réaliser
plusieurs exécutions (une dizaine est généralement suffisante) et de calculer la
moyenne des temps d’exécution. Nous avons concu une petite librairie PHP appelée
ezlib.php (lire easy lib) qui comprend notamment une méthode average_time()
qui calcule la moyenne des temps d’exécution pour dix exécutions d’'une méme
commande.

Nous attirons I'attention du lecteur sur le fait notable suivant : sur les dernieres
versions d’Ubuntu, nous avons pu observé que la fréquence de fonctionnement
du processeur est tres en dessous de sa valeur maximale. Ce qui donne, lors de
I'exécution des tests sur une machine qui vient d’étre mise en route, des temps de
calculs bien supérieurs a ce qu’ils devraient étre. Il peut donc étre nécessaire de
forcer le systéme d’exploitation a passer en mode performance grace a l'utilisation
des commandes suivantes :

1 |sudo apt-get install cpufrequtils
2 |echo 'GOVERNOR="performance”' | sudo tee /etc/default/cpufrequtils
3 |sudo systemctl disable ondemand

10.4.3 Tests du Chapitre 2

Le chapitre 2 contient deux tests, le premier concerne I'utilisation de l'instruction
assembleur bsr ou son remplacement sous forme de fonction (cf. Section 1.1). Le
second concerne le calcul des nombres premiers (cf. Section 1.3.1). Les résultats de
ces tests figurents Tables 10.4, 10.5, 10.6.

Marque Intel Intel Intel AMD Intel Intel
Modele Pentium D Core2 Corei7 PhenomII Corei5 Corei7
Sous-modeéle 925 Q9300 860 1090 T i5 3570k 4790
bsr (fonction C) 29,23 25,70 15,47 17,90 15,79 13,48
bsr (__builtin_clz) 3,39 1,80 1,52 1,81 1,20 0,55
bsr (asm + bsr) 1,78 1,33 0,67 1,70 0,60 0,42
Premier (v1) 7154,93 3003,00 3513,00 6214,00 1327,00 1163,00
Premier (v2) 0,64 0,18 0,28 0,44 0,13 0,08
Crible (v3) 0,02 0,01 0,01 0,02 0,01 0,00

TABLE 10.4 — Tests des matériels anciens

Bien évidemment, on note une diminution du temps de calcul a mesure que
I'année de production du microprocesseur devient plus récente.

10.4. TESTS ET MATERIELS 295

Marque Intel AMD Intel Intel AMD

Modeéle Corei3 Ryzen?7 Corei5 Corei7 Ryzen5
Sous-modele 6100 1700X 7400 8700 3600

bsr (fonction C) 13.56 10.52 14.42 10.40 9.44 16.43
bsr (__builtin_clz) 0.63 0.49 0.61 0.46 0.45 0.21
bsr (asm + bsr) 0.47 1.04 0.44 0.33 0.96 0.51
Premier (v1) 1082.25 1859.59 1154.00 895.17 1726.93 1263.00
Premier (v2) 0.11 0.20 0.12 0.07 0.18 0.15
Crible (v3) 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 10.5 — Test des matériels modernes en architecture 32 bits

On remarquera que pour le test de I'implantation de bsr, sur un Xeon Silver
4208, le temps de calcul pour la fonction qui fait appel a builtin_clz est trés faible,
de I'ordre de 0, 09 secondes. Cela est di1 au fait que le compilateur a optimisé le code
notamment en faisant appel a I'instruction vplzcntd, une instruction vectorielle
qu’il 'applique sur un vecteur AVX. Cette instruction fait partie du jeu d’instruction
AVX512-VL et AVX512-CD.

Par contre, pour les processeurs AMD l'instruction bsr ne semble pas étre tres
efficace comparativement aux microprocesseurs Intel.

Marque Intel AMD Intel
Modele Corei7 Ryzen5 Core i5
Sous-modele 11850H 5600g 12400F
bsr (fonction C) 10.01 7.65 11.33
bsr (__builtin_clz) 0.44 0.46 0.33
bsr (asm + bsr) 0.31 0.92 0.25
Premier (v1) 815.96 676.94 691.73
Premier (v2) 0.08 0.07 0.08
Crible (v3) 0.00 0.00 0.02

TABLE 10.6 — Test des matériels récents 2020 et apres en architecture 32 bits

296 CHAPITRE 10. ETUDES DE CAS

Chapitre 11

Etude de cas
produit de matrices

11.1 Introduction

Nous abordons dans ce chapitre le probleme du produit de matrices qui est un
probléme classique en informatique. L’intérét de ce probléme est que la formule
mathématique qui donne la maniere de calculer le produit est totalement inefficace
si elle est implantée directement car elle génere beaucoup de défauts de cache pour
certaines dimensions de la matrice. En conséquence, sur des architectures anciennes
ne possedant qu'un cache L1 et L2, le temps d’exécution est anormalement plus
important. Les architectures multicoeurs disposant d’un cache L3 se révelent en
général moins sensibles a ces variations.

On rappelle qu'une matrice est un tableau a deux dimensions de n lignes et
p colonnes de réels. On notera A(n,p) la matrice A composée de n lignes et p
colonnes. Le produit d’'une matrice A avec une matrice B n’est possible que si le
nombre de lignes de B est égal au nombre de colonnes de A. Le résultat est une
matrice C (cf. Figure 11.1) dont le nombre de lignes est celles de A, et le nombre
de colonnes celles de B. En d’autres termes, on a :

C(n,q) = A(n,p) x B(p,q)
On note ¢! le coefficient de la matrice C' en ligne i colonne j, dont la formule

de calcul est donnée par la somme des produits de la ligne ¢ de A par la colonne j
de B :

Afin de simplifier la compréhension des calculs nous allons nous cantonner

297

298 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES

3
3 s 7
Ci= 1x 7 (+7)
r-2x 1(-2) 1 B
+ 0 x -5 (+0) 5
+ -1 x -3 (+3)
= 8 - -1 Y
Ligne2| 1 | -2| 0 | -3 A 8 c
|

FIGURE 11.1 — Produit de matrices

a des matrices carrées pour lesquelles le nombre de lignes est égal au nombre
de colonnes, soit n = p = ¢ et nous appelerons donc dimension (ou taille) de la
matrice carrée cette quantité qui sera également identifiée par la variable dim dans
les sources C. On peut voir, Figure 11.1, le calcul du coefficient ¢3 pour une matrice
carrée de dimension 4. On multiplie la ligne 2 de la matrice A par la colonne 3 de
la matrice B et on somme I'’ensemble des produits afin d’obtenir le résultat final.

11.2 Stockage des matrices

Ligne0 |11|12|13
Ligne1 |21|22|23
Ligne2 |31|32|33
Ligne 3 |41]42|43

Stockage par ligne (Row Major Order)
% 111]12[13]21|22]23]3132[33] 41| 42|43
m Stockage par colonne (Column Major Order)

[11]21]31]41]12|22|32]42]13]23]33]43]

Matrice 4x3

FIGURE 11.2 - Stockage d’une matrice
On dispose de deux stratégies de stockage des matrices (voir Figure 11.2) :

e par lignes (Row Major Order), c’est le cas de langage C et c’est la facon la plus
naturelle de le faire

11.2. STOCKAGE DES MATRICES 299

e par colonnes (Column Major Order), c’est le cas du langage Fortran

Nous allons bien évidemment nous focaliser sur le langage C. Voyons sur un
exemple comment définir une matrice. Soient les variables entiéres non signées
rows = 10, qui correspond au nombre de lignes d’'une matrice, et cols = 99 qui
est son nombre de colonnes. Des lors, nous avons en langage C quatre alternatives
pour créer une matrice :

e la premieére, dite statique ', consiste a déclarer un tableau a4 deux dimensions :

1 float £32;
2 £32 Ml [rows] [cols];

e la seconde, statique également, utilise un tableau a une dimension dont la
taille est le produit rows * cols :

1 £32 M2 [rows * cols];

e la troisieme, dynamique, permet de créer un tableau a deux dimensions en
utilisant un premier tableau de pointeurs sur les lignes qui sont ensuite créées
en allouant le nombre de colonnes nécessaires :

1 £32 «xM3;

M3 = new £32 *x [rows];
(u32 1 = 0; i < rows; ++i) {
M3[i] = new £32 [cols];

v A wWwN

e enfin la quatriéme, dynamique également, permet de créer un tableau a une
dimension :

1 £32 «M4;
2 M4 = new £32 [rows * cols];

L’acces aux tableaux a deux dimensions pour la ligne i et la colonne j s’écrit
naturellement M1[i1[j] alors que pour les tableaux a une dimension il faut utiliser
M2[i * cols + jl.

Généralement, lorsqu’on travaille avec des matrices dont on ne connait pas les
dimensions a priori on utilise une création dynamique. De plus, afin d’améliorer
l'efficacité des traitements, on utilise une représentation avec une seule dimension
car dans ce cas les données sont contigiies, c’est a dire que les coefficients sont a des
adresses consécutives en mémoire (voir Figure 11.3). On utilisera donc l'alternative
qui correspond a la création de la matrice M4.

Cela est d’autant plus intéressant que dans certains traitement, comme l’initia-
lisation, les données étant contigiies, on chargera en mémoire cache les données

1. Une variable statique est une variable immuable définie une fois pour toute.

R O

300 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES

Ligne 0 Vision logique
Ligne 1 d’une matrice
Ligne 2

Ligne 3 Implantation avec

pointeurs sur lignes (M3)

>
Ll

Implantation unidimensionnelle (M1, M2, M4)

FIGURE 11.3 — Stockage d’une matrice

en M[i] et M[i+1], etc. Dans le cas de la matrice M3, les données d’une ligne sont
consécutives en mémoire, mais quand on passe a la ligne suivante, ce n’est pas
forcément le cas.

Afin de créer les matrices de maniére dynamique, plutot que d’utiliser malloc()
en C, ou en C++, on utilisera _mm_malloc() disponible en incluant le fichier
xmmintrin.h et qui permet d’aligner les données (cf. Section 3.2.1). On libere
I'espace alloué en utilisant la fonction _mm_free() :

size t size = rows * cols «x (£32) ;
£f32 M = (£f32 x) _mm malloc(size, CPU_MEMORY ALIGNMENT) ;

~mm_ free (A);

La fonction _mm_malloc() posséde deux parameétres : le premier est le nombre
d’octets a allouer et le second, figuré ici par la variable CPU_MEMORY_ALIGNMENT,
définit 'alignement. Il doit étre égal a 16 pour le SSE ou 32 pour 'AVX/AVX2 et
64 pour 'AVX-512. Si les données sont alignées, leur chargement est normalement
plus rapide, on peut alors utiliser les instructions comme movdqga plutét que movdqu
lors de la vectorisation.

Pour information, la fonction _mm_malloc est en fait une macro instruction? qui
se base sur la fonction suivante :

int posix memalign (void * memptr, size_ t alignment, size t size);

2. Avec gcc 10 elle est définie sous Ubuntu 20.04 dans le fichier
/usr/lib/gcc/x86_64-1inux-gnu/10/include/mm_malloc.h.

11
12
13
14

15

11.3. FONCTION DE REFERENCE 301

11.3 Fonction de référence

La fonction a implanter est donnée Listing 11.3.1. Elle comporte quatre pa-
rametres qui sont les adresses des matrices A, B et C ainsi que la dimension des
matrices dim. Il s’agit de 'implantation directe de la formule mathématique. On a
une seule dimension car, pour rappel, on considere le produit de matrices carrées
qui ont le méme nombre de lignes et de colonnes.

#define a(y,x) AL(y)*dim+(x)]
#define b(y,x) BL(y)*dim+(x)]
#define c(y,x) CL(y)*dim+(x)]

void mp_reference(f32 xA, f32 *B, f32 *C, u32 dim) {
(u32 i = 0; i < dim; ++i) {
(u32 j = 0; j < dim; ++j) {
f32 sum = 0.0;
(u32 k = 0; k < dim; ++k) {
sum += a(i,k) * b(k,j);
3

c(i,j) = sum;

Listing 11.3.1 — Produit de matrice, fonction de référence

Afin de simplifier 'écriture, on a créé trois macro instructions a(), b() et c() qui
font référence aux coefficients a’, b/ et ¢/. Plutdt que d’écrire A[i*dim+j], on préfére
utiliser a(i,j) plus lisible et compréhensible lors de I'écriture mais également lors
de la relecture du code.

11.4 Analyse des premiers résultats

Cette implantation de référence posséde une compléxité en O(n?) étant donné
que I'on a trois boucles imbriquées de taille dim. On remplace bien évidemment
dim par n. Si on réalise des multiplications de matrices en faisant varier la taille,
on obtient les résultats de la Figure 11.4 qui sont différents de ce a quoi on est en
droit de s’attendre. On pourrait en effet prétendre trouver une courbe lisse mais
on observe pour un processeur Intel Celeron N3050 que pour certaines tailles de
matrices, le temps de calcul est bien plus important que la normale.

On peut voir d’ailleurs, Table 11.1, plusieurs résultats pour des processeurs
différents. Pour n = 1024 et n = 2048, on observe 'accroissement du temps de
calcul. Cet acroissement n’existe pas sur des processeurs récents pour n = 1280 ou

302 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES

500

450 I
400 I
350 I
300 I
250 I
200 I

times in seconds

150 - I
100 - I
50 I

0 | | L i | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

dimension
FIGURE 11.4 — Echantillons Produit de matrices sur Intel Celeron N3050
tout dumoins n’est pas perceptible, mais pour un Pentium E5300 qui ne dispose pas

de cache L3, le temps de calcul est deux fois plus important (28,46 s) par rapport
aux dimensions n = 1279 et n = 1281.

AMD AMD Intel Intel Intel
Ryzen 7 Ryzen5 Corei5 Corei7 Pentium
1700X 3600 7400 8700 ES5300

Cache L2 (ko) 512 512 256 256 32
Cache L3 (ko) 8192 16384 6144 12288 2048
1023 1,49 1,34 1,33 0.95 7,26
1024 6,35 5,98 2,28 1.53 25,39
1025 1,52 1,37 1,26 0.95 7,24
1279 2,95 2,48 3,00 2.49 14,56
1280 2,98 2,52 3,28 2.43 28,46
1281 2,98 2,47 3,05 2.26 14,80
2047 20,14 15,34 37,48 28.48 62,71
2048 53,88 42,21 51,84 44.24 227,36
2049 20,26 15,17 37,79 28.59 63,07

TABLE 11.1 — Temps d’exécution en secondes de la méthode de référence du produit de
matrice pour différentes architectures

Ce phénomene peut étre expliqué par de nombreux défauts de cache. Les
matrices étant de grande taille elles ne tiennent pas dans le cache L1 ou L2.
Mais cela est commun a toutes les matrices. Par exemple, une matrice carrée de
dimension 1024 occupe 1024 x 1024 x 4 ou 4 est la taille en octets d’un flottant en
simple précision, soit 4 Mo. De plus, on travaille avec trois matrices pour réaliser le
produit.

11.5. ANALYSE DU CACHE AVEC PERF 303

Un autre facteur important de ralentissement est 'acces aux coefficients de
la matrice B. En effet, on accéde la matrice A par ligne, ce qui est efficace, car
quand on charge a¥, les données suivantes comme a'', ..., a**7 sont déja dans le
cache. Par contre I'accés aux coefficients de la matrice B est pénalisant car lorsque
l'on charge b}, le coefficient suivant b, se trouve dim x 4 octets plus loin en
mémoire et ne sera donc probablement pas dans le cache. On peut démontrer cela

en utilisant des outils comme perf.

11.5 Analyse du cache avec perf

Il existe sous Linux un outil d’analyse du cache comme valgrind (option ca-
chegrind) mais celui-ci ne fait que simuler les caches L1 et LLC (Last Level Cache,
c’est a dire le cache L3 sur la plupart des microprocesseurs modernes). Il est préfé-
rable d’utiliser un outil comme perf qui lit et collecte les données des Performance
Monitoring Units (PMUs) qui sont des registres liés au matériel des processeurs
modernes. Pour utiliser perf, il faut installer deux packages sous Ubuntu :

1 ‘sudo apt install linux-tools-common linux-tools-generic

On lance ensuite une analyse en demandant a perf de collecter les différents
types d’informations qui nous intéressent. Par exemple pour le cas ot dim = 1024,
sur un Intel Celeron N3050, on obtient :

1 |sudo perf stat -e task-clock,cycles,instructions,cache-references,cache-misses
2 build/bin/asm_matprod_32.exe -s 1024 -m 1

3

4 69975,730658 task-clock (msec) # 0,982 CPUs utilized

5 150 326 657 774 cycles # 2,148 GHz (49,97%)
6 5 858 594 620 instructions # 0,04 insn per cycle (74,96%)
7 2 535 065 211 cache-references # 36,228 M/sec (75,01%)
8 2 319 680 000 cache-misses # 91,504 % of all cache refs (75,02%)
9

10 71,243961985 seconds time elapsed

11

12 69,865177000 seconds user

13 0,111656000 seconds sys

Le nombre de défauts de cache (cache-misses, ligne 8) est de I'ordre de 91,5%
pour un temps d’exécution de 71,24 s (ligne 10) alors que pour dim = 1023 et dim
= 1025, on obtient de 'ordre de 3% de défauts de cache pour un temps d’exécution
de 17 a 18s.

Il est possible d’obtenir une information plus fine quant aux défauts de cache
notamment pour savoir dans quelle partie du code ils apparaissent. Pour cela il faut

304 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES

compiler le code C avec I'option -g ou -ggdb de gcc. La commande perf que nous
venons d’utiliser avec 'option stat donne un résumé global des informations pour
I'exécution du programme alors que perf record réalise un échantillonnage des
parties du code ou apparaissent les différents événements, comme les défauts de
cache, et les stocke dans un fichier appelé perf.data :

1 Isudo perf record -e cache-misses build/bin/asm_matprod_32.exe -s 1024 -m 1

On utilise ensuite la commande perf report avec 'option -stdio afin d’obtenir
une liste des sous-programmes touchés par le défaut de cache par ordre décroissant :

1 |# To display the perf.data header info, please use --header options.

2 #

3 | #

4 |# Total Lost Samples: 0

s | #

6 |# Samples: 68K of event 'cache-misses'

7 |# Event count (approx.): 89605829

s | #

9 |# Overhead Command Shared Object Symbol

10 [H o e e
11 | #

12 97.01% asm_matpr...exe matprod_main.exe [.1 _Z12mp_referencePfS_S_j
13 0.22% asm_matpr...exe [kernel.kallsyms] [k] clear_page_erms

14 0.17% asm_matpr...exe [kernel.kallsyms] [k] rcu_check_callbacks

15 0.16% asm_matpr...exe [kernel.kallsyms] [k] task_tick_fair

16

On voit que les défauts de cache apparaissent dans la fonction mp_reference, qui
est la fonction de référence du produit de matrice, pour 97% (ligne 12 ci-dessus).
On peut également obtenir pour chaque ligne de code assembleur le pourcentage
de défauts de cache en utilisant perf annotate :

1 Samples: 66K of event 'cache-misses', 4000 Hz, Event count (approx.): 86922764

2 | _Z12mp_referencePfS_S_j ...build/bin/asm_matprod_32.exe

3 |Percent] cmp 0x8(%esp) , %wecx

4 | -+ je 2792 <mp_reference(float*, float*, float*, unsigned int)>
5 0,00 mov (%esp) , %edi

I

| mov 0x18(%esp),%esi

| sum += a(i,k) * b(k,j);
8 0,04 | movss (%edx) , %xmm2
9 3,67 | movss (%eax),%xmm3

I

I

I

I

10 13,14 add \$0x20, %ecx
1 0,10 insertps \$0x10, (%edx,%esi, 1), %xmm2
12 13,10 insertps \$0x10, (%eax,%esi,1),%xmm3

13 12,13 add %edi , %edx

11.6. AMELIORATION AVEC INVERSION DES BOUCLES J ET K 305

22 0,11
23 11,51
24 |Press

insertps \$0x10, (%eax,%esi, 1), %xmm7
movups -0x10(%ecx) , %xmm1
for help on key bindings

14 0,00 | add %edi , keax
15 0,01 | movups -0x20(%ecx) , %xmm5
16 0,11 | movss (%edx),%xmm6
17 11,05 | movlhps %xmm2,%xmm3
18 0,05 | insertps \$0x10, (%edx,%esi, 1), %xmm6
19 11,27 | movss (%eax),%xmm7
20 11,49 | add %edi , %edx
21 0,10 | mulps %xmm5, %xmm3

I

I

e

Ici c’est I'instruction sum += a(i,k) * b(k,j); qui subit de nombreux défauts
de cache. Le code est donné avec une syntaxe de type AT&T et l'instruction
movss (%eax),%xmm3 (ligne 9) est équivalente dans la syntaxe Intel (pour la-
quelle il faut inverser les arguments) a :

movss xmm3, [eax]

Il semble que les défauts de cache soient reportés sur la ligne suivante. Ainsi
pour l'instruction précédente, on observe un défaut de cache de 13, 14%.

Temps de référence

Pour I'implantation que nous venons de donner, 'exécution dure environ

71 secondes sur un Intel Core i7 4900MQ pour le produit de matrice de
référence avec une taille de matrice de 2048 éléments.

11.6 Amélioration avec inversion des boucles j et k

Une premiere amélioration tres efficace consiste a inverser les boucles j et k.
Dans ce cas la formule de calcul doit étre modifiée, on doit utiliser c(i, j) +=lors
de chaque calcul. La matrice C' devra dans ce cas étre initialisée avec des 0 avant de
réaliser le produit. On observe, Listing 11.6.1, que j étant la boucle la plus interne,
a(i,k) reste constant et que les coefficients des matrices B et C sont consécutifs car
Jj apparait en second parametre de c() et b(), ce qui rend le calcul tres efficace (cf.
Section 11.9).

Amélioration inversion de boucles j et k

En inversant les boucles j et k on ne met plus que 2, 46 secondes, on va donc
environ 29 fois plus vite.

A W N =

O O N o AW N

-
(=}

306 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES
mp_inv_jk(*A, *B, *C, dim) {
(i=0; i< dim; ++i) {
(k = 0; k < dim; ++k) {
(J=0; j<dim; ++j) {
c(i,j) += a(i,k) * b(k,j);
3
}
}
}

Listing 11.6.1 — Produit de matrice, Inversion de boucles j et k

11.7 Version SSE de I'inversion de la boucle j, k

Nous allons créer une version vectorisée en SSE de la variante de l'inversion de
boucle j, k en considérant, pour simplifier les choses, que dim est multiple de 4. La
boucle la plus interne sera donc dépliée en

(u32 j = 0; j < dim ; j += 4) {

c(i, j+0) += a(i, k) ~ b(k, 3j+0);
c(i, j+1) += a(i, k) ~ b(k, j+t1);
c(i, j+2) += a(i, k) * b(k, jt+2);
c(i, j+3) += a(i, k) » b(k, j+3);

Le coefficient a(i,k), comme indiqué précédemment, reste constant, on le
chargera dans xmm@. On utilisera xmm1 pour stocker b(k, j:j+3) et xmm2 pour
stocker c(i, j:j+3)

L’analyse du code du Listing 11.3.1 montre qu’il existe 7 variables entieres
et qu’il faut prendre en compte également le calcul des adresses des coefficients
a(i,k), b(k,j) et c(i,j). Les calculs entre les coefficients sont réalisés par les
unités vectorielles. On va donc tenter d’optimiser la boucle la plus interne (boucle
j) et on stockera i et k dans la pile en tant que variables locales :

Le sous-programme débute par la création des variables i et k dans la pile, puis

on initialise i a 0 et on commence a écrire le code de la boucle i:
push ebp
mov ebp, esp
sub esp, 8 ; réserve l'espace pour i et k

push
push
push

Xor

ebx
edi
esi

eax, eax

’
’

14

i est en [ebp-4]
[ebp-8]

sauvegarde des registres

k est en

11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

N o A w N

11.7. VERSION SSE DE L’INVERSION DE LA BOUCLE J, K

Cste/Param/Var Type
A f32 *
B f32 *
C f32 *
dim u32

&a(i, k) f32 *
&b(k,0) f32 *
&c(i,0) f32 *
i u32

k u32

j int

a(i,k) x4 f32 [4]
b(k,j:j+3) f32 [4]
c(i,j:j+3) f32 [4]

Lebp+8]
Lebp+12]
[ebp+16]
[ebp+20]

edx
ebx
esi
edi
[ebp-4]
[ebp-8]
ecx
Xmmo
xmm1
xmm2

307

Parametre Registre Description

matrice A

matrice B

matrice C
dimension
adresse de a(i, k)
adresse de b(k,0)
adresse de c(i,0)
variable de boucle
variable de boucle
variable de boucle
4 fois a(i, k)

TABLE 11.2 — Association variable C avec registres pour I'inversion de boucle

mov
.for i:
mov
cmp
jge
<L<LL>>>

inc
jmp
.endfor_ i:

pop
pop
pop
mov
pop
ret

[ebp-4], eax

eax, [ebp-4]
eax,

.endfor i

dword
.for i

[ebp-4]

esi
edi
ebx
esp, ebp
ebp

[ebp + 20] B

fin de boucle si 1 >=

dim

reste du code

++1

restauration des registres

La partie notée <<<1>>> est développée ci-apres. On écrit le code de la boucle

k:
<<L1>>>
Xor
mov
.for_k:
mov
cmp

jge

ecx, ecx
[ebp-8], ecx

ecx, [ebp-8]
ecx, [ebp+20]
.endfor_k

14

14

~.

; boucle k

k=20

fin de boucle si k >=

dim

10
11
12

O O N AW N -

10
11
12
13
14
15
16

308 CHAPITRE 11. ETUDE DE CAS

<LKL2>>>

inc
Jjmp
.endfor_k:

dword [ebp-8]
.for k

PRODUIT DE MATRICES

++k

On poursuit avec le calcul de 'adresse de la valeur a(i, k), valeur que l'on
charge dans la partie basse de xmm@, puis que 1'on recopie 3 fois dans xmm@ grace a
l'instruction pshufd. On calcule également dans edi I'adresse de c(i,0) et 'adresse
de b(k,0) dans esi

<LKL2>>>
mov eax, [ebp-4]
mul dword [ebp+20]
mov edi, eax
mov ebx, eax
add ebx, ecx
shl edi, 2
shl ebx, 2
add ebx, [ebp+8]
add edi, [ebp+16]
movss xmm0, [ebx]
pshufd xmmO, xmmO, O
mov eax, ecx
mul dword [ebp+20]
shl eax, 2
mov esi, [ebp+12]
add esi, eax
<<L3>>>
Enfin, on écrit la boucle j:
<LL3>>>
xor ecx, ecx
mov edx, [ebp+20]
.for_j:
cmp ecx, edx
jge .endfor_j
movdqu =xmml, [esi + ecxx*4]
movdqu xmm2, [edi + ecx~*4]
mulps xmml, xmmO
addps xmm2, xmml
movdqu [edi + ecxx4], xmm2
add ecx, 4
Jjmp .for_j

.endfor_3j:

4

’

i

ixdim

ixsize

ixsize

ixsize+k

(ixsize) *sizeof (float)
(i*xsize+k) xsizeof (float)
al[ixsize+k]

cli*size]

xmm0 = a (i, k)
recopie dans xmmO

k

kxsize
kxsizexsizeof (float)
b

blkxsize]

fin de boucle si j >= dim

xmml = <b(k,j+3), ... , b(k,]j)>
xmm2 = <c (i, 3j+3), ... , c(i,])>
xmml = <a(i,k)=*b(k,3+3), ... >
J += 4

11.8. TUILAGE 309

Amélioration inversion de boucles j et k + SSE

En inversant les boucles j et k et en combinant avec la technologie vectorielle

SSE, on ne met plus que 3, 70 secondes, on va donc environ 19 fois plus vite.
Cela est moins performant que la seule inversion des boucles j et k, car il n’y
a pas de dépliage de boucle.

11.8 Tuilage

Une autre technique d’amélioration, évoquée Chapitre 5, consiste a réaliser le
tuilage (ou tiling) en ne travaillant que sur une petite partie des données. Dans
ce cas les matrices sont découpées en carrés qui correspondent a de petites zones
mémoires ce qui permet de les charger dans le cache et les réutiliser.

11.8.1 Tuilage 4 x 4 avec SSE

dup1 row1 o
1 1 1 1 1 2 3 4
alfalafa] x BB,
dup2 row2 > t
2 2 2 2 1 2 3 4
—efaallaa] x BB,
dup3 row3 +
8 8 8 3 1 2 3 4
—~fafatalal x B
dup4 row4 -t
4 4 4 4 1 2 4
x [biblbllby] |
B
1 2 8 4
al al a'1 a1
1 2 3 4
a'2 a'2 a2 a2
1 2 3 4
a3 a3 a3 a3
1 2 3 4
a4 a4 a4 a4
A C

FIGURE 11.5 — Produit de matrices 4 par 4 en SSE Intrinsics

On peut concevoir un sous-programme de calcul du produit de deux matrices
A(4,4) par B(4,4) en chargeant les données dans les registres SSE. Le principe
est simple, on charge les lignes de B dans des registres SSE puis on réalise les
multiplications pour chaque ligne de A.

Nous donnons listing 11.8.1 le code intrinsics qui permet de réaliser le produit

11
12
13
14
15
16
17
18
19
20
21
22
23

24

310 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES

void M4x4_SSE(float *A, float *B,
_m128 rowl = _mm_load_ps(&B[0@]);

float *C, u32 dim) {

__m128 row2 = _mm_load_ps(&B[dim]);
__m128 row3 = _mm_load_ps(&B[2*dim]);
__m128 row4 = _mm_load_ps(&B[3*dim]);

(int i=0; i<4; i++) {

__m128 dupl = _mm_setl1_ps(A[dim*i + 0]);
__m128 dup2 = _mm_set1_ps(A[ldim*i + 1]);
__m128 dup3 = _mm_setl1_ps(A[dim*i + 2]);
__m128 dup4 = _mm_setl1_ps(A[ldim*xi + 3]);

__m128 suml = _mm_add_ps(_mm_mul_ps(dup1, rowl),
_mm_mul_ps(dup2, row2));
__m128 sum2 = _mm_add_ps(_mm_mul_ps(dup3, row3),
_mm_mul_ps(dup4, row4));
__m128 row = _mm_add_ps(suml, sum2);

_m128 old_row = _mm_load_ps(&C[dimxi]);

row = _mm_add_ps(row, old_row);
_mm_store_ps(&C[dimxi], row);

Listing 11.8.1 -

efficacement. Si on utilise 'option -

Produit de matrice - Tuilage 4x4

funroll-loops de gcc, la boucle sera dépliée et

normalement plus efficace. L'intrinsics _mm_set1_ps qui charge quatre fois la valeur
de son argument dans un registre SSE est traduite par deux instructions :

e movss qui charge 'argument dans la partie basse d'un registre SSE

e shufps avec un masque égal a 0 afin de recopier trois fois la valeur en partie
basse dans les quatre emplacements de 32 bits du registre SSE

On peut par la suite réaliser un sous-programme qui effectue le produit de deux
matrices de dimensions multiple de 4 et réutiliser le sous-programme précédent.

Amélioration avec tuilage 4x4

En utilisant le tuilage 4 x 4 on met 9 secondes, on va donc environ 8 fois plus
vite. Ce n’est pas tres efficace.

w N

el [c- BN [e) (SIS

10

12

13

14

15

16

17

18

11.8. TUILAGE 311

11.8.2 Tuilage b x b de maniere générale

On peut réaliser le tuilage de plusieurs manieres différentes certaines étant plus
efficaces que d’autres. Nous avons implanté plusieurs versions du tuilage (versions
1a4):

e la version 1 réalise le blocage de boucle sur j et k, puis on fait varier i de 0 a
dim — 1

e la version 2 réalise le blocage de boucle sur i, j puis k, puis a l'intérieur de
chaque bloc on fait varier 4, j puis k

e la version 3 réalise le blocage de boucle sur i et j, puis k varie de 0 a dim — 1

e la version 4 réalise le blocage de boucle sur 7, j puis k et a I'intérieur de
chaque bloc on fait varier i, k puis j

La derniére version (version 4) semble étre la plus efficace. Son code est donné
Listing 11.8.2.

void mp_tile_nxn_v4(f32 *A, f32 x*B, f32 *C, u32 size) {

(u32 i=@; i<size; i += BLOCK_DIM) {
(u32 j=0; j<size; j += BLOCK_DIM) {
(u32 k=0; k<size; k += BLOCK_DIM) {
(u32 ib=i; ib<min(i+BLOCK_DIM,size); ++ib) {

(u32 kb=k; kb<min(k+BLOCK_DIM,size); ++kb) {

f32 xaib = &a(ib,0);

f32 xcib = &c(ib,0);
(u32 jb=j; jb<min(j+BLOCK_DIM,size); ++jb) {
cib[jb] += aib[kb] * b(kb,jb);

Listing 11.8.2 — Produit de matrice - Tuilage

On utilise la variable BLOCK_DIM qui représente le facteur de blocage. Ce facteur
de blocage (b) influe sur le temps de calcul. Cette valeur est généralement égale
a 16, 32, 64 ou 128, et il est préférable de prendre une valeur multiple de 4 ou
8 afin que le compilateur vectorise le code en utilisant les technologies SSE ou
AVX. La Table 11.3, ci-apres, présente les résultats obtenus en utilisant le script
blocking_factor_test.php pour la fonction mp_tile_bxb_v4 en faisant varier la
variable BLOCK_DIM.

312 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES

Facteur Temps Facteur Temps Facteur Temps
8 5.64 88 0.74 948 0.62
12 4.31 92 0.95 952 0.55
16 2.39 96 0.75 956 0.61
20 2.32 100 0.92 960 0.55
24 1.63 104 0.70 964 0.61
28 1.86 108 0.89 968 0.53
32 1.25 112 0.72 972 0.60
36 1.53 116 0.90 976 0.53
40 1.09 120 0.71 980 0.61
44 1.36 124 0.88 984 0.53
48 0.97 128 0.72 988 0.60
52 1.26 132 0.92 992 0.53
56 0.93 136 0.72 996 0.60
60 1.19 140 0.87 1000 0.52
64 0.83 144 0.71 1004 0.60
68 1.08 148 0.87 1008 0.52
72 0.76 152 0.70 1012 0.60
76 1.00 156 0.88 1016 0.53
80 0.74 160 0.70 1020 0.60
84 0.98 164 0.85 1024 0.54

TABLE 11.3 — Temps d’exécution en secondes sur AMD Ryzen 5 3600 du produit de matrices
2048 x 2048 avec tuilage et influence du facteur de blocage b entre 8 et 1024.

11.9. TESTS DE PERFORMANCE 313

On note que plus la valeur du facteur de blocage augmente, plus le temps de
calcul diminue jusqu’a atteindre une valeur minimale, puis au-dela, le temps de
calcul augmente 1égerement.

Amélioration tuilage b x b

Avec un tuilage de b = 64 on ne met plus que 0, 83 secondes. Dans le test
que nous avons effectué, nous avons fait varier le facteur de blocage entre
8 et 1024 et le temps minimum de 0, 52 secondes est atteint pour b = 1000
ou b = 1008, soit un facteur d’amélioration d’environ 43,62/0,52 ~ 84 par

rapport a la méthode de référence.
\ J

11.9 Tests de performance

Afin de tester les différentes versions que nous avons écrites, nous allons exami-
ner les résultats obtenus pour les méthodes suivantes :

1. méthode de référence (référence)

2. traduction directe de la méthode de référence en assembleur avec utilisation
du coprocesseur pour les calculs sur les flottants

3. amélioration de la méthode précédente avec dépliage par 4 de la boucle &

4. méthode avec inversion des boucles j et k, optimisée par le compilateur GCC
avec option -02 (inv_jk_02)

5. méthode avec inversion des boucles j et k, optimisée par le compilateur GCC
avec les options -03 et -funroll-loops (inv_jk)

méthode avec inversion des boucles j et k, optimisée avec SSE (inv_jk_sse)
méthode avec inversion des boucles j et k, optimisée avec AVX (inv_jk_avx)

méthode avec tuilage 4 par 4 (tile 4x4)

© ® N o

méthode avec tuilage b par b, version 1 (tile bxb v1)
10. méthode avec tuilage b par b, version 2 (tile bxb v2)
11. méthode avec tuilage b par b, version 3 (tile bxb v3)

12. méthode avec tuilage b par b, version 3 (tile bxb v4)

Pour ce qui est des méthodes de tuilage, nous avons choisi b = 64, bien que
comme évoqué précédemment, ce ne soit pas le facteur de blocage qui donne les
meilleurs résultats.

La colonne ratio représente le rapport entre le temps de la méthode de référence
et celui de la méthode d’inversion de boucle (méthode 3).

314 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES

Marque Intel Intel Intel AMD Intel Intel

Gamme Pentium D Core2 Corei7 PhenomII Corei5 Corei7

Modele 925 Q9300 860 1090T 3570k 4790

Année 2006 2008 2009 2010 2012 2014

1 mp_reference 363.91 257.74 90.53 172.35 78.62 64.46
2 mp_asm_fpu 380.06 190.83 74.86 180.55 78.33 63.05
3 mp_asm_fpu_ur4 379.90 197.35 74.40 179.28 79.18 63.02
4 mp_inv_jk_02 23.07 1494 8.25 10.35 6.27 5.00
5 mp_inv_jk 8.51 8.09 2.63 4.79 2.16 2.07
6 mp_inv_jk_sse 85.23 32.28 4.36 17.06 4.32 4.96
7 mp_inv_jk_avx - - - - 2.33 1.93
8 mp_tile_4x4 35.77 28.71 10.19 21.24 7.98 6.76
9 mp_tile_bxb_v1 28.19 178.39 23.82 60.46 19.25 16.82
10 mp_tile_bxb_v2 25.74 33.68 23.15 49.14 15.20 11.67
11 mp_tile_bxb_v3 12.62 7.99 3.98 7.62 2.97 1.86
12 mp_tile_bxb_v4 14.11 7.70 3.74 6.36 2.82 1.55
ratio (1/5) 42.76 31.85 34.42 35.98 36.39 31.14

TABLE 11.4 — Architectures anciennes : temps d’exécution en secondes du produit de
matrices 2048 x 2048 en 32 bits

11.9.1 Architectures anciennes (avant 2015)

Nous avons fait figurer Table 11.4, les résultats obtenus pour les architectures
anciennes, c’est a dire les processeurs concus avant 2015. Nous considérons ici le
produit de deux matrices carrées de dimension 2048.

Le codage en assembleur avec utilisation de la FPU (méthode 2) n’est pas
probant : il peut améliorer le temps de calcul comme dans le cas de I'Intel Q9300
ou l'i7 860, ou alors, le dégrader (Pentium D, AMD Phenom II 1090T), ou alors
étre équivalent a la fonction de référence (i5 3570k, i7 4790). Le dépliage par 4 de
la boucle £ (méthode 3) n’apporte aucune amélioration et a parfois tendance a étre
moins efficace (Q9300).

On note que le fait d’inverser les boucles j et k apporte un gain de performance
non négligeable méme si le code n’est optimisé qu’avec -02 (méthode 4). On
passe par exemple pour un Pentium D 925 de 363 a 23 secondes, soit un facteur
d’amélioration de 15,78. On va donc presque 16 fois plus vite. En utilisant les
options de compilation comme -03 (méthode 5), on gagne encore un facteur x2 a
x 2,5 suivant le microprocesseur.

Les méthodes 6 qui consiste a faire le calcul principal en utilisant les registres
SSE dégrade les performances par rapport a la méthode 5. Par contre la méthode 7

11.9. TESTS DE PERFORMANCE 315

tend a se rapprocher des résultats de la méthode 5. Le compilateur C a probablement
utilisé ’AVX lors de la traduction de la méthode 5.

Le tuilage 4 x 4 n’est pas tres intéressant et les résultats sont moins bons que la
méthode 4.

Le tuilage est intéressant sauf pour les méthodes 9 et 10, mais le fait de se
limiter a une taille de 64 x 64 est pénalisant.

11.9.2 Architectures modernes (2015 a 2019)

En ce qui concerne les architectures modernes (cf. Table 11.5), on observe le
méme phénomene que noté précédemment pour I'inversion des boucles j et k. Mais
dans ce cas, le tuilage dans sa version 3 ou 4 avec facteur de blocage de 64 est
parfois plus performant que l'inversion des boucles.

Intel AMD Intel Intel AMD
Core i3 Ryzen7 Corei5 Corei7 Ryzen5

6100 1700X 7400 8700 3600
2015 2017 2017 2017 2019

1 mp_reference 60.08 57.66 49.10 50.13 43.62 53.63
2 mp_asm_fpu 59.77 52.46 49.28 46.85 34.42 53.23
3 mp_asm_fpu_ur4 60.63 55.26 48.36 42.57 45.58 52.22
4 mp_inv_jk_02 10.22 6.84 10.32 8.01 6.16 11.28
5 mp_inv_jk 2.11 1.53 1.56 1.29 0.92 2.22
6 mp_inv_jk_sse 5.84 5.53 5.81 4.53 4.39 4.33
7 mp_inv_jk_avx 2.18 1.76 1.63 1.40 1.03 2.51
8 mp_tile_4x4 6.89 6.35 5.27 4.71 4.62 7.74
9 mp_tile_bxb_v1 17.31 122.13 18.05 14.03 37.54 21.31
10 mp_tile_bxb_v2 12.49 27.39 12.70 10.57 27.60 13.40
11 mp_tile_bxb_v3 1.84 1.78 1.85 2.48 0.97 1.86
12 mp_tile_bxb_v4 1.48 1.46 1.72 2.48 0.81 1.62

ratio (1/5) 28.47 37.68 3147 38.86 47.41 24.15

TABLE 11.5 — Architectures modernes : temps d’exécution en secondes du produit de
matrices 2048 x 2048 en 32 bits

11.9.3 Architectures récentes (2020 et apres)

Pour les architectures récentes (cf. Table 11.6), on note les mémes tendances
que pour les architectures modernes. C’est la version avec tuilage qui est la plus
efficace.

316 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES

Marque Intel AMD
Gamme Corei7 Ryzen5

Modele 10850H 5600g
2020 2021

1 mp_reference 39.18 46.48
2 mp_asm_fpu 39.70 39.27
3 mp_asm_fpu_ur4 37.56 46.59
4 mp_inv_jk_02 7.71 4.19
5 mp_inv_jk 1.26 0.80
6 mp_inv_jk_sse 2.76 2.68
7 mp_inv_jk_avx 1.33 0.90
8 mp_tile_4x4 4.59 4.91
9 mp_tile_bxb_v1 13.18 28.61
10 mp_tile_bxb_v2 9.76 21.36
11 mp_tile_bxb_v3 1.47 0.97
12 mp_tile_bxb_v4 1.23 0.77

ratio (1/5) 31.09 58.10

TABLE 11.6 — Architectures récentes : temps d’exécution en secondes du produit de matrices
2048 x 2048 en 32 bits

11.9.4 Analyse des versions liées au tuilage

La Table 11.7 donne, pour les différentes implantations du blocage de boucle, les
temps d’exécution obtenus sur différents processeurs. Les deux premieres versions
sont trés mauvaises puisque plus le facteur augmente, plus le temps d’exécution
augmente. Or, ce devrait étre I'inverse, bien que pour les processeurs Intel i5 7400
et i7 8700, on observe une diminution du temps de calcul.

Etrangement, c’est sur les processeurs AMD que cette tendance, inverse de
la normale, s’'observe de maniere flagrante et de maniére moins prononcée sur
I'Intel Xeon 4208. Avec l'utilitaire perf on peut déterminer que c’est le nombre
de références au cache qui augmente passant de 3 a 12, 21 puis 37 milliards. A
partir de 1a, c’est le nombre de défauts de cache qui augmente alors que le nombre
de références au cache diminue. Le cas de TAMD Ryzen 1700X est emblématique
puisqu’on atteint des temps de calcul de plus de 120 secondes pour la version 1.

Les versions 3 et 4 sont conformes a ce qui est attendu, 'augmentation du
facteur de blocage a pour effet de diminuer le temps d’exécution. La méthode 4
étant la plus efficace de ces deux méthodes. On remarque que passer d'un facteur
de blocage de 8 a 16 puis 32 et enfin 64 améliore sensiblement le temps de calcul.
Ensuite, a partir de 128 et 256 le gain est faible. On note cependant que pour
I'Intel Xeon 4208, pour la valeur b = 256, le temps de calcul augmente. Il faudrait

11.9. TESTS DE PERFORMANCE 317

Méthode blocage i7 4790 i5-7400 i7 8700 Ryzen 3600 Ryzen 1700 Xeon 4208

version 1 8 21,19 22,10 17,77 15,99 20,46 18,72
version 1 16 17,02 19,43 15,58 29,13 59,53 18,01
version 1 32 16,48 18,44 14,67 37,84 120,75 19,50
version 1 64 15,38 18,03 14,10 38,33 125,88 20,73
version 1 128 15,17 18,00 14,10 44,20 127,45 21,68
version 1 256 16,03 18,38 13,86 43,85 128,80 32,50
version 2 8 9,62 8,78 7,54 8,44 10,70 11,88
version 2 16 8,83 7,04 5,86 13,60 14,83 10,71
version 2 32 13,17 8,97 7,62 22,96 57,23 11,80
version 2 64 12,50 12,76 10,42 28,06 75,01 13,11
version 2 128 12,20 13,74 10,80 40,00 80,63 14,69
version 2 256 12,08 14,21 10,63 47,77 79,55 30,53
version 3 8 11,15 11,49 17,57 4,30 5,56 12,67
version 3 16 4,94 5,55 6,43 2,35 3,22 7,17
version 3 32 2,67 2,76 3,90 1,46 2,11 3,05
version 3 64 1,83 1,83 2,37 0,99 1,78 1,95
version 3 128 1,37 1,44 1,71 0,83 1,52 1,33
version 3 256 1,45 1,37 1,32 0,76 1,40 2,89
version 4 8 7,10 7,63 13,02 4,50 6,31 9,23
version 4 16 3,57 3,54 4,77 2,19 2,95 4,60
version 4 32 2,28 2,21 3,08 1,25 1,72 2,56
version 4 64 1,54 1,55 2,51 0,82 1,46 1,66
version 4 128 1,13 1,42 1,83 0,73 1,25 1,14
version 4 256 1,08 1,32 1,46 0,66 1,22 1,92

TABLE 11.7 — Tuilage : influence de I'implantation et de la dimension du facteur de blocage
pour le produit de matrices 2048 x 2048

investiguer afin de déterminer si c’est le cache du Xeon qui est la source de cette
augmentation. Il est pourtant de 11 ko pour le cache L3 alors que celui d’un i5
7400 est de 6 ko, mais est 11-way set associative sur Xeon, alors qu’il est entre 12 et
16-way set associative sur les autres machines. Le probléme ne proviendrait-il pas
dela?

En fonction de la taille des caches, on obtiendra des temps de calcul plus ou
moins importants en faisant varier le facteur de blocage. Ainsi, sur un Intel Q9300,
voici pour différentes dimensions n de la matrice, le facteur b donnant le temps de
calcul minimal :

pour n = 1024, b = 776 ou 1024

pour n = 2048, b = 256

pour n = 3072, b = 512

pour n = 4096, b = 192

318 CHAPITRE 11. ETUDE DE CAS PRODUIT DE MATRICES

11.10 Conclusion

Comme le montre cette étude de cas, 'ordre dans lequel on accede les don-
nées possede une grande influence sur le temps de calcul et en particulier pour
le produit de matrice. Nous avons mis en exergue le fait que I'implantation di-
recte de la formule mathématique produisait des temps de calcul tres fluctuants
et prohibitifs pour certaines tailles de matrices. L'implantation avec inversion des
boucles j et k corrige ce défaut. Enfin, I'utilisation d’un facteur de blocage lié au
tuilage apporte une amélioration tres importante et intéressante, mais il faut étre en
mesure de bien implanter le blocage en le combinant par exemple avec I'inversion
des boucles j et k. On note également beaucoup de comportements spécifiques en
fonction de I'implantation et du microprocesseur utilisé au niveau des résultats.
Tout ceci montre qu’il peut étre nécessaire de modifier des algorithmes de base
afin de gagner en efficacité. Comme nous I’avons montrer on peut atteindre sur
AMD Ryzen 5 3600, un facteur d’amélioration de 84 entre la version de référence
et la version avec tuilage pour laquelle on utilise un facteur de blocage b = 1000.

11.11 Exercices

Exercice 45 - A titre d’exercice vous pouvez réaliser un dépliage de la version SSE
par 2, puis par 4 et incorporer a '’étude de cas ces fonctions afin de les tester.

Exercice 46 - Il serait intéressant d’étudier le facteur de blocage b afin de déterminer
en fonction de la dimension de la matrice n ainsi que de la taille des caches L1, L2,
L3, quelle valeur est la plus intéressante. Par exemple, sur un Intel Core i5 7400, le
facteur de blocage qui donne le meilleur temps de calcul pour n = 4096 est obtenu
pour b = 512. En réalisant un échantillonage des dimensions de la matrice, réaliser
des tests en faisant varier le facteur de blocage et déterminer :

e quel facteur de blocage est le pus intéressant en moyenne

e quels facteurs de blocage sont les pus intéressants en fonction de la dimension
de la matrice

O 0 N o 1 AW N =

10

12
13
14
15

Chapitre 12

Etude de cas POPCNT

12.1 Introduction

Compter le nombre de bits a 1 dans un registre est une opération que I'on
rencontre dans de nombreux traitements. Par exemple imaginons que 'on dispose
d’un tableau de booléens qui indique si un élément d’un tableau d’enregistrements
doit étre traité ou non. La question se posera probablement de savoir combien
d’enregistrements doivent étre traités afin d’allouer 'espace juste nécessaire avant
de manipuler les données. Si on utilise un tableau de booléens, on aura la définition
de données suivante :

#include <stdint.h>
uint8_t u8§;
unsigned uint32_t u32;
// nombre d'enregistrements
u32 MAX RECORDS = 100000;

// Enregistrement

{
} Record;

// tableau d'enregistrements
Record tab_records|[MAX RECORDS];

// tableau qui indique les enregistrements a traiter
bool tab_process|[MAX RECORDS |;

La variable tab_records est un tableau d’enregistrements et tab_process un
tableau de booléens. Si la variable tab_process[i] est a true cela signifie que
I'enregistrement correspondant devra étre pris en compte dans un traitement
ultérieur.

On pourra donc définir plusieurs méthodes liées au traitement du tableau

319

O N o 1 AW N =

e e O T v =
O N o 1 AW N = O

320 CHAPITRE 12. ETUDE DE CAS POPCNT

tab_process :

e void set(u32 n) qui met a jour le tableau tab_process afin d’indiquer que
I'enregistrement n doit étre traité

e void unset(u32 n) qui met a jour le tableau tab_process afin d’indiquer que
I'enregistrement n ne doit pas étre traité

e bool use(u32 n) quiretourne true si on doit traiter 'enregistrement n
e u32 count() qui retourne le nombre d’enregistrements qui doivent étre traités

Le code de ces sous-programmes est trés simple et ressemble a ce qui suit :

void set (u32 n) {
tab_process|[n | = true;
}

void unset (u32 n) {
tab_process[n |

false;
}

bool use (u32 n) {
tab_process[n |;

}

u32 count () {
u32 total = O0;

(u32 i = 0; i < MAX RECORDS; ++i)
total += (u32) tab_process[i];
total;

La variable tab_process étant un tableau de booléens elle occupe en mé-
moire 100_000 octets car un booléen possede une taille d’'un octet. On utilise
donc 100_000/1024 ~ 98 ko. Cependant sur ces 100_000 octets, seuls 100_000 bits
sont vraiment utiles car la constante true est en fait égale a 1 et false vaut 0. En
d’autres termes, 7 bits sur 8, soit 87,5 % sont inutiles car non utilisés, seul le bit de
poids faible code pour true ou false.

Il est donc plus intéressant de ne pas perdre de mémoire et de coder chaque
valeur booléenne non pas par un octet mais par un bit. On parle alors de com-
pactage des données. Dans ce cas le tabeau tab_process que nous renommons
alors tab_process_bits aura une taille de (100_000 + 7)/8 ~ 12500 ~ 12,2 ko.
L’expression 100_000 + 7 permet d’arrondir la taille a 'octet supérieur.

u32 MAX RECORDS_IN_BYTES = (MAX RECORDS + 7) / 8;

u8 tab_process_bits[MAX RECORDS_IN_BYTES];

Les méthodes que nous avons définies précédemment doivent étre réécrites afin
de prendre en compte les spécificités du nouveau tableau tab_process_bits :

O LN AW N =

S S S
S © ® N & Y A W N = O

O N AW =

e e
w N = O

® N o A~ W N

12.1. INTRODUCTION 321

void set (u32 n) {
tab_process bits[n / 8] |= 1 << (n % 8);

void unset (u32 n) {
tab_process_bits[n / 8] &= ~(1 << (n % 8));

bool use (u32 n) {
(tab_process_bits[n / 8] & (1 << (n % 8))) != 0;

u32 count () {
u32 total = 0;

(u32 1 = 0; i < MAX RECORDS_IN_BYTES; ++i) {
total += pop_count_8(tab_process_bits[i]);

total;

Par exemple pour la méthode set, I'élément n se trouve a I'indice n / 8 du
tableau tab_process_bits et occupe le bit a la position n % 8. La traduction de ce
sous-programme en assembleur x86 32 bits est la suivante :

set:
push ebp
mov ebp, esp
mov ecx, [ebp + 8] ; ecx = n
mov edx, ecx ; edx = n
shr edx, 3 ; edx = n / 8
and ecx, 7 ; ecx = n % 8
mov eax, 1 ; eax =1
shl eax, cl ; eax = 1 << (n % 8)
or [tab_process_bits + edx], al
mov esp, ebp
pop ebp
ret

La fonction count doit étre réécrite en utilisant la fonction pop_count_8 qui
compte le nombre de bits a 1 dans un octet. Une version simple de cette fonction
qui nous servira de fonction de référence, est par exemple :

u32 pop_count_8 (u8 n) {
u32 count_bits = 0;

(n) {
((n & 1) != 0) ++count_bits;

n=n> 1;

count_bits;

O 0 N o 1AW N =

322 CHAPITRE 12. ETUDE DE CAS POPCNT

On réalise une boucle et tant que la variable n n’est pas égale a 0, on regarde

si le bit de poids faible est égal a 1 et dans ce cas on incrémente le compteur
count_bits, puis on décale de 1 bit vers la droite la valeur de n et on recommence.
Vous pouvez essayer, a titre d’exercice, d’écrire cette fonction en assembleur 32
bits.

Temps de référence

L

Le test de référence consiste a réaliser 30_000 fois le calcul de la somme du
nombre de bits d'un tableau de 262_207 octets. Initialement chaque octet du
tableau se voit assigner une valeur aléatoire.

Les tests sont réalisés sur un AMD Ryzen 5 3600. Pour I'implantation par le
compilateur gcc de la fonction de référence, 'exécution dure environ 54, 96
secondes.

J/

L’efficacité de la fonction est biaisée par le if qui n’est pas prédictible. On peut

cependant éliminer le if en écrivant la fonction comme suit :

u32 pop_count_8 (u8 n) {

u32 count_bits = 0;
(n) {
count_bits += (n & 1);

n=n> 1;

count_bits;

Version de référence, élimination du if

La version de référence améliorée en supprimant le if s’exécute en 48, 78
secondes ce qui constitue une faible mais notable amélioration.

12.2 Améliorations simples

Malheureusement la fonction de référence n’est pas tres efficace et on peut

I'améliorer en utilisant trois techniques pour compter le nombre de bits a 1 dans
un octet :

e en utilisant une table de conversion,
e en comptant les bits par paires, quartets, octets,

e en utilisant I'instruction assembleur popcnt.

[I N

12.2. AMELIORATIONS SIMPLES 323

12.2.1 Table de conversion

On peut utiliser une table de 256 octets, chaque octet contenant le nombre de
bits de la valeur correspondant a I'indice du tableau. Ainsi, la valeur pour I'indice
du tableau égal a 189 est 6 car 189;, = 1011 11015, soit 6 bitsa 1 :

u8 bits_table[256] = { O, 1, 1, 2, 1, 2, 2, 3, ..., 8 };
u32 pop_count_8 (u8 n) {

bits_table[n]
}

Cette version est relativement courte mais pour qu’elle soit efficace il faut que
la table bits_table tienne en mémoire cache L1.

Amélioration table de conversion

En utilisant une table de conversion (résultats non présentés par la suite), on
ne met plus que 2, 76 secondes, on va donc environ 20 fois plus vite.

12.2.2 Compter les bits

On désire redéfinir une fonction pop_count_8 qui compte le nombre de bits a 1
dans un octet. La premiere étape consiste a compter le nombre de bits a 1 dans une
paire de bits. On a alors quatre cas possibles :

e 11 : 2 bits
e 10:1 bit
e 01:1bit
e 00 : 0 bit

Cela est relativement simple a réaliser. Considérons une valeur « sur 8 bits. Il
nous suffit de calculer les expressions suivantes :

b0 = (a & 0x55);
bl = (a > 1) & 0x55;
c = b0 + bl;

En fait la valeur 55,4 représente un masque de sélection qui ne prend en compte
que le bit de poids faible de chaque paire : 55, = 01010101,. On sélectionne les
bits de poids faible dans bo et les bits de poids fort que 'on a décalé vers la droite
dans b1. On additionne ensuite les deux valeurs bo et b1.

Voyons ce que cela donne sur un exemple (voir Figure 12.1) pour la valeur
a = 8716 = 1000_01112 .

a1 AW N =

324 CHAPITRE 12. ETUDE DE CAS POPCNT

e b0 = 0000 0101,
e bl =0100_0001,
e ¢ = 0100 0110,

On obtient bien le résultat escompté.

a & 0x55
10_00_01_11
& 01_01_01 01
(a>>1) & 0x55 l
01_00_00_11 00_00_01_01
& 01 01 01 01 —» + 01 00 00 _01

01_00_01_10
1, 0, 1, 2

b0
b1

c

FIGURE 12.1 — Masques appliqués a la valeur a = 8714

On notera cependant que I’expression n’est pas factorisable :

(a and 5516) + ((a >> 1) and 5516) # ((a + (a >> 1)) and 554

On réitére ensuite le processus pour s’intéresser aux quartets, octets puis aux
mots. Le masque évolue comme présenté Table 12.1 ainsi que le décalage appliqué.

bits Décalage Masque Binaire Masque Hexa
paire 1 0101_0101_0101_0101, 555516
quartet 2 0011 _0011_0011 0011, 333316
octet 4 0000_1111_0000 1111, 0F0F6
mot 8 0000_0000 1111 1111, 00F Fig

TABLE 12.1 — Masques en fonction du nombre de bits

Le code de la fonction pop_count_8 est alors :

u32 ml = 0x55555555;
u32 m2 = 0x33333333;
u32 m4d = O0x0f0f0£f0f;

u32 pop_count_8 (u8 n) {
u8 x;

10
11
12

L Y) B N S

12.2. AMELIORATIONS SIMPLES 325

x = (x &ml) + ((x>> 1) & ml); // compte les paires de bits
Xx = (x &m2) + ((x>> 2) &m2); // compte les quartets
Xx = (x &md) + ((x > 4) &« md); // compte les octets

x;

Si nous reprenons notre exemple avec la valeur 87,4, on obtient successivement :

e pour la premiere étape x = 01_00_01_10 en base 2
e pour la deuxieme étape x = 00_01_00_11

e pour la troisiéme étape x = 00_00_01_00, soit la valeur 4 en décimal ce qui
signifie que initialement 87,5 = 135, possede 4 bits a 1

Amélioration en comptant les bits par paires, quartets, etc

En utilisant des décalages et additions, le temps d’exécution est de 2,83
secondes, on va donc environ 19 fois plus vite.

Aussi étrange que cela puisse paraitre, le calcul du premier terme :

// version 1
x = (x &ml) + ((x>> 1) & ml);

peut étre remplacé par le code suivant :

// version 2
X =x - ((x > 1) & ml);

En fait, cela est tout a fait naturel puisque d’apres le tableau suivant on a :

paire de bits 00 01 10 11
décalage a droite \ 00 \ 00 \ 01 \ 01 \

résultat soustraction \ 00 \ 01 \ 01 \ 10 \

En conséquence, le code de la deuxieme expression se traduit par 5 instructions
assembleur alors que le premier en utilise 6 puisque I'on ne réalise le et binaire
avec m1 qu’une seule fois (et non deux fois dans la premiere version).

; X = X — ((x > 1) & ml);
mov eax, [x]
mov edx, eax
shr edx
and edx, 1431655765 ; 0x55555555
sub eax, edx

Le code de la version 2 sera donc normalement plus efficace.

O O N o v AW N =

10
11
12
13
14
15
16
17
18

326 CHAPITRE 12. ETUDE DE CAS POPCNT

12.2.3 Utilisation de l’'instruction popcnt

L’instruction popcnt que nous avons déja évoquée plusieurs fois au cours des
chapitres précédents a pour but de compter le nombre de bits a 1 dans un registre.
Elle est de la forme :

popent 1(16/32/64), r/m(16,32,64)

En d’autres termes, elle accepte en opérande destination un registre et en
opérande source un registre ou une adresse mémoire. Dans notre code il suffit de
remplacer la fonction pop_count_8 par cette instruction.

Amélioration utilisation de l'instruction assembleur popcnt

En utilisant I'instruction popcnt combiné au dépliage de boucle, le temps

d’exécution est de 3,09 secondes, on va donc environ 18 fois plus vite. Cela
est moins efficace que la méthode précédente.

12.3 Traitements par 32 bits

Plut6t que de traiter le tableau tab_process_bits octet par octet, on peut le
traiter en considérant qu’il s’agit d’un tableau d’entiers non signés de 32 bits. Cela
revient a faire une sorte de dépliage par 4.

Il suffit alors de modifier les fonctions en conséquence, par exemple, pour les
fonctions liées a la table de conversion, on obtient :

u32 u32_popcnt_table_32_ vl (u8 xx, u32 size) {
u32 count = 0, 1i;
// convertir x en un tableau d'entiers 32 bits
u32 xy = (u32) x;

// compter par groupe de 4 octets (dépliage par 4)
(1 = 0; i < (size & ~3); i+=4) {
count += popcnt_table u32 (xy++) ;

}

// compter les derniers octets restants
(1 < size) {
count += popcnt_table[x[i]];
++1i;

count;

Cependant, la fonction popcnt_table_32 peut étre écrite au moins de deux
manieres différentes dont I'une est plus efficace que I'autre.

O 0 N o Ll AW N =

O N AW N =

_ =
- o

12.3. TRAITEMENTS PAR 32 BITS

Voici la version qui est la moins efficace car elle utilise une boucle :

u32 popcnt_table_u32 (u32 x) {
u32 total = 0;

{
total += (u32) popcnt_table [x & OxFF];
} ((x >>= 8)!=0);

total;

Et la version la plus efficace, car dépliée :

u32 popcnt_table_u32 (u32 x) {
u32 total = popcnt_table|[x & OxFF];

x >>= 8;
total += ©popcnt_table[x & OxFF];
x >>= 8;
total += popcnt_table[x & OxFF];
x >>= 8;

total += popcnt_table[x & OxFF];

total;

327

Il en résulte des temps d’exécution bien plus intéressants comme indiqué ci-

apres :

Amélioration traitement par 32 bits

e fonction de référence : 36,07 s

fonction de référence optimisée sans if : 23,34 s

fonction avec table de conversion : 4,69 s

fonction avec table de conversion dépliée : 2,25 s

fonction avec utilisation de popcnt : 0.62 s

fonction avec utilisation de popcnt, dépliée par 2 : 0.53 s

fonction avec utilisation de popcnt, dépliée par 4 : 0.47 s

J

On note que la version qui utilise I'instruction assembleur popcnt est plus
efficace qu’en 8 bits : on passe de 3,09 s avec un traitement par 8 bits a 0,62 s en

traitant 32 bits.

O O N o v AW N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

O O N v AW N =

-
o

328

CHAPITRE 12. ETUDE DE CAS POPCNT

12.4 Vectorisation SSE et AVX

La vectorisation avec SSE permet de traiter les données par groupe de 16 octets.
Malheureusement, il n’existe pas d’instruction vectorielle qui s’applique sur un
registre SSE et qui réalise le décompte des bits. La seule solution qui s’offre a nous,
a priori, est de charger les données par groupe de 16 octets puis d’extraire chaque
double mot, et enfin d’en compter le nombre de bits avec popcnt. Voici un apercu
de la boucle principale de ce traitement :

.for ulé6:
movdga
pshufd
pshufd
pshufd

movd
popcnt
add

movd
popcnt
add

movd
popcnt
add

movd
popcnt
add

add
cmp
jne

xmmO,
xmml,
xmm2,
xmm3,

edi,
edi,
eax,

ebx,
ebx,
eax,

edi,
edi,
eax,

ebx,
ebx,
eax,

ecx,
ecx,

.for_:

[esi + ecx]
xmm0O, O0x01
xmm0, 0x02
xmm0O, O0x03

xmmO
edi
edi

xmml
ebx
ebx

xmm2
edi
edi

xmm3
ebx
ebx

16
edx
ulé

charge x[1] a x[1i+15]
extrait le 2nd

dans xmmO

mot dans xmml

extrait le 3ieme mot dans xmm2

extrait le 4ieme mot dans xmm3

compte les bits
de la partie basse de

compte les bits
de la partie basse de

compte les bits
de la partie basse de

compte les bits
de la partie basse de

xmmO

xmml

xXmm2

xmm3

Une seconde version consiste a utiliser le méme principe que lorsque nous avons
compté les bits dans un registre général (voir Section 12.2.2). Voici le code AVX
mais qui s’applique sur les registres SSE. On commence par charger les masques
dans les registres xmm4 a xmm7

mov
movd
vpshufd

mov
movd
vpshufd

mov
movd

eax,
xmmé ,
xmmé ,

eax,
xmm5,
xmm5,

eax,
Xmmé6,

0x55555555
eax

xmm4, O
0x33333333
eax

xmm5, O
0x0f0£f0£0f£
eax

11
12
13
14
15

O 0 N oy 1 AW N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

12.4. VECTORISATION SSE ET AVX 329

vpshufd

mov
movd
vpshufd

Puis dans
le résultat a x

xmm6, xmmé6, O

eax, Ox00ffO00ff
xmm7, eax
xmm7, xmm7, O

la boucle principale, on réalise les décalages de bits et on additionne
mm3 qui fait office de somme. Le registre xmm3 contiendra au final deux

valeurs 64 bits mais on ne prendra en compte que les 32 bits de chaque quad word
pour faire la somme du nombre de bits a 1 (lignes 34 a 37) :

for urlé6:
movdga

; X = X
vpsrlw
vpand

vpsubw

i X =
vpand
vpsrlw
vpand
vpaddw

;X =
vpsrlw
vpaddw
vpand

; X +=
vpsrlw
vpaddw
vpand

vpxor
vpsadbw
vpaddqg

vmovdqu

add
dec
jnz

vmovd
vpunpck
vmovd
add

xmm0, [esi + ecx] ; load x[1] to x[1+15] into xmmO

- (x >> 1) & 0x5555... 5 (version 2)
xmml, xmmO, 1

xmml, xmmé

xmmO, xmml

X & m2) + ((x >> 2) & m2);
xmml, xmmO, xmm5

xmm2, xmmO, 2

xmm2, xmmb5

xmmO0, xmml, xmm2

x + (x >> 4)) & m4;
xmml, xmmO, 4
xmmO0, xmml
xmm0, xmmé6

x >> 8

xmml, xmmO, 8
xmmO0, xmml
xmmQO, xmm7

xmm2, xmm2
xmml, xmmO, xmm2
xmm2, xmml, xmm3
xmm3, xmm2

ecx, 16
edx
.for urle

ebx, xmm3
hgdqg xmml, xmm3, xmm3
eax, xmml

eax, ebx

L’instruction vpsrlw (Shift Packed Data Right Logical) réalise un décalage a
droite dans chacun des mots de xmm1 par la quantité donnée en troisieme opérande.

330 CHAPITRE 12. ETUDE DE CAS POPCNT

Les instructions vpsubw (Subtract Packed Integers) et vpaddw (Add Packed Integers)
réalisent respectivement la soustraction et 'addition des 8 mots de chaque registre
SSE qui leur sont passé en parametres.

Enfin l'instruction en ligne 26, vpsadbw (Compute Sum of Absolute Differences),
calcule la somme des valeurs absolues des différences entre opérande destination
et opérande source pour chaque mot du registre SSE. Le mot en partie basse recoit
cette somme, les autres mots sont mis a 0.

On notera, ligne 15, que l'on calcule :

X = (x + (x >> 4)) & m4;

alors que nous avons indiqué Section 12.2.2 que ce n’était pas équivalent a :

X = (x & md) + ((x >> 4) & md);

Cependant, dans le cas de la vectorisation on travaille sur des mots (16 bits) et
les bits les plus a droite qui sont décalés sont éliminés de chaque mot, ils ne sont
pas répercutés sur le mot suivant, ce qui permet de réaliser la simplification.

12.5 Implantations

Pour cette étude de cas nous avons vu les principales technniques pour compter
le nombre de bits a 1 d’un tableau d’octets. On peut compter octet par octet ou
alors tenter de prendre en considération des quantités plus grandes et compter
par groupe de 4 octets (double word). On peut également en architecture 64 bits
compter par groupe de 8 octets (quad word).

Dans les sources de I'étude de cas, j’ai réalisé 18 implantations différentes afin
de trouver les variantes éventuelles qui seraient les plus performantes possibles.

12.6 Résultats

Plusieurs solutions ont été implantées parmi lesquelles :

e ud_reference : fonction de référence qui travaille par octet

e u8_reference_opt :fonction de référence qui travaille par octet optimisée en
supprimant le

e u32_reference : fonction de référence qui travaille par double mot

e u32_reference_opt :fonction de référence qui travaille par double mot opti-
misée en supprimant le

e ud_shift_v1 : fonction avec décalage pour le calcul par octet

12.6. RESULTATS 331

e u8_shift_v2 : amélioration de la fonction précédente
e u32_shift_v1 : fonction avec décalage pour le calcul par double mot
e u32_shift_v2 : amélioration de la fonction précédente

e u8_asm : fonction assembleur qui fait appel a I'instruction popcnt et qui
travaille par octet

e u32_asm : fonction assembleur qui fait appel a I'instruction popcnt et qui
travaille par double mot

e u32_asm_ur4 : dépliage par 4 de la fonction précédente

e u32_sse_v1 : version SSE avec utilisation de popcnt sur chaque double mot
contenu dans le registre

e u32_sse_v2 : version SSE avec décalages

e u32_avx2_v1 : version AVX avec décalages mais qui travaille sur les registres
SSE

e u32_intrinsics : version intrinsics qui est la traduction de la méthode
u32_sse_v2

Le test de performance consiste a réaliser 30_000 appels aux fonctions sur des
vecteurs de 262_207 octets.

12.6.1 Architectures anciennes (avant 2015)

Les résultats pour les architectures anciennes sont présentés Table 12.2.

On notera que la fonction de référence prend énormément de temps par rapport
a sa version SSE (méthode 12) ou la version avec utilisation de l'instruction popcnt
(méthodes 9, 10 et 11). Le fait de traiter les données par double mot (32 bits) et
d’optimiser le if apporte un gain non négligeable (méthodes 2, 3 et 4).

Sur les processeurs ne disposant pas de l'instruction popcnt, 'amélioration est
faible (facteur 33 pour le Pentium D et 75 pour le Q9300) comparativement aux
autres processeurs pour lesquels le facteur d’amélioration est supérieur a 95.

La version par décalage (shift, méthode 8) en 32 bits donne des temps d’exécu-
tion tres intéressants en fonction de 'augmentation de ’'année de production des
processeurs.

Mais c’est au final la version intrinsics qui est la plus optimisée et qui donne les
meilleurs résultats sauf pour I'Intel i7 860, I'Intel i7 4790 ou 'AMD 1090 T.

12.6.2 Architectures modernes (2015 a 2019)

Pour les architectures modernes (Table 12.3), on observe les mémes tendances.
Cependant, les méthodes 8 et 11 donnent les meilleurs résultats et sont un peu plus

332 CHAPITRE 12. ETUDE DE CAS POPCNT

Méthode Intel Intel Intel AMD Intel

Pentium D Core 2 i7 X6 i5

925 Q9300 860 1090T 3570K

2006 2008 2009 2010 2012
1 u8_reference 150.22 170.20 110.19 80.21 72.58 54.99
2 u8_reference_opt 111.73 161.63 102.39 64.68 65.12 47.38
3 u32_reference 126.41 10545 60.91 43.46 53.34 39.42
4 u32_reference_opt 73.51 88.36 60.81 43.31 48.68 33.40
5 u8_shift_v1 16.50 7.77 4.52 4.31 3.23 1.98
6 u8_shift_v2 16.45 7.66 4.76 4.62 3.20 2.02
7 u32_shift_v1 8.01 4.25 2.05 2.50 1.29 0.56
8 u32_shift_v2 7.76 3.13 1.82 1.86 1.06 0.49
9 u8_asm - - 6.88 10.94 4.65 2.96
10 u32_asm - - 1.27 1.65 1.16 0.71
11 u32_asm_ur4 - - 0.89 0.84 0.88 0.49
12 u32_sse_v1 - - 0.96 1.52 0.92 0.74
13 u32_sse_v2 - - - - 1.06 0.81
14 u32_avx2_v1 - - - - - 0.71
15 u8_intrinsics 4.55 2.26 0.92 1.35 0.76 0.61
ratio 1 / (11 oul5) 33.01 75.30 123.80 9548 95.50 112.22

TABLE 12.2 — Architectures anciennes : temps d’exécution en secondes sur 30_000 exécu-
tions de la fonction popcent sur des tableaux de 262_207 octets

performantes que la version intrinsics. Traiter les données sous format 32 bits est

donc bénéfique dans ce cas.

La méthode 8 avec décalage de bits est souvent la plus performante, talonnée
par la méthode 11 qui réalise un dépliage par 4 de la boucle.

On peut alors se demander si le passage au 64 bits améliorera encore les
performances? La réponse est oui a en croire les tests effectués en traitant les
données par groupe de 32 ou de 64 bits sous une architecture 64 bits avec un AMD

Ryzen 5 3600 :

e architecture 32 bits, traitement par 32 bits : 0,43 s

e architecture 32 bits, traitement par 32 bits et dépliage par 4 de la boucle :

0,31s

e architecture 64 bits,traitement par 64 bits : 0,21 s

e architecture 64 bits,traitement par 64 bits et dépliage par 4 de la boucle :

0,15s

12.7. CONCLUSION 333

Marque Intel AMD Intel Intel
Gamme Corei3 Ryzen 7 Corei5 Corei7

Modele 6100 1700X 7400 8700
2015 2017 2017 2017

1 u8_reference 57.99 59.13 64.81 47.28 54.96 71.73
2 u8_reference_opt 53.14 5411 58.58 43.03 48.78 74.70
3 u32_reference 36.39 44.72 39.89 29.53 35.36 54.49
4 u32_reference_opt 32.65 28.77 35.83 26.47 23.67 46.18
5 u8_shift_v1 2.17 2.51 2.32 1.75 2.83 249
6 u8_shift_v2 2.11 2.51 2.23 1.70 2.84 2.50
7 u32_shift_v1 0.61 1.00 0.64 0.49 044 0.72
8 u32_shift_v2 0.50 0.80 0.54 0.41 0.35 0.62
9 u8_asm 6.39 3.24 6.83 5.20 3.06 7.53
10 u32_asm 1.07 0.68 1.14 0.86 0.62 0.91
11 u32_asm_ur4 0.54 0.51 0.59 0.45 0.47 0.74
12 u32_sse_v1 0.90 0.90 0.96 0.72 0.83 1.05
13 u32_sse_v2 0.87 0.74 0.92 0.70 0.64 1.05
14 u32_avx2_v1 0.87 0.83 0.95 0.70 0.69 1.02
15 u8_intrinsics 0.64 0.64 0.68 0.52 0.56 0.76

ratiol /11 107.38 11594 109.84 N/A 116.93 96.93

TABLE 12.3 — Architectures récentes : temps d’exécution en secondes sur 30_000 exécutions
de la fonction popent sur des tableaux de 262 207 octets

On divise donc le temps d’exécution par deux en passant au 64 bits et en traitant
les données par des registres 64 bits.

12.6.3 Architectures récentes (2020 et apres)

Pour les architectures récentes (Table 12.4), on observe encore les mémes
tendances que précédemment. La méthode 8 est la plus efficace.

12.7 Conclusion

Ce probleme révele deux choses importantes. La premiere est que le traitement
des données par groupe de 32 bits (voire de 64 bits) au lieu de 8 bits permet
de gagner en efficacité, cela semble normal puisqu’on traite les données en une
seule fois plutot qu’en 4 fois (ou 8 fois). Le seconde lecon que 'on peut tirer montre
que la vectorisation va se révéler complexe car on ne dispose pas d’instruction

334 CHAPITRE 12. ETUDE DE CAS POPCNT

Marque Intel AMD Intel
Gamme Corei5 Ryzen5 Core i5

Modele 10850H 5600g 12400F
2020 2021 2022

1 u8_reference 43.82 46.19 51.75
2 u8_reference_opt 40.06 42.72 49.10
3 u32_reference 27.42 25.91 35.64
4 u32_reference_opt 24.50 21.25 28.58
5 u8_shift_v1 1.65 2.28 0.73
6 u8_shift_v2 1.61 2.29 0.73
7 u32_shift_v1 0.48 0.37 0.31
8 u32_shift_v2 0.39 0.30 0.25
9 u8_asm 2.45 3.60 1.79
10 u32_asm 0.80 0.45 0.50
11 u32_asm_ur4 0.41 0.44 0.44
12 u32_sse_v1 0.67 0.79 0.65
13 u32_sse_v2 0.66 0.53 0.63
14 u32_avx2_v1 0.65 0.73 0.69
15 u8_intrinsics 0.49 0.47 0.44

ratiol /11 106.87 104.97 117.61

TABLE 12.4 — Architectures actuelles : temps d’exécution en secondes sur 30_000 exécutions
de la fonction popent sur des tableaux de 262 207 octets

vectorielle qui réaliserait ce que fait I'instruction popcnt sur les registres généraux.
L’introduction d’une telle instruction permetrait probablement de gagner encore en
efficacité.

Chapitre 13

Etude de cas Variante de SAXPY

13.1 Introduction

Ce chapitre traite de I'implantation de la fonction saxpy et permet de mettre en
pratique ce qui a été vu au Chapitre 7 concernant le coprocesseur arithmétique et
au Chapitre 8 pour le calcul vectoriel avec unités SSE et AVX.

Pour rappel, la fonction saxpy (Single-Precision A x X Plus Y') consiste, étant
donné deux vecteurs de n réels appelés X et Y, a calculer :

Y=axX+Y
Yi =a X x; +y;, Vi€ [l.n]
ol a est une constante réelle. Afin de complexifier la traduction pour le compila-

teur, nous avons décidé de modifier quelque peu la fonction en lui faisant retourner
la somme des y; :

n
sum = E Yi
i=1

Nous allons nous intéresser a des vecteurs de taille quelconque et programmer
en architecture 32 bits. Les types C que nous allons utiliser sont :

e pour les entiers non signés typedef uint32_t u32;
e pour les nombres flottants en simple précision typedef float f32;

13.2 Fonction de référence

La fonction a implanter est donnée Listing 13.2.1. Elle comporte quatre para-
metres qui sont les vecteurs z et y, la constante « ainsi que la taille des vecteurs
(size).

335

0 N o AW N =

336 CHAPITRE 13. ETUDE DE CAS VARIANTE DE SAXPY

32 saxpy_c(f32 *x, f32 xy, f32 a, u32 size) {
32 sum = 0.0;
(u32 i = @; i < size; ++i) {
yl[i] = a * x[i] + y[i];
sum += y[i];

sum;

Listing 13.2.1 — SAXPY modifiée - fonction de référence

13.3 Version FPU

La premiere implantation en assembleur que nous allons réaliser (voir Lis-
ting 13.3.1) est la traduction de la fonction de référence en utilisant le coprocesseur
arithmétique. Etant donné qu'’il s’agit d'une fonction qui retourne un float en
architecture 32 bits, c’est le premier registre du coprocesseur qui contient le résultat
de la fonction, c’est a dire st@. Nous avons choisi de réaliser ’association variables
/ registres de la Table 13.1.

Cste/Param/Var Type Parametre Registre Description

X f32 [] [ebp+8] esi adresse du vecteur x
y f32 [1 [ebp+12] edi adresse du vecteur y
a f32 [ebp+16] pile constante a

size u32 [ebp+20] edx taille des vecteurs

i u32 ecx variable de boucle
sum f32 sto somme

TABLE 13.1 — Association entre variables et registres pour la fonction de référence de la
variante de SAXPY

Les registres esi et edi devront étre sauvegardés car ils ne doivent pas étre
modifiés pour le sous-programme appelant d’apres les conventions d’appel du C en
32 bits.

La traduction est assez simple, elle est présentée Listing 13.3.1. En ligne 4, on
initialise sum a 0 grace a l'instruction fldz. Comme indiqué précédemment, sum
sera en st0, puis décalé en st1 lors du calcul a x x; + y;. En ligne 5, on vérifie que
la taille des vecteurs n’est pas nulle, auquel cas il faut sortir du sous-programme.
On sauvegarde ensuite les registres esi et edi (lignes 7 et 8), puis on charge les
parametres du sous-programme dans les registres appropriés (lignes 9 a 11).

On débute la boucle en ligne 13, puis lignes 17 a 22, on exécute le calcul du
corps de la boucle for. On peut voir Table 13.2 comment sont utilisés les registres
du coprocesseur lors du calcul.

13.3. VERSION FPU

saxpy_fpu:

push
mov
fldz
cmp
jz
push
push
mov
mov
mov

xor
.for:
cmp
jge
fld
fmul
fadd
fst
faddp
inc
jmp
.endfor:
pop
pop
.end:
mov
pop
ret

ebp
ebp, esp

dword [ebp + 20], ©

.end
esi
edi

esi, [ebp + 8]
edi, [ebp + 12]
edx, [ebp + 20]

ecx, ecx
ecx, edx
.endfor
dword [esi
dword [ebp
dword [edi
dword [edi
st1, sto
ecx

.for

edi

esi

esp, ebp
ebp

+ + + +

ecx * 4]
16]

ecx * 4]
ecx * 4]

Listing 13.3.1 —

; sum = @
; Si size == 0 alors retourne 0

; sauve les registres

; charge les paramétres

; fin de boucle si i >= size

;o x[i]

; a*xx[i]

; axx[i]+y[i]

; y[il = axx[iJ+y[i]
; sum += y[i]

o Al

; restaure les registres

SAXPY modifiée - implantation FPU

337

On commence par placer x; au sommet de la pile du coprocesseur (ligne 17). La
variable sum initialement dans st@ est alors déplacé en st1. On multiplie ensuite x;
par la constante a (ligne 18), puis on ajoute y; (ligne 19). Finalement on stocke le
résultat dabs y[i] et on ajoute ce résultat a st1 qui contient sum et on dépile st0.

Afin de donner un ordre d’idée du temps d’exécution pour les différentes implan-
tations que nous allons réaliser, nous reportons par la suite, les résultats obtenus
sur un ordinateur doté d’un Core i5 7400. Le test effectué consiste a calculer 50_000
fois la fonction de référence appliquée sur des vecteurs initialisés aléatoirement de
524 287 éléments.

Temps de référence

Pour I'implantation que nous venons de donner, 'exécution dure environ
22,95 secondes.

O O N o v AW N =

= e
N = O

13

338 CHAPITRE 13. ETUDE DE CAS VARIANTE DE SAXPY

ligne instruction sto st1
16 jge .endfor sum ?

17 fld dword [esi + ecx * 4] T sum
18 fmul dword [ebp + 16] a X x; sum
19 fadd dword [edi + ecx * 4] a X x; +Y; sum
20 fst dword [edi + ecx * 4] a X T; +Y; sum
21 faddp st1, sto sum + (a X z; + y;) ?

TABLE 13.2 — Calculs du coprocesseur

13.4 Version FPU dépliée par 4

Une fois que I'on dispose de la version FPU, on peut la modifier afin d’introduire
une amélioration liée a la boucle de calcul. On a vu précédemment (cf. Section
5.4.11.1) qu’il peut étre intéressant de déplier les boucles. On va donc réaliser
un dépliage par 4 du corps de la boucle. Le code devra ressembler a celui du
Listing 13.4.1. Nous avons fait usage d’'une macro instruction du langage C afin
rendre le code plus lisible.

#define SAXPY_BODY(i) \
y[il = a * x[i] + y[i]; \
sum += y[i];

32 saxpy_c(f32 *x, f32 xy, f32 a, u32 size) {
32 sum = 0.0;
u32 i;
// dépliage par 4
(1=0; i< size; i +=4) {
SAXPY_BODY (i) ;
SAXPY_BODY (i+1);
SAXPY_BODY (i+2);
SAXPY_BODY (i+3);
3
// derniéeres itérations
(i < size) {
SAXPY_BODY (i) ;
++1:

)

sum;

Listing 13.4.1 — SAXPY modifiée - fonction de référence dépliée par 4

Nous avons, par souci de clareté et pour ne pas produire de listing assembleur
trop volumineux, supprimé les parties qui sont identiques a la version précédente.

N o A WD =

AW N =

13.5. VERSION SSE 339

%macro fpu_body 1

fld dword [esi + ecx * 4 + %1] ; x[i]
fmul dword [ebp + 16] ; a*xx[i]
fadd dword [edi + ecx * 4 + %1] ; a*x[iJ+y[i]
fst dword [edi + ecx * 4 + %1]
faddp st1, sto ; sum += y[i]
%endmacro
Listing 13.4.2 - Macro instruction nasm

Tout comme en C, afin de simplifier I'écriture de la fonction dépliée, on utilise
une macro instruction nasm afin de ne pas réécrire entiérement les 5 lignes de code
qui constituent le corps de la boucle (cf. Listing 13.4.2).

Cette macro instruction comprend un parameétre figuré par le chiffre 1 en fin de
ligne 1 du listing. Il va correspondre a un décalage de I'adresse qui correspond a
x[i + k1, ou k varie entre 0 et 3, ce qui, en assembleur, nous contraint a utiliser 4
* k car on manipule des qui occupent 4 octets en mémoire.

On réutilise cette macro instruction au niveau du listing 13.4.3. On fait appel a
une fonctionnalité de nasm lignes 8 a 12 qui consiste a écrire une boucle qui génére
au final les quatre lignes suivantes :

fpu body 0
fpu_body 4
fpu body 8
fpu body 12

En ligne 8 du Listing 13.4.3, ci-apres, on définit une variable k que I'on initialise
a 0. En ligne 9, on répete 4 fois 'ensemble des lignes 10 et 11. On géneére la macro
instruction fpu_body avec k comme parametre, puis on augmente k de 4 pour
passer au réel simple précision suivant.

Amélioration dépliage par 4

En dépliant la fonction de référence par 4, on n’obtient aucune amélioration
puisque I'exécution dure 22,97 secondes.

13.5 Version SSE

Apres avoir déplié le corps de la boucle par 4, il est relativement aisé d’écrire
la version utilisant les instructions SSE pour obtenir un code vectorisé. On doit
réaliser les calculs en parallele dans les registres SSE dans la partie dépliée par 4
de la boucle.

On a choisi les conventions suivantes :

340

CHAPITRE 13. ETUDE DE CAS VARIANTE DE SAXPY

saxpy_fpu_u4:

xor ecx, ecx

and edx, ~3 ; edx multiple de 4
.for_u4:
cmp ecx, edx
jge .endfor_u4
%assign k 0 ; équivalent a
%rep 4 ; fpu_body 0
fpu_body k ; fpu_body 4
%assign k k+4 ; fpu_body 8
%endrep ; fpu_body 12
add ecx, 4
jmp .for_u4
.endfor_u4:

; dernieres itérations
; ecx = (size / 4) x 4
; recharger edx avec size

mov edx, [ebp + 20]

.for:
cmp ecx, edx
jge .endfor
fpu_body 0
inc ecx
jmp .for
.endfor:
ret

Listing 13.4.3 - SAXPY modifiée - implantation partielle avec FPU et dépliage par 4

xmm@ contient les sommes partielles
xmm1 contient Tiy Tixl, Tit2, Tit3
Xmm2 contient ¥, Yiy1, Yitr2, Yits

xmm3 contient quatre fois la valeur de la constante a.

Le calcul est alors simple a réaliser, il suffit de multiplier xmm1 par xmm3 puis
d’additionner ce résultat a xmm2. Une fois ce calcul terminé on peut ajouter xmm2 a

Xmmo

En sortie de la boucle dépliée, le registre xmm@ contient :

xmm@.ps[0] = (a X o + Yo) + (@ X T4 + ys) +
xmm@.ps[1] = (a X 1 +y1) + (a X x5+ y5) + ...
xmm@.ps[2] = (a X x3 + y2) + (a X 6 + y6) +
xmm@.ps[3] = (a X 3 +ys) + (@ X 7 +y7) + ...

Le code de la version SSE est donné Listing 13.5.1. On commence par mettre

Xmmo

a 0 (ligne 3), puis on charge quatre fois la constante a dans xmm3 (lignes 4

19

13.5. VERSION SSE

341

saxpy_sse:
Xorps xmm@, xmmo
movss xmm3, [ebp + 16] ; xmm3 = [a, a, a, al
shufps xmm3, xmm3, @
xor ecx, ecx ;1 =0
and edx, ~3 ; dépliage par 4
.for_u4:
cmp ecx, edx
jge .endfor_u4
movaps xmml, [esi + ecx * 4] ; xmml = x[i+3]:x[i]
movaps xmm2, [edi + ecx * 4] ; xmm2 = y[i+3]:y[i]
mulps xmml1, xmm3
addps xmm2, xmml
addps xmm@, xmm2
movaps [edi + ecx * 4], xmm2 ; stocke résultat
add ecx, 4
jmp .for_u4
.endfor_u4:
haddps xmm@, xmmo@ ; somme des valeurs
haddps xmm@, xmmo ; du registre xmm@
sub esp, 4 ; et addition au
movss [esp], xmm@ ; registre sto
fadd dword [esp] :
add esp, 4
; derniéres itérations
ret

Listing 13.5.1 — SAXPY version SSE

et 5). Ligne 6, on initialise i (ecx) a 0, puis on calcule dans edx le plus proche
multiple de 4 inférieur ou égal a size size. On aura bien évidemment chargé size
au préalable dans le registre edx. Le corps de la boucle (lignes 9 a 18) ne comporte
aucune difficulté.

En sortie de boucle, celle-ci effectuant les calculs en paralléle dans les registres
SSE, on doit terminer les dernieres itérations de la boucle dans le coprocesseur. On
pourrait bien évidemment continuer les calculs avec les registres SSE grace aux
instructions de type addss, mulss mais en 32 bits on utilise par convention la FPU.

Il faut alors calculer la somme des quatre valeurs flottantes contenues dans le
registre xmm@ puis la stocker dans st@. L'instruction haddps permet de faire cela (cf.
Section 8.2.2) et nous avons vu qu’il fallait 'exécuter deux fois (lignes 20 et 21).

Sachant que les données sont chargées dans le coprocesseur a partir d’'un em-
placement mémoire, on décide de réserver dans la pile un emplacement temporaire
de 32 bits (ligne 22) et on y place la somme des valeurs du registres xmm@ (ligne
23). Cette somme est alors ajoutée a st0, car comme pour la version non dépliée,
on commence par réaliser fldz en début de sous-programme.

342 CHAPITRE 13. ETUDE DE CAS VARIANTE DE SAXPY

Amélioration SSE

En vectorisant le code on abaisse le temps d’exécution a 7,93 secondes, on
est donc 2, 89 fois plus rapide par rapport a la fonction de référence.

13.6 Version AVX

La version AVX impose de déplier la boucle par 8, puisqu'un registre AVX
peut contenir 8 float. En conséquence, il faut déplier la boucle principale par 8.
L'utilisation de 'AVX apporte une légere amélioration par rapport au SSE, voire
dans certains cas, une forte amélioration, c’est le cas du AMD Ryzen 5 3600 pour
lequel on divise par 1,8 le temps d’exécution. On consultera la section des résultats
ci-apres pour vérifier cette affirmation.

La seule difficulté résiduelle concerne le calcul de la somme des 8 float de
ymm@. Comme indiqué 8.3.3, il n’est pas possible de procéder comme avec le SSE.
On peut voir comment on a procédé dans la version FMA (Listing 13.7.1) qui est
trés proche de la version AVX.

Amélioration AVX

En vectorisant le code avec 'AVX on abaisse le temps d’exécution a 5,26
secondes, on est donc 4, 36 fois plus rapide par rapport a la fonction de
référence. Le gain en dépliant la boucle par 2 ou 4 est infime, on obtient
respectivement des temps d’exécution de 5, 13 et 5,09 secondes. L'utilisation

des intrinsics permet d’obtenir un temps d’exécution de 4,93 secondes.
L J

13.7 Version FMA

Le sigle FMA signifie Fused Multiply-Add et permet étant donné trois flottants a,
b et ¢ de calculer d = round(a + b X ¢), c’est a dire qu’on n’utilise qu’un seul calcul
d’arrondi. Cette technique est supposée étre plus rapide qu'une multiplication suivie
d’une addition mais peu parfois conduire a des erreurs de précision.

Les microprocesseurs AMD et Intel implantent les instructions du jeu d’instruc-
tions FMA3 depuis 2012 et 2013 respectivement.

Nous utilisons ici linstruction \gls {vfmadd321ps} xmm1, xmm2, xmm3' qui
multiplie xmm2 par xmm3 et ajoute le résultat a xmm1.

Le code de la version FMA est donné Listing 13.7.1. On utilise les registres
AVX comme ymm@ pour contenir les sommes partielles. Lignes 23 a 27, on réalise le

1. qui est une variante de vfmadd231ps et donne le méme résultat.

13.7. VERSION FMA 343

calcul du corps de la boucle. On charge x[i:i+7] dans ymm1, puis y[i:i+7] dans
ymm2. On réalise ensuite le produit suivi de la somme en utilisant vfmadd321ps. On
ajoute le résultat a ymmo et on le stocke en mémoire.

1 saxpy_fma:
2 o oo
3 vxorps ymm@, ymmo ; ymm@ = [0.0 x 8 fois]
4 movss xmm3, [ebp + 16] ; ymm3 = [a x 8 fois]
5 shufps xmm3, xmm3, @
6 vinsertf128 ymm3, xmm3, 1
7
8 xor ecx, ecx ;1 =0
9 and edx, ~7 ; edx multiple de 8 de size
10 .for_u8:
11 cmp ecx, edx ; sortie de boucle si ecx >= edx
12 jge .endfor_u8
13 vmovaps ymm1l, [esi + ecx x 4] ; ymml = x[i:i+7]
14 vmovaps ymm2, [edi + ecx x 4] ; ymm2 = y[i:i+7]
15 vfmadd321ps ymm2, ymm1, ymm3 ;
16 vaddps ymm@, ymm2
17 vmovaps [edi + ecx *4], ymm2 ; yLi:i+7] = ymm2
18 add ecx, 8 S E=8
19 jmp .for_u8
20 .endfor_u8:
21 vhaddps ymm@, ymmo ; somme des valeurs
22 vhaddps ymmo@, ymmo ; de ymm@
23 vextractf128 xmm1, ymmo@, 1
24 vaddps xmm@, xmmi
25 sub esp, 4 ; stockage du résultat dans sto
26 vmovss [esp], xmm@
27 fadd dword [esp]
28 add esp, 4
29
30 mov edx, [ebp + 16] ; dernieres itérations
31 .for:
32 cmp ecx, edx
33 jge .endfor
34 fld dword [esi + ecx * 4]
35 fmul dword [edi + ecx * 4]
36 faddp st1, sto
37 inc ecx
38 jmp .for
39 .endfor:
40
Listing 13.7.1 — SAXPY version FMA

Amélioration FMA

L’amélioration FMA donne le meilleur temps d’exécution a 4, 90 secondes si
on utilise les intrinsics.

344 CHAPITRE 13. ETUDE DE CAS VARIANTE DE SAXPY

13.8 Résultats

Plusieurs solutions ont été implantées parmi lesquelles :

e C: fonction de référence

e asm fpu : fonction de référence codée en assembleur en utilisant la FPU
e asm fpu ur2 : version précédente avec dépliage par 4 de la boucle

e asm sse : version assembleur utilisant la vectorisation avec registres SSE
e asm sse : fonction avec décalage pour le calcul par octet

e C sse intrin. : version C utilisant les intrinsics sur des registres SSE

e asm avx : version assembleur utilisant la vectorisation avec registres AVX
e asm avx2 ur2 : version AVX avec dépliage de la boucle par 2

e asm avx2 ur4 : version AVX avec dépliage de la boucle par 4

e C avx2 intrin. : version C utilisant les intrinsics sur des registres AVX

e C avx2 ez_ii : version C utilisant les intrinsics sur des registres AVX avec
l'interface ez _ii

e asm fma : version assembleur avec instructions FMA
e C fma ez_ii : version C avec ez intrinsics interface (voir ci-apres)

C avx512 intrin. : version intrisics avec instructions AVX512

C avx512 fma intrin : version intrisics avec instructions AVX512 et FMA

13.8.1 Un mot sur 'interface ez _ii

L’interface ez _ii fait partie d'un projet plus vaste que j’ai initié il y a quelques
années qui a pour but de simplifier I'utilisation de la STL, la bibliotheque standard
du C++. Quelques autres projets en découlent comme ez _cuda qui se base sur
des classes spécifiques afin de ne gérer qu'une seule instance d’un tableau dont
I'allocation mémoire est réalisée a la fois sur le CPU et le GPU. On simplifie
également la définition des parameétres des kernels.

Le terme ez vient de 'anglais et se lit easy qui signifie facile en francais.

L’ensemble de ces bibliotheques et interfaces est intégré dans un projet plus
vaste en cours de développement qui a pour but de mettre au point un langage
dont la syntaxe est proche du langage Pascal et qui a pour objectif de simplifier
I'écriture des programmes C++. Le code du ez language est traduit en C++ et il doit
permettre a terme d’inclure de ’'assembleur, de pouvoir intégrer des requétes SQL
ou des programmes en logique.

L’interface ez_ii, ou le terme ii signifie Intrinsics Interface tente de simplifier
l'utilisation des Intrinsics tout en procurant des fonctions d’affichage des registres
SSE et AVX, utiles au débogage.

13.8. RESULTATS 345

13.8.2 Architectures anciennes (avant 2015)

Les résultats pour les architectures de processeurs pré 2015 figurent Table 13.3.

Marque Intel Intel Intel AMD Intel Intel

Gamme Pentium D Core2 Corei7 PhenomII Corei5 Corei7

Modele 925 Q9300 860 1090T 3570k 4790

2006 2008 2009 2010 2012 2014

1 C 97.29 75.68 23.35 32.31 23.58 19.70
2 asm fpu 101.91 62.52 24.69 30.75 23.74 19.70
3 asm fpu ur4 91.77 58.92 25.36 30.47 23.64 19.68
4 asm sse 86.84 52.38 11.16 24.74 8.70 6.00
5 C sse intrin. 84.11 51.89 10.12 24.27 8.33 5.64
6 asm avx - - - - 8.21 5.42
7 asm avx2 ur2 - - - - 8.42 5.42
8 asm avx2 ur4 - - - - 8.11 5.48
9 C avx2 intrin. - - - - - 5.43
10 C avx2 ez_ii - - - - - 5.41
11 asm fma - - - - - 5.43
12 C fma ez_ii - - - - - 5.44
ratiol /5 1.15 1.45 2.30 1.33 2.83 3.49

TABLE 13.3 — Résultats comparatifs des méthodes SAXPY : architectures anciennes

Le gain apporté par une traduction directe de la fonction de référence en
assembleur est faible par rapport a sa traduction par le compilateur. On note parfois
une dégradation qui peut étre corrigée si on déplie la boucle par 4 (sauf pour
I'Intel i7 860). L'utilisation du SSE apporte un faible gain sur les architecture avant
2012. Sur I'Intel i5 3570k et I'Intel i7 4790, la technologie SSE permet de diviser
respectivement par un facteur 2.83 et 3.49 le temps d’exécution par rapport a la
méthode de référence. A noter également que I'Intel i7 860 possede un facteur
d’amélioration de 2.3 en utilisant le SSE. Sur ces mémes processeurs (Intel i5 3570k
et i7 4790) passer a 'AVX ou au FMA (seulement pour I'i7 4790) n’apporte rien.

13.8.3 Architectures modernes (2015 a 2019)

Pour les architectures modernes (voir Table 13.4), l'utilisation de 'AVX par
rapport au SSE apporte un gain substantiel. L’utilisation des instructions FMA
n’apporte pas d’amélioration majeure dans le cas du traitement SAXPY modifié.

On note que les processeurs AMD ont une FPU peu performante, plus de 30
secondes pour les calculs des méthodes 1 a 3 alors que les autres processeurs

346 CHAPITRE 13. ETUDE DE CAS VARIANTE DE SAXPY

Marque Intel AMD Intel Intel
Gamme Corei3 Ryzen 7 Corei5 Corei7

Modele 6100 1700X 7400 8700
2015 2017 2017 2017

1 C 22.35 33.89 22.95 17.30 31.36 25.98
2 asm fpu 23.01 33.76 23.02 17.33 31.30 25.62
3 asm fpu ur4 22.96 33.84 22.97 17.28 31.33 25.93
4 asm sse 9.41 5.16 7.93 5.79 490 9.90
5 C sse intrin. 9.02 5.38 7.79 5.74 5.04 9.40
6 asm avx 7.56 3.53 5.26 3.75 2.62 9.83
7 asm avx2 ur2 7.49 3.49 5.13 3.72 2.58 10.08
8 asm avx2 ur4 7.46 3.43 5.09 3.72 2.56 9.82
9 C avx2 intrin. 7.17 3.29 4.93 3.67 2.61 9.88
10 C avx2 ez_ii 7.18 3.33 4.95 3.68 2.62 9.13
11 asm fma 7.27 3.37 5.03 3.68 2.67 9.75
12 C fma ez_ii 7.22 3.28 4.90 3.66 2.65 998
13 C avx512 intrin. - - - - - 11.59
14 C avx512 fma intr. - - - - - 11.47

ratiol /5 2.47 6.29 2.94 3.01 6.22 2.76

ratio1l /12 3.09 10.33 4.68 4.72 11.83 2.60

TABLE 13.4 — Résultats comparatifs des méthodes SAXPY : architectures modernes

sont trés en dessous de cette valeur. En revanche les unités AVX de ces mémes
processeurs sont plutét performantes.

Le passage a 'AVX512 sur le Xeon Silver 4208 semble détériorer les perfor-
mances. On note d’ailleurs pour ce processeur que le passage du SSE a 'AVX
n’apporte qu’un gain tres faible.

13.8.4 Architectures récentes (2020 et apres)

Pour les architectures récentes (voir Table 13.5), la version FMA3 est la plus
efficace ainsi que les versions intrinsics utilisant ’AVX2 sur Intel 10850H. Pour
I’AMD 5600g, c’est également la version AVX2 intrinsics qui est la plus efficace.

On remarque encore que la FPU est fortement pénalisante (méthodes 1, 2 et 3)
sur AMD.

13.9. CONCLUSION 347

Marque Intel AMD Intel
Gamme Corei7 Ryzen5 Core i5

Modele 10850H 5600g 12400F
2020 2021 2022

1 C 16.05 38.86 18.50
2 asm fpu 16.22 39.81 18.35
3 asm fpu ur4 16.14 39.95 18.62
4 asm sse 5.49 5.36 4.51
5 C sse intrin. 5.35 5.31 4.60
6 asm avx 3.79 3.75 4.41
7 asm avx2 ur2 3.75 3.47 4.42
8 asm avx2 ur4 3.72 3.44 4.49
9 C avx2 intrin. 3.62 3.26 4.79
10 C avx2 ez_ii 3.62 3.39 4.75
11 asm fma 3.66 3.30 4.40
12 C fma ez_ii 3.61 3.38 4.81
13 C avx512 intrin. - - -
14 C avx512 fma intr. - - -

ratiol /5 3.00 7.31 4.02
ratiol / 12 4.44 11.49 3.84

TABLE 13.5 — Résultats comparatifs des méthodes SAXPY : architectures récentes

13.9 Conclusion

Nous avons vu dans ce chapitre comment utiliser les instructions de la FPU pour
un calcul simple. On note que c’est le passage a la vectorisation qui apporte une
amélioration significative du temps de calcul. L'utilisation du FMA qui est censé
apporter une diminution du temps de calcul est généralement minime pour ce
traitement. On retiendra que la FPU des microprocesseurs AMD n’est pas du tout
performante. Heureusement les calculs effectués avec des registres vectoriels sont,
quant a eux, bien plus efficaces.

13.10 Exercices

Exercice 47 - A titre d’exercice vous pouvez réaliser un dépliage de la version AVX
par 2 puis par 4 et intégrer les nouveaux sous-programmes au code existant afin de
tester leur efficacité.

348 CHAPITRE 13. ETUDE DE CAS VARIANTE DE SAXPY

Exercice 48 - Utiliser vpbroadcastd afin de charger huit fois a dans ymm3 pour la
version FMA.

Chapitre 14

Etude de cas
Maximum de Parcimonie

14.1 Introduction

Ce chapitre traite de 'implantation de la fonction de Fitch dans le cadre de la
résolution du probléme de la recherche du Maximum de Parcimonie en Bioinfor-
matique. Il permet d’introduire plusieurs instructions assembleur liées au calcul
vectoriel avec unités SSE sur les entiers.

Le probleme de recherche du Maximum de Parcimonie consiste étant donné un
ensemble de n séquences d’ADN de méme longueur £ a trouver un arbre binaire
dont le coflit est minimum étant donné un critere d’optimisation.

Pour calculer ce cofit qui correspond au nombre de mutations entre séquences,
chaque feuille de I'arbre contient une des séquences initiale du probleme et les
noeuds internes contiennent des séquences dites hypothétiques qui sont calculées en
utilisant la fonction de Fitch. Celle-ci sera notre fonction de référence a améliorer
et pour laquelle toute mutation engendre un colit d’'une unité.

Le cofit total d’'un arbre est égal a la somme des cofits de chaque séquence
hypothétique. Pour le calculer, on part de la racine et on descend jusqu’aux feuilles,
puis on remonte vers la racine en calculant les séquences hypothétiques tout en
sommant leurs cofits.

Prenons un exemple avec les quatre séquences d’ADN suivantes :

e ST = AAAAA
e S2 = AAAAC
e 53 = CCCTT
e S4 = CCCAT

349

350 CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE

On rappelle que les acides nucléiques qui composent les séquence d’ADN ! sont
I'adénine (A), la cytosine (C), la guanine (G) et la thymine (T). La séquence S1 est
donc composée de 5 adénines, S2 de quatre adénines suivies d’une cytosine, etc.

On peut voir, Figure 14.1, deux arbres binaires ainsi que le cofit de parcimonie
selon Fitch.

A A A AT
‘IJ; ccc

. NN A

AlAlA[A A AlAal|AlA|C]

clcic|r|r clc|c | ‘I’

[AAMAA | [ccarT] [AAMAC | [cccAT |

S1 S3 S2 S4
AlA[A |A/A
‘II}__J“+ clcfc] ¢
—
v | 2
‘ AAAA |A ‘ CCC[A[T
C <::> T <::>
[AAAAA | [mmAAC | [ccarT) [cceaT
S1 S2 S3 S4

FIGURE 14.1 — Arbres et colits de parcimonie selon Fitch

Le premier arbre, qui dans la notation Newick* est T} = ((S1,53), (52, 54)),
possede un cotit total de 4 + 5 + 0 = 9. En effet, lorsque 1'on calcule la séquence
hypothétique qui résulte de (S1,.53), on a cinq mutations : trois modifications ot A
est muté en C et deux ou A subit une mutation en T. Sur la branche de droite qui
correspond a séquence hypothétique qui résulte de (52, 54), on a quatre mutations :
trois modifications ol A est muté en C, puis A en regard de A, donc aucune mutation,
et enfin, une mutation de C en T. Au niveau de la racine, on n’aura aucune mutation
car on a a chaque fois des sous-ensembles de caractéres communs. On trouve trois
fois le sous-ensemble { A, C'} en regard de lui-méme, puis {A, 7'} en regard de {A}
dont l'intersection est { A} et enfin {A, T'} en regard de {C, T} dont I'intersection
est {T'}.(

Le second arbre 7, = ((S1, 52), (53, 54)) possede un cofit inférieur a 73, égal a
4+ 1+ 1=6.Cestdonc T3 qui est le plus parcimonieux, c’est a dire qui possede le
moins de mutations et qui doit étre gardé comme solution au probléme.

Le probleme de recherche de I'arbre de parcimonie maximum est un probleme
d’optimisation combinatoire et est NP-Complet ce qui signifie, en simplifiant a

1. Acide désoxyribonucléique.
2. Notation parenthésée utilisée pour décrire des arbres.

O N AW N =

e
N o~ O

14.2. FONCTION DE REFERENCE 351

outrance, qu’il n’existe pas d’algorithme qui nous permette de trouver la solution
autre qu'une recherche exhaustive.

Malheureusement, le nombre d’arbres binaires a examiner est exponentiel, par
exemple pour 50 séquences, il y a 2,8 10™ arbres possibles. On ne peut donc
envisager une recherche exhaustive et il faut faire appel a des métaheuristiques qui
sont des techniques de recherche liées a la résolution de ce genre de probleme.

Nous n’irons pas plus avant dans I'explication des techniques de résolution
qui font partie de 'Optimisation Combinatoire car nous allons nous focaliser sur
I’amélioration de la fonction de Fitch.

14.2 Fonction de référence

La fonction a implanter est donnée Listing 14.2.1. Elle comporte quatre para-
metres qui sont les séquences en entrée x et y, la séquence hypothétyque z qui est
calculée par la fonction ainsi que la longueur des séquences (size). En retour on
donne le nombre de mutations trouvées.

maxpars_reference(u8 *x, Xy, *Z, size) {
mutations = 0;

(u32 i = @; i < size; ++i) {
z[i] = x[i] & y[il;
(z[i] == 0) {
z[i] = x[i] | y[il;
++mutations;
}
}
mutations;
}
Listing 14.2.1 - Maximum de Parcimonie fonction de référence en C

Les séquences sont modélisées sous forme de tableaux d’octets et pour coder
efficacement la possibilité d’avoir des combinaisons d’acides nucléiques comme ’A
ouC’,’AouCouT,’AouCouGouT, etc, on utilise des puissances de 2 :

e A=2!
o C=22
e G=23
e T=2%

Ainsi’A ou C’ qui en notation ensembliste se note { A} U {C'} ou encore {A,C'}
est codé par 2! + 22 = 2 4+ 4 = 6. La fonction de Fitch vérifie que pour chacun des
sous-ensembles de caracteres en regard des deux séquences en entrée, il existe

352 CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE

un caractére ou un sous-ensemble commun en réalisant une intersection des sous-
ensembles de caracteres de x[i] avec y[i]. Si cet ensemble est vide c’est qu’il
n’existe aucun caractere en commun : on a une mutation et il faut alors prendre
I'union des ensembles de caracteres.

Union et intersection sont tres simple a réaliser si on code les caractéres sous
forme de puissances de 2. L'union est alors le OU-binaire (|) et I'intersection est le
ET-binaire (&).

Au dela de la signification qui peut sembler complexe, on peut simplement
considérer la fonction a implanter comme manipulant des tableaux d’octets.

14.3 Implantation en assembleur

La difficulté de 'implantation réside dans le fait que 'on ne dispose en 32 bits
que de 6 registres et que la fonction fait apparaitre 6 variables :

e les séquences x, y, z,

la taille size des séquences,

la variable de boucle i,

le nombre de mutations

Cependant il faudra réaliser des calculs comme x[i] & y[i], il est donc néces-
saire de disposer d’au minimum un registre pour les calculs.

L’association variables / registres est celle de la Table 14.1. Nous avons fait le
choix de ne pas stocker la variable size dans un registre et de la laisser dans la pile
ce qui nous permet de garder le registre edx afin de réaliser les calculs x[i] & y[i]
et x[i] | y[il.

Cste/Param/Var Type Parametre Registre Description

X u8 [1 [ebp+8] esi séquence x

y u8 [1 [ebp+12] edi séquence y

z u8 [1 [ebp+16] ebx séquence z

size u32 [ebp+20] pile taille des séquences

i u32 ecx variable de boucle

mutations u32 eax nombre de mutations
u32 edx calculs

TABLE 14.1 — Association entre variables et registres pour la fonction de référence de Fitch

Le code ressemble donc a ce qui suit et est la traduction directe de la fonction
de référence :

O 0 N o L1 AW N =

NN NN NNNN e e e
N O AW N RO 0 N AW N = O

28
29
30

32
33
34
35
36
37
38

40

14.3. IMPLANTATION EN ASSEMBLEUR 353

push ebp ; entrée dans la fonction

mov ebp, esp

mov eax, [ebp + 20] ; Si size == @ alors retourne 0
test eax, eax

jz .end

push esi ; sauvegarde des registres

push edi ; qui seront modifiés mais

push ebx ; doivent étre préservés

; chargement des parametres

mov esi, [ebp + 8] ; X dans esi
mov edi, [ebp + 12] ; y dans edi
mov ebx, [ebp + 16] ; z dans ebx
xor eax, eax ; mutations = 0
xor ecx, ecx ;1 =0
.for:
cmp ecx, [ebp + 20] ; fin de boucle si i >= size
jge .endfor
mov dl, [esi + ecx] ; dl = x[i]
and dl, [edi + ecx] ; dl = x[i] & y[il
jnz .endif ; si dl != @ alors aller en .endif
mov dl, [esi + ecx] ; dl = x[i]
or dl, [edi + ecx] ; dl = x[i] | y[i]
inc eax ; ++mutations
.endif:
mov [ebx + ecx], dl ; z[1i] = dl
inc ecx ; i
jmp .for
.endfor:
pop ebx ; restauration des registres
pop edi
pop esi
.end:
mov esp, ebp ; sortie de fonction
pop ebp
ret
Listing 14.3.1 — Maximum de Parcimonie fonction de référence en assembleur

Afin de donner un ordre d’idée du temps d’exécution pour les différentes implan-
tations que nous allons réaliser, nous reportons par la suite, les résultats obtenus
sur un Core i7 8700. Le test effectué consiste a calculer 50_000 fois la fonction
de référence appliquée sur des séquences initialisées aléatoirement de 524 287
éléments.

354 CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE

Temps de référence

Pour I'implantation que nous venons de donner, 'exécution dure environ
84, 37 secondes.

14.4 Ameélioration de la fonction de référence

L’'implantation précédente se révele inefficace pour une simple raison que
nous avons déja évoquée. La présence d’une conditionnelle (i) non prédictible
a l'intérieur d’'une boucle (for). Si on a choisi le mauvais chemin d’exécution il
faudra vider le pipeline ce qui nous ralenti.

Afin d’améliorer l'efficacité du traitement il est nécessaire de supprimer le (if).
On peut, dans ce cas précis, choisir d’utiliser des instructions comme setCC ou
cmovCC qui s’exécutent en fonction de la condition, modélisée ici par les deux lettres
CC.

On va donc modifier I'association variables / registres afin de libérer les registres
eax, ebx et edx. Ainsi esi sera utilisé pour contenir soit x, soit z et la variable
mutations sera placée dans la pile. Le code est alors celui du Listing 14.4.1.

On charge x[i] en partie basse de eax et ebx puis y[i] en partie basse de edx.
On calcule ensuite :

e x[i] | y[i] dans ebx
e x[i] & y[i] dans eax

L’instruction and eax, edx met a jour le registre eflags, dés lors on peut utiliser
deux instructions conditionnelles :

e setz dl fixe d1 (donc edx) a 1,si x[i] & y[i] est égal a 0, sinon d1 sera égal
ao

e cmovz eax, ebx remplace x[i] & y[i] par x[i] | y[i] dans eax

Ces deux instructions réalisent la conditionnelle if de la fonction de référence

et on met ensuite a jour le nombre de mutations stockées dans la pile en [ebp-4]
ainsi que la séquence z.

Amélioration sans if

En éliminant le it on ne met plus que 34, 68 secondes, on va donc environ
2, 43 fois plus vite.

On note l'utilisation de l'instruction movzx (lignes 20 et 21) afin de charger
respectivement x[i] et y[i] dans edx et eax. Cette instruction permet de charger
un octet en partie basse d’un registre tout en positionnant a 0 les bits de la partie
haute. Elle est généralement plus performante qu’un mov qui mettrait y[i] dans d1.

O 0 N o LW N =

AR A D W oW oW oW oW oW oW oW oW oW RN NDNNNNNNRL RS 2 s sl s s e
B N R S 0V ® 9 & R DN R O Y ® N o0 AR ®N = O WV ® N O U AW N = O

14.5. OPTIMISATION DE LA VERSION SANS IF

push
mov
sub
mov
mov
test
jz

push
push
push

mov

xor

.for:
mov
cmp
jge
movzx
movzx
mov
mov
or
and
setz
cmovz
add
mov

add
jmp

.endfor:
mov

pop
pop
pop
.end:
mov
pop
ret

Listing 14.4.1 -

ebp
ebp, esp
esp, 4

dword [ebp-41, 0@
eax, [ebp + 20]
eax, eax

.end

esi
edi
ebx

edi, [ebp + 12]
ecx, ecx

esi, [ebp+8]

ecx, [ebp + 20]
.endfor

edx, byte [edi + ecx]
eax, byte [esi + ecx]
ebx, eax

esi, [ebp+16]

ebx, edx
eax, edx

dl

eax, ebx
[ebp-4], edx

[esi + ecx], al
ecx, 1

.for

eax, [ebp-4]
ebx

edi

esi

esp, ebp
ebp

; dl
; al
; bl

; bl
; al
; dl
; al

; entrée dans la fonction
; mutations = @

; Si size == 0 alors retourne 0

; sauvegarde des registres
; qui seront modifiés mais
; doivent étre préservés

; y dans edi

; 1=0

; esi = x
; fin de boucle si i >= size

= y[i]
= x[i]
= x[i]
; esi =z
= x[i] | y[il
= x[i] & y[i]
=@l =09)7?1:0
= (al ==0) ? bl : al
; mutations += edx
; z[i] = al
s 4+]

; eax = nombre de mutations

; restauration des registres

; sortie de fonction

Maximum de Parcimonie fonction de référence sans if

14.5 Optimisation de la version sans if

La version sans

plusieurs changements :

355

peut encore étre améliorée, pour cela il faut procéder a

356 CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE

la variable mutations sera remplacée par le registre eax, cela évite des acces
a la mémoire

'acces au parametres se fera au travers de esp et non de ebp qui va étre utilisé
pour stocker z, ce qui fait qu'on aura a notre disposition 7 registres

les calculs seront réalisés en utilisant ebx, edx et edi

le registre edi sera également utilisé pour stocker y, apres avoir réalisé les
calculs il faudra donc le recharger avec y

Le code est donné Listing 14.5.1.

Amélioration sans if et optimisation

Avec cette version optimisée, on ne met plus que 5, 24 secondes, on va donc
3, 88 fois plus vite que la fonction de référence.

14.6 Version SSE

L’'implantation de la fonction de référence en utilisant des instructions SSE est
relativement simple des lors que I'on connait les instructions adéquates. On traitera
16 octets en parallele ce qui apporte un gain substantiel dans 'amélioration de la
fonction. Pour réaliser le OU-binaire, on utilisera I'instruction por (Parallel OR) et
pour le ET-binaire, on dispose de I'instruction pand (Parallel AND)

La difficulté repose sur 'extraction de I'information liée au résultat du ET-binaire.
On dispose heureusement pour cela de deux instructions :

e pcmpeqgb xmm1, xmm2 (Parallel CoMPare EQual Bytes) qui compare les octets
du registre xmm1 a ceux du du registre xmm2, si xmm1.b[i] == xmm2.b[i] alors
xmm1.b[i] = OxFF, sinon xmm1.b[i] = 0

e pmovmskb eax, xmm1 (Parallel MOVe MaSK of Bytes) est utilisée pour récupérer
le résultat de la comparaison précédente, on extrait le bit de poids fort de
chaque octet du registre xmm1 et on le place dans eax

On est donc en mesure de comparer deux vecteurs d’octets et si deux valeurs
au méme indice sont égales on positionnera dans le registre destination 'octet
correspondant a OxFF, c’est a dire true, alors que si elles sont différentes, 'octet
sera positionné a 0x00, c’est a dire false.

14.6.1 Association variables registres

Comme les calculs se feront dans les registres SSE on va pouvoir disposer des
6 registres généraux (cf. Table 14.2) afin de gérer les adresses des vecteurs, leur
taille, la variable de boucle et le nombre de mutations.

O 0 N oy 1 AW N =

WowW W W W W W W W W NN NDNNDNDNNDNDNHE 2 R e E s e s
O 0N O LA WN O V0 0NN EF O V0 YN AW NN = O

14.6. VERSION SSE

mov eax, [esp + 16]
test eax, eax
jz .end
xor eax, eax
push ebp
push esi
push edi
push ebx
mov esi, [esp + 20]
mov edi, [esp + 24]
mov ebp, [esp + 28]
xor ecx, ecx

.for:

movzx ebx, byte [esi + ecx]
movzx edx, byte [edi + ecx]

mov edi, ebx
or edi, edx
and ebx, edx
sete dl
cmovz ebx, edi
add eax, edx
mov [ebp + ecx], bl
mov edi, [esp + 24]
add ecx, 1
cmp ecx, [esp + 32]
jl .for
pop ebx
pop edi
pop esi
pop ebp
.end:
ret

Listing 14.5.1 -

; bl
; dl
; edi

357

; Si size == 0 alors retourne @

; mutations = @

; sauvegarde des registres

; chargement des parametres
; X dans esi
; y dans edi
; z dans ebp

x[1]
yli]
x[i]

; edi = x[i] | y[il
; ebx
; dl = (ebx ==0) ? 1 : @

; ebx = (ebx == @) ? edi : ebx
; mutations += edx

; z[1i] = bl

x[i] & y[i]

; edi =y
o bl
; fin de boucle si i >= size

; restauration des registres

; sortie de fonction

Maximum de Parcimonie fonction de référence sans if optimisée

Le registre xmm@ sera utilisé pour stocker x[i:i+15], puis le résultat du ET-
binaire avec xmm2 qui lui, contiendra y[i:i+15].

Le registre xmm1 sera utilisé pour stocker une copie de xmmo, puis le résultat du

OU-binaire avec xmm2

Le registre xmmé6 est mis a 0 car il nous servira a comparer en paralléle le résultat
du ET-binaire et permettra de déterminer quels éléments sont a 0 et pour lesquels il
faudra prendre le résultat du OU-binaire.

358 CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE

Cste/Param/Var Type Parameétre Registre Description

X us [1] [ebp+8] esi séquence x
y us8 [] Lebp+12] edi séquence y
z u8 [1 [ebp+16] ebx séquence z
size u32 [ebp+20] pile taille des séquences
i u32 ecx variable de boucle
u32 edx nombre de répétitions
mutations u32 eax nombre de mutations
u32 ebp calculs temporaires
u8[16] Xmmé 0,...,0]
u8[161] Xmmo x[1:1+15]
and(x[i:i+15], y[i:i+15])
u8[16] Xmm2 y[i:i+15]
u8[16] xmm1 yL[i:i+15]

or(x[i:i+15], x[i:i+15])

TABLE 14.2 — Associations entre variables et registres pour 'implantation SSE

Le registre edx contient le nombre d’itérations de 16 octets. Par exemple si la
taille des séquences est de 263 acides nucléiques alors edx = 16 et il restera 7
itérations a traiter.

Le code de la version SSE étant assez conséquent, nous nous focalisons sur la
boucle principale qui ressemble a ceci :

On commence par charger les registres avec les données puis a calculer le
ET-binaire et le OU-binaire (lignes 2 a 6). On compare ensuite (lignes 8 et 9) le
résultat du ET-binaire, déplacé dans xmm4 au registre xmmé afin de déterminer quels
octets sont a 0, le registre xmm4 va servir par la suite de masque de sélection.

Lignes 9, 15, 16, 18, on extrait 'information sur le nombre de mutations que
I'on additionne a eax qui contient le nombre total de mutations.

Enfin, lignes 20 a 24, on calcul la séquence hypothétique z[i:i+15] en sélec-
tionnant soit le résultat du OU-binaire si le ET-binaire a produit un résultat égal a
0, soit le résultat du ET-binaire s’il n’est pas nul.

Notons qu’il ne s’agit pas d’une véritable boucle mais plutét un car
le registre edx, comme indiqué précédemment, contient le nombre de répétitions
de 16 octets a effectuer. Il est donc décrémenté en ligne 27 et s’il est égal a 0, on
sortira de la boucle.

O 0 N o LW N =

10
11
12

13

14
15
16

17

18
19

20
21
22
23
24
25
26
27
28

14.7. VERSION SSE 4.1

.for_u16:
movdqa
movdga
movdqa
pand
por

movdqa
pcmpegb

xmm@, [esi + ecx]
xmm2, [edi + ecx]
xmm1, xmmo
Xmmo, Xxmm2
xmm1, xmm2

Xmm4, Xxmmo
Xmm4, Xxmmé

pmovmskb ebp, xmm4

popcnt
add
pand
pandn

por

movdqa
add

dec
jnz

ebp, ebp
eax, ebp
xmm1, xmm4
xmm4, xmmo

Xmmo@, xmm1

[ebx+ecx], xmm@
ecx, 16

edx
.for_u16

Listing 14.6.1 —

Amélioration SSE2

’

’

)

’

5 Xmmo
;. Xmm2

xmm’
Xxmmo
xmm1

xmm4

359

x[i:1+15]

y[i:i+15]

Xmm@

x[i:i+15] & y[i:i+15]
x[1:i+15] | y[i:i+15]

x[i:i+15] & y[i:i+15]

xmm4 est le masque
si (x[i] & y[i] == @) alors
xmm4[i] = OxFF

sinon

xmm4[i] = 0x00

obtenir les bits
compte le nombre de mutations

ajouter a eax
calcul de la séquence
not(xmm4) & (x[il | y[il)

; résultat dans z[i:i+15]
i+= 16

Maximum de Parcimonie version SSE2

Grace a la vectorisation avec jeu d’instruction SSE2, on abaisse le temps

d’exécution a 2,70 secondes soit un facteur d’amélioration de 84, 37/2, 70 ~
31.

14.7 Version SSE 4.1

Un variante de la version SSE2 va consister a utiliser I'instruction appelée
pblendvb (Variable Blend Packed Bytes) apparue avec le SSE4.1.

Elle permet de sélectionner des octets de chacune de ses deux opérandes suivant
le masque de sélection contenu (par convention) dans le registre xmm@. Le code
s’écrit alors :

Le registre xmm@ ne contiendra donc plus x[i:i+15] mais permettra de vérifier
quels octets de l'intersection x[i:i+15] & y[i:i+15] sont a 0.

360 CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE

1 .for_ur16:

2 cmp ecx, edx

3 jge .endfor_ur16

4 pxor Xmmo, Xxmmo ; xmm@ = [0, @, ..., 0]

5 movdqu xmm1, [esi + ecx] ; xmml = x[i:i+15]

6 movdqu xmm3, [edi + ecx] ; xmm3 = y[i:i+15]

7 movdqa xmm2, xmml ; xmm2 = x[i:i+15]

8 movdqa xmm4, xmm3 ; xmm4 = y[i:i+15]

9 pand xmm1, xmm3 ;o xmml = x[i:i+15] & y[i:i+15]

10 por Xmm2, xmm4 ; xmml = x[i:i+15] | y[i:i+15]

11 pcmpegb xmm@, xmm1 ; si xmml.b[i] ==

12 ; xmm@.b[i] = OxFF

13 ; alors

14 ; xmm@.b[i] = 0x00

15 pmovmskb ebp, xmmo ; obtenir le nombre de mutations locales
16 popcnt ebp, ebp ; compter

17 add eax, ebp ; ajouter aux mutations totales

18 pblendvb xmm1, xmm2, Xxmmo@ ; calculer la séquence hypothétique
19 movdga [ebx + ecx], xmml ; stocker le résultat en z[i:i+15]
20 add ecx, 16 ; i+= 16

21 jmp .for_ur16

22 .endfor_ur16

Listing 14.7.1 - Maximum de Parcimonie version SSE4.1

Lorsque 'on exécute l'instruction pblendvb xmm1, xmm2, xmm@ on sélectionne
les octets de xmm2.b[i] pour lesquels xmm@.b[i] vaut F'Fis. Dans le cas contraire
on garde xmm1.b[i]. Etant donné que :

e xmm2 contient x[i:i+15] | y[i:i+15]
e xmm1 contient x[i:i+15] & y[i:i+15]

e chaque octet de xmm@ vaut F'Fig si x[i] & y[i] ==

On obtient bien le résultat escompté.

Amélioration SSE4.1

On passe alors a un temps d’exécution a 2,60 secondes soit une légere
amélioration facteur d’amélioration de ~ 32.

14.8 Version AVX / AVX2

La version AVX utilise les registres ymm qui ont une taille de 32 octets (soit 256
bits). Le code est similaire a celui de la version SSE 4.1. On utilise le préfixe v afin
de signaler qu’il s’agit d’instructions AVX.

On notera que :

O 0 N o LW N =

LT S S N
g & ® N = © vV ® N O Y1 A W N = O

14.8. VERSION AVX / AVX2

.for_ur32:
vpxor
vmovdga
vmovdga
vmovdga
vmovdga

vpand
vpor

vpcmpegb

vpmovmskb
popcnt
add

vpblendvb
vmovdga
add

dec
jnz

ymmo,
ymm1 ,
ymm3,
ymm2,
ymm4

ymm1 ,
ymm2,

ymmo,

ymmo ;
[esi + ecx] o
[edi + ecx] ;
ymm1 ;
ymm3 ;

ymm3 ;
ymm4 ;

ymm1 ;

ebp, ymmo ;
ebp, ebp :
eax, ebp 2

ymm1 ,

ymm2, ymmo ;

[ebx + ecx], ymm1 :

ecx, 32 ;

edx

.for_ur32

Listing 14.8.1 —

361

ymm@ = [0, @, ..., 0]
ymml = x[i:i+15]

ymm3 = y[i:i+15]

ymm2 = ymm]1

ymm4 = ymm3

ymml = ymml & ymm3
ymm2 = ymm2 | ymm3

si ymml.b[i] == 0
ymm@.b[i] = OxFF
alors
ymm@.b[i] = 0x00
obtenir le nombre de mutations locales
compter
ajouter aux mutations totales

calculer la séquence hypothétique
stocker le résultat en z[i:i+15]

i += 32

Maximum de Parcimonie version AVX2

e l'instruction vpcmpegb ymm@, ymm1 compare les 32 octets de ymm@ a ceux de

ymm1.

e l'instruction vpmovmskb ebp, ymm@ extrait 32 bits de chaque octet de poids
fort de ymmo

On aurait pu également remplacer les lignes 8 et 9 du Listing 14.8.1 par :

vpand
vpor

ymml,
ymm2,

ymml, ymm3
ymm2, ymmé

; ymml = ymml & ymm3

;. ymm2 ymm2 | ymm3

ou bien stocker dans d’autres registres les résultats des unions et intersections
afin d’éviter les dépendances :

vpand
vpor
vpcmpegb

ymm4 ,
ymm5,
ymmO,

ymml, ymm3
ymm2, ymmé4
ymm4é

; ymml = ymml & ymm3
;. ymm2 ymm2 | ymm3

0 N o A W N =

362 CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE

Amélioration AVX2

Le temps d’exécution est alors de 1, 35 secondes soit un facteur d’amélioration
d’environ 62, soit presque deux fois plus rapide que le SSE.

14.9 Fonction de référence et compilateur

Notons que la fonction de référence optimisée par le compilateur en utilisant par
exemple avec gcc les options d’optimisation -03 -mavx2 et le dépliage de boucle
donne un temps d’exécution de 'ordre de 1, 85 secondes soit proche de la version
AVX2 assembleur.

Le code vectorisé avec AVX2 et généré par le compilateur (version intrinsics) est
nettement plus complexe que ce que nous avons écrit mais le temps d’exécution est
tres proche de la version AVX2 assembleur : 1,39 s. On peut alors se demander si le
compilateur produit un code plus complexe car il sait que le code sera bien plus
optimisé, ou si il fait cela car il ne parvient pas a traduire le code.

14.10 Version intrinsics

La version intrinsics en AVX2 nécessite pour étre efficacement traduite par le
compilateur de fournir quelques informations a ce dernier.

Notamment le mot clé __restrict__>, indique que pour la durée de vie du
pointeur, seul le pointeur sera utilisé pour accéder a I'objet vers lequel il pointe. L'ob-
jectif est de limiter les effets de l'aliasing de pointeur* ce qui permet au compilateur
d’optimiser le code.

En outre, il est préférable d’indiquer au compilateur que les adresses des ta-
bleaux x,y et z sont alignées sur un multiple de 16 ou 32 octets grace a la fonction
(ou directive) __builtin_assume_aligned. En conséquence le compilateur utilisera
les instructions de type movdqa plutét que movdqu et pourra procéder a quelques
optimisations.

u32 maxpars_avx2_intrinsics (u8 = X, u8 =« Y,
u8 =« z, u32 size) {
u32 i, mutations=0;

X = (u8 %) _ builtin_assume_aligned (x, CPU_MEMORY_ ALIGNMENT) ;
y = (u8 x) _ builtin_ assume_aligned(y, CPU_MEMORY_ALIGNMENT) ;
zZz = (u8 x) _ builtin_assume_aligned(z, CPU_MEMORY_ ALIGNMENT) ;

3. Pour d’autre compilateurs, comme le compilateur Intel, il faut utiliser restrict.
4. Le fait qu'un objet soit accédé par plusieurs pointeurs différents.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31

32
33

34
35

36
37
38
39

N o b~ w N

14.11. VERSION AVX512 363

__ m256i v.x, v.y, v.z, v.x and y, vV_.x or_y,
v_zero, v_cmp __ attribute_ ((aligned(32)));

v_zero = _mm256_set_ epi8(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
o,9,09,0,0,0,0,0,0,0,0,0,0,0,0,0) ;

(i = 0; i < (size & (~31)); i+=32) {

v_x = _mm256_load _si256((__ m256i *) &x[i]);
v_y = _mm256_load _si256((___m256i x) &yl[i]);
v_x_and y = mm256_and_si256(v_x, Vv_y);

v_x or y = mm256_or_si256(v.x, v.y);
v_cmp = _mm256_cmpeq epi8 (v_zero, v_x and y);
u32 r = _mm256_movemask_epi8(v_cmp);

mutations += _mm popcnt_u32 (r);

v_X _mm256_andnot_si256(v_cmp, v_.x and y);
vV_y _mm256_and_si256(v_cmp, v.x or y);

v_z _mm256_or_si256(v.x, vV.y);
_mm256_store si256((_ m256i) &z[i], v_2z);

}

// derniéres itérations

(; i<size; ++i) {

z[i] = x[i] & yI[il;
(z[i] == 0) |
z[i] = x[i] | yI[i];
"

++mutations;

mutations;

On notera que 'appel a _mm256_set_epi8 peut étre remplacé par un vpxor (dont
l'intrinsics est _mm256_setzero_si256), puisqu’elle a pour but de mettre le vecteur
v_zero a0).

14.11 Version AVX512

Pour 'AVX512, on utilise les registres zmm d'une capacité de 64 octets. Le nombre
total de mutations est stocké dans eax alors que le registre ebp permet de compter
(en deux fois 32 bits) les mutations pour le vecteur courant zmm1.

push ebp ; sauvegarde d'ebp
.for u6b4:
vmovdga64 zmm3, [esi + ecx] ; charge x[1:1+63]
vpandd zmml, zmm3, [edi + ecx] ; ozmml = x[1:1+63] & y[i:1+63]
vpord zmm2, zmm3, [edi + ecx] ; ozmm2 = x[1:1+63] | y[i:1i+63]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

364

CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE
vpcmpegb k1, zmmO, zmml ; comparaison
vmovdqu8 zmml {kl}, zmm2 ; remplacement des éléments de zmml

; par les éléments de zmm2
; suivant k1l

vmovdga 64 [ebx + ecx], zmml
kmovd ebp, kl ; partie basse de k1l dans ebp
kshiftrqg k2, k1, 32
popcnt ebp, ebp
add eax, ebp
kmovd ebp, k2 ; partie haute de k2 dans ebp
popcnt ebp, ebp
add eax, ebp
add ecx, 64
dec edx
jnz .for u64
Pop ebp
vzeroupper
.last_63:

[’AVX512 apporte un léger gain par rapport a 'AVX2 (cf. Résultats ci-apres).

14.

12 Tests de performance

Afin de tester les différentes versions que nous avons écrites, nous allons exami-
ner les résultats obtenus pour les méthodes suivantes :

b

0 ©® N ook W

10.

méthode de référence optimisée par le compilateur GCC avec option -02

méthode de référence optimisée par le compilateur GCC avec option -03 et
options de vectorisation en fonction de I'architecture

traduction en assembleur de la méthode de référence

traduction en assembleur de la méthode qui supprime le

amélioration de la version précédente

amélioration de la version précédente avec dépliage par 4 de la boucle
amélioration de la version précédente avec dépliage par 8 de la boucle
traduction en assembleur avec vectorisation en SSE2

traduction en assembleur avec vectorisation en SSE4.1

traduction en assembleur avec vectorisation en AVX2

. version intrinsics AVX2 optimisée par le compilateur

14.12. TESTS DE PERFORMANCE 365

14.12.1 Architectures anciennes (avant 2015)

Les résultats pour les architectures anciennes sont présentés Table 14.3. On note
que le compilateur g++ est capable, grace a I'option -03, d’optimiser la fonction de
référence de manieére trés importante. On avoisine, ou parfois on est en dessus de
la méthode SSE (méthode 8).

Les méthodes 4 a 7 qui suppriment le if diminuent le temps de calcul par un
facteur 2 méme si elles restent loin de ce que peut apporter la vectorisation avec
SSE.

Méthode Intel Intel AMD Intel

Pentium D Core 2 X6 i5

925 Q9300 1090T 3570K

2006 2008 2010 2012
1 ref_v1_02 224.64 170.22 131.86 110.89 140.27 103.54
2 ref_v1_03 29.86 11.80 5.47 9.11 4.23 2.56
3 asm 235.32 185.40 126.40 118.98 114.89 96.59
4 no_if_asm 133.48 98.36 67.72 52.67 48.67 41.62
5 no_if_opt_asm 9497 85.60 65.33 45.64 33.35 2595
6 no_if_opt_ur4_asm 70.15 87.67 51.68 38.16 2895 22.52
7 no_if_opt_ur8_asm 70.29 86.91 50.25 36.73 28.32 21.89
8 sse2_v1 27.64 9.37 584 11.75 4.49 3.66
9 sse4l - 9.25 5.72 - 4.42 3.73
10 avx2 - - - - - 1.86
11 avx2_intrinsics - - - - - 1.89
ratio (1 / 8 ou 10) 8.12 18.16 22.57 9.43 31.24 55.66

TABLE 14.3 — Architectures anciennes : temps d’exécution en secondes de la fonction de
Fitch avec 50_000 répétitions sur des chaines de 524 287 bases

On note enfin, sur I'Intel 4790, que le passage a 'AVX permet de diminuer par
deux le temps de calcul par rapport au SSE.

14.12.2 Architectures modernes (2015 a 2019)

Pour les architectures modernes (Table 14.4), on observe les mémes tendances.
On notera que la version AVX2 (méthode 10) est souvent plus performante que la
version intrinsics traduite par le compilateur (méthode 11).

Dans le cas de 'AMD Ryzen 5 3600, la traduction en assembleur avec jeu
d’instruction AVX2 permet d’atteindre 0, 79 secondes soit un facteur d’amélioration
de presque 131.

366 CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE

Marque Intel AMD Intel Intel
Gamme Corei3 Ryzen 7 Corei5 Corei7
Modele 6100 1700X 7400 8700
2015 2017 2017 2017
1 ref_v1_02 139.36 111.55 148.59 96.72 103.41 118.36
2 ref_vi_03 2.20 2.50 2.45 1.85 2.02 3.61
3 asm 104.56 106.52 110.79 84.37 101.56 123.00
4 no_if_asm 42.58 53.86 4542 34.68 47.03 4245
5 no_if_opt_asm 21.43 19.58 22.82 17.40 17.24 49.80
6 no_if_opt_ur4_asm 19.67 18.85 20.95 15.92 16.75 23.04
7 no_if_opt_ur8_asm 18.75 17.17 19.99 15.21 14.68 22.56
8 sse2_vi 3.58 3.59 3.52 2.70 3.16 4.30
9 sse4l 3.58 3.61 3.46 2.60 3.19 4.28
10 avx2 1.54 1.14 1.76 1.35 0.79 2.87
11 avx2_intrinsics 1.81 1.39 1.82 1.39 1.09 3.03
ratio (1 / 10) 90.49 97.85 84.42 71.64 130.89 41.24

TABLE 14.4 — Architectures modernes : temps d’exécution en secondes de la fonction de
Fitch avec 50_000 répétitions sur des chaines de 524 287 bases.

L’Intel Xeon Silver 4208 dispose du jeu d’instructions AVX512. Les résultats
obtenus sont les suivants :

e version de base AVX512:2.95 s
e amélioration avec dépliage par 8 et élimination des dépendances : 2.43 s
e version intrinsics : 2.34 s

Dans ce cas c’est la version intrinsics qui est la plus efficace.

14.12.3 Architectures récentes (2020 et apres)

Les résultats concernant les architectures récentes figurent Table 14.5). La
également, on note que ’AVX2 est tres bénéfique qu’il soit codé a la main ou écrit
sous une version intrinsics et permet de diviser par un facteur 2 le temps obtenu
avec le SSE.

Le cas de I'Intel 12400F est également remarquable. Avec une compilation en
-02, il se montre bien moins performant que lIntel i7 10850H et 'AMD Ryzen 5
5600G. Néanmoins, par la suite les résultats obtenus sont treés compétitifs pour les
méthodes 5,6 et 7 ainsi que les méthodes vectorielles (8 a 11).

14.13. CONCLUSION 367

N° Marque Intel Intel AMD
Gamme i7 i7 Ryzen 5

Modele 10850H 12400f 5600g
2020 2022 2021

1 83.50 104.50 91.38
2 1.85 1.69 1.98
3 79.75 100.53 82.38
4 27.44 44.54 29.31
S5 16.17 11.98 17.23
6 14.81 11.06 14.96
7 14.20 10.49 13.99
8 2.56 1.82 1.74
9 2.53 1.81 1.75
10 1.36 0.96 0.68
11 1.36 0.96 0.70

ratio (1 / 10) 61.39 108.85 97.85

TABLE 14.5 — Architectures récentes : temps d’exécution en secondes de la fonction de Fitch
avec 50_000 répétitions sur des chaines de 524 287 bases.

14.13 Conclusion

Dans cette étude de cas, la fonction de référence peut étre optimisée de maniere
spectaculaire par le compilateur en utilisant les options de compilation liées a
la vectorisation et le dépliage de boucle. Cependant nous voyons que la version
assembleur avec jeu d’instruction AVX2 écrite a la main (ou la version intrinsics)
sont les plus efficaces. Nous sommes bien entendu tributaires de la disponibilité
d’instructions liées a ce traitement comme pcmpeqb et pmovmskb. Enfin, on remar-
quera que l'utilisation de ’'AVX512 permet de grandement simplifier le codage du
traitement en raison de l'utilisation des registres de masque k1 et k2. Le traitement
est également encore plus simple et plus efficace a traduire en architecture 64 bits,
puisqu’on n’est pas contraint de réaliser le calcul du nombre de mutations en deux
fois 32 bits mais en une fois 64 bits. Gageons que I'implantation de 'AVX512 devien-
dra plus efficace dans les années a venir et deviendra deux fois plus performante
que 'AVX2.

368 CHAPITRE 14. ETUDE DE CAS MAXIMUM DE PARCIMONIE

14.14 Exercices

Exercice 49 - Réalisez un dépliage de la version SSE 4.1 par 4, puis par 8. Intégrez
votre code au projet et comparez les résultats obtenus aux méthodes existantes.

Exercice 50 - Réalisez un dépliage de la version AVX par 4, puis par 8. Intégrez
votre code au projet et comparez les résultats obtenus aux méthodes existantes.

Chapitre 15

Etude de cas
Compter les voyelles

15.1 Introduction

Nous allons dans ce chapitre nous intéresser a un probleme simple qui sert
d’exemple de démonstration et qui consiste a compter les voyelles dans une chaine
de caracteres. Ce probleme bien qu’évident a implanter demande de posséder les
connaissances que nous avons mises en avant dans les Chapitres 1 et 3. L'utilisation
des instructions vectorielles apporte également une amélioration substantielle sous
certaines architectures.

On considére pour ce probleme des chaines de carateres ne possédant que des
caracteres en minuscule sans accents ni signes de ponctuation afin de simplifier
I’écriture du code. On ne prend en compte que les voyelles (a, e, i, 0, u et y) et
on ne considere que des chaines de longueur multiple de 64 pour pouvoir utiliser
’AVX-512 et simplifier le code.

Nous allons coder en 64 bits afin de disposer de nombreux registres qui vont
grandement nous simplifier la tache.

15.2 Fonctions de référence

Nous pouvons concevoir trois fonctions de référence pour répondre au pro-
bléme :

e la premiéere fonction est écrite en utilisant des i, ce qui est normalement tres
pénalisant lorsqu’ils sont dans une boucle

e la seconde fonction utilise un qui est sensé pallier au probléeme de
performance du if

369

370 CHAPITRE 15. ETUDE DE CAS COMPTER LES VOYELLES

e enfin la troisieme fonction utilise un tableau afin d’éviter les branchements
conditionnels induits par le if ou le

La fonction réalisée avec un if est présentée Listing 15.2.1. Les fonctions auront
toutes la méme signature a savoir un pointeur sur une chaine de caracteres en C,
la longueur de la chaine et un pointeur sur un tableau de six entiers qui sont les
compteurs du nombre d’occurrences de chaque voyelle. Ici v[@] compte le nombre
de ’a’, v[1] le nombre de ’e’, etc. Cette fonction est pénalisante car on ne peut
pas prédire quel then sera exécuté et, de plus, si on trouve un ’y’ ou une consonne
on devra réaliser six comparaisons.

void count_if(u8 *s, u32 size, u32 v[6]) {
(u32 i=0@; i<size; ++i) {

(s[il == 'a") {

++v[0];
} (sfi] == 'e') {
++v[1];
} (s[i] == "i") {
++v[2];
} (s[il == '0") {
++v[3];
3 (s[i] == 'u") {
++v[4];
} (sfi] == "y") {
++v[5];
}
}
}
Listing 15.2.1 — Compter les voyelles avec un if
La fonction implantée avec un tente de remédier au probleme du if,

elle est présentée Listing 15.2.2. Son codage en assembleur par un compilateur
C/C++ génere un tableau de 25 adresses qui correspondent aux lettres "a’ a ’y’.
Ces adresses sont utilisées pour se brancher sur une partie du sous-programme qui
incrémente v[i] pour la voyelle correspondante ou qui incrémente la variable de
boucle s’il s’agit d'une consonne.

La fonction implantée avec un tableau (cf. Listing 15.2.3) consiste a compter
tous les caracteres. Etant donné qu’il y a 26 lettres dans I'alphabet on crée un
tableau temporaire (letters) de 26 entiers que l'on initialise a 0. L’écriture de
la boucle est donc simplifiée puisqu’on n’a plus qu'une seule instruction et que
le dépliage de la boucle sera facilement réalisé par le compilateur. Le tableau
temporaire composé de 26 entiers de 32 bits tient aisément dans la mémoire cache
et permettra d’accélérer le traitement. En fin de sous-programme, on recopiera
dans v le nombre d’occurrences de chaque voyelles.

O 0 N o LW N =

e e
N o= O

O N AW =

N e
v AW N = O

15.2. FONCTIONS DE REFERENCE 371

void count_switch(u8 *s, u32 size, u32 v[6]) {
(u32 i=0; i<size; ++i) {

(sfiD) {
'a': ++v[0O]; ;
'e': ++v[1]; ;
'i': ++v[2]; :
'o': ++v[3]; ;
'u': ++v[4]; ;
'y': ++v[5]; ;
}
}
}
Listing 15.2.2 - Compter les voyelles avec un switch

void count_letters(u8 *s, u32 size, u32 v[6]) {
u32 letters[26];
(u32 i=0; i<26; ++i) letters[i] = 0;

(u32 i=0; i<size; ++i) {
+t+letters[s[i]-'a'];

3

v[@] = letters['a'-'a']l;
v[1] = letters['e'-'a'];
v[2] = letters['i'-'a'];

v[3] = letters['o'-'a'];
v[4] = letters['u'-'a'];
v[5] = letters['y'-'a'];

Listing 15.2.3 — Compter les voyelles avec un tableau

Temps de référence

Le test de référence consiste a exécuter 50 000 fois le dénombrement du
nombre de voyelles pour une chaine de 256_000 caracteres, initialisée aléa-
toirement, avec environ 20 % de voyelles.

Sur un AMD Ryzen 5 3600, on obtient :

e pour la version if le test dure 57,09 secondes

e pour la version le test s’effectue en 54, 71 secondes
e et pour la version avec tableau, le temps d’exécution est de 4,64 se-
condes
L J

La méthode qui consiste a compter toutes les lettres est donc la plus efficace car
elle ne contient pas de conditionnelle et elle peut étre dépliée simplement.

R L 2

372 CHAPITRE 15. ETUDE DE CAS COMPTER LES VOYELLES

15.3 Traduction de la méthode du tableau en assem-
bleur

On peut traduire la méthode du tableau directement en assembleur mais nous
allons utiliser quelques améliorations liées a la vectorisation pour initialiser le
tableau de lettres.

On stockera le tableau letters dans la pile a une adresse multiple de 32 afin
de P'initialiser par la suite avec un registre AVX. Les conventions choisies sont celles
de la Table 15.1.

Variable Type Registre Description

s ug * rdi &s[i]
size u32/u64 rsi size

\ u32 * rdx &v[o]

i u32/u64 rcx i
u64 rbx adresse du tableau letters
u64 rax calculs temporaires
u32 r8 stockage temporaire de rdi
u32 ro compteur pour ’e’
u256 ymmo stockage de [0,0,...,0]

TABLE 15.1 — Associations variables C et registres pour compter les voyelles pour 'implanta-
tion avec tableau

15.3.1 Initialisation du tableau

On commence par sauvegarder le registre rbx dans la red zone car il ne doit pas
étre modifié et sera donc préservé dans la pile car il va stocker 'adresse du tableau
letters. Puis, on crée le tableau qui va occuper 26 x 4 = 104 octets, toujours
dans la red zone en faisant en sorte que son adresse de début soit multiple de 32
afin d’améliorer I'accés mémoire. L’adresse stockée dans rbx doit étre diminuée de
8 + 104 octets puisqu’on sauvegarde le contenu de rbx en premier dans la pile. On
met eax a 0 car on aura besoin d’utiliser la valeur O pour initialiser le tableau.

mov [rsp - 8], rbx
lea rbx, [rsp - (8 + 4x26)]
and rbx, ~(32-1) ; rbx multiple de 32
; en bas de la red zone
Xor eax, eax

Par exemple si rsp = 0xfdcf8, alors rsp - (8+4%26) = 0xfdc88, puis si on

[S B N O N [S B N O N

AW N R

15.3. TRADUCTION DE LA METHODE DU TABLEAU EN ASSEMBLEUR 373

arrondi au multiple de 32 inférieur (ligne 3). On obtient alors dans rbx la valeur
oxfdc8o.

I1 faut ensuite initialiser le tableau et on peut le faire de trois manieres diffé-
rentes, en utilisant :

e un registre 64 bits comme eax, affecté a O, et en initialisant le tableau dans
I'ordre des adresses croissantes, soit 13 affectations

e rep stosq

e un registre AVX de 32 octets affecté a 0

15.3.1.1 Initialisation par registre général

On utilise les macro-instructions de nasm pour initialiser I'ensemble du tableau
soit 26 x 4 octets divisés par la taille d’un registre 64 bits, soit 26 x 4/8 = 13 :

Xor rax, rax

%assign i O ; variable 1 = 0
Srep 13 ; répete 13 fois
mov [rbx + i], rax

%$assign i i + 8 ;1 =41 + 8
%endrep

15.3.1.2 Initialisation rep stosq

C’est le méme principe que précédemment mais on utilise stosq, il faut donc
fixer rax a 0, sauvegarder rdi temporairement (on utilise ici r8) et mettre dans rcx
ou ecx le nombre de répétitions :

Xor rax, rax ; rax 0

mov r8, rdi ; sauvegarde rdi dans r8
mov rdi, rbx ; rdi &letters[0]

mov ecx, 13 ; faire 13 fois

rep stosqg ;

movd rdi, r8 ; restaure rdi depuis r8

15.3.1.3 Initialisation par registre vectoriel AVX

On utilise ymmo qui permet de stocker 8 entiers 32 bits. On doit donc stocker
ce registre vectoriel trois fois, puis les deux derniers entiers sont mis a 0 grace au
registre rax :

vpxor ymmO, ymmO

vmovdga [rbx], ymmO ; letters[0: 7] =0
vmovdga [rbx + 32], ymmO ; letters[8:15] = 0
vmovdga [rbx + 64], ymmO ; letters[16:23] = 0

O 0 N o 1AW N =

e e e
w N = O

O N o 1 AW N =

e
w N = O

374 CHAPITRE 15. ETUDE DE CAS COMPTER LES VOYELLES

vzeroupper
mov [rbx + 96], rax ; letters([24:25] = 0

15.3.2 Boucle principale

On commence par vérifier si size est égale a 0, sinon on exécute la boucle. On
charge la lettre s[i] dans eax en la transformant en une valeur 32 bits grace a
movzx. On retranche alors la valeur de ’a’ pour obtenir I'indice de la lettre stockée
dans le tableau letters. Il peut-étre nécessaire de transformer cet indice en 64 bits
en utilisant I'instruction cdge mais normalement ce n’est pas nécessaire puisque
nous avons mis eax a 0 précédemment.

test rsi, rsi ; si size == 0 alors
Jjz .end while g aller en .end _while
xor rcx, rcx ; 1 =0

.while:
movzx eax, byte [rdi + rcx] ; eax = s[i]
inc rex ; ++i
sub eax, 'a' ; eax = s[i] - 'a'
cdge ; convertir en 64 bits
inc dword [rbx + rax * 4] ; ++letters|[s[i]-"a']
cmp rcx, rsi ; si1 1 < size alors
jne .while g aller en .while

.end_while:

On incrémente finalement letters[i] (ligne 10) puis on continue la boucle si
i est inférieur a size.
15.3.3 Sortie de fonction

La sortie de la fonction consiste a recopier le nombre d’occurrences de chaque
voyelle dans le tableau v.

mov r9, 'a'-'a' ; stocke le nombre d'occurrences
mov eax, [rbx + r9 « 4] ; de 'a' dans v[0]

mov [rdx], eax

mov r9, 'e'-'a' ; stocke le nombre d'occurrences
mov eax, [rbx + r9 * 4] ; de 'e' dans v[1]

mov [rdx + 4], eax

mov r9, 'i'-'a’ ; stocke le nombre d'occurrences
mov eax, [rbx + r9 * 4] ; de 'i' dans v[2]

mov [rdx + 8], eax

mov r9, 'o'-'a' ; stocke le nombre d'occurrences

14
15
16
17
18
19
20
21
22
23
24
25
26

15.3. TRADUCTION DE LA METHODE DU TABLEAU EN ASSEMBLEUR 375

mov eax, [rbx + r9 x 4] ; de 'o' dans v[3]

mov [rdx + 12], eax

mov r9, 'u'-'a' ; stocke le nombre d'occurrences
mov eax, [rbx + r9 x 4] ; de 'u' dans v[4]

mov [rdx + 16], eax

mov r9, 'y'-'a' ; stocke le nombre d'occurrences
mov eax, [rbx + r9 x 4] ; de 'y' dans v[5]

mov [rdx + 20], eax

mov rbx, [rsp - 8] ; restaure rbx

ret

On utilise ici le registre r9 pour représenter I'indice de chaque voyelle dans le
tableau et on récupere le nombre d’occurrences dans le registre eax. Le registre
rdx contient 'adresse du tableau v. A la fin de la fonction on restaure le registre
rbx qui avait été sauvegardé.

On notera qu’il est possible d’améliorer la fonction en remplacant rbx par r10
qui n’a pas besoin d’étre sauvegardé.

15.3.4 Dépliage par 4

La boucle principale peut étre dépliée par 4 ou 8. Deux possibilités s’offrent a
nous :

e soit on recopie le code de la boucle précédente quatre ou huit fois

e soit on charge s[i:i+3] dans eax puis on traite chacun des octets du registre
indépendamment comme suit :

.while ur4:

1

2 mov eax, [rdi + rcx] ; charge s[i:1i+3]
3 add ecx, 4 AL =

4

5 mMoVvzZx r8, al ; r8 = s[i]

6 shr eax, 8

7 movzx r9, al ; r9 = s[i+1]

8 shr eax, 8

9 movzx rl0, al ; rl0 = s[i+2]

10 shr eax, 8 ; eax = s[1+3]

11

12 sub eax, 'a' ; calcul des indices

13 sub r8, 'a'

14 sub r9, 'a'

15 sub rl0, 'a'

16

17 inc [rbx + rax * 4] ; incrément de occurrences

—
o]

inc [rbx + r8 * 4] ; de chaque lettre

376 CHAPITRE 15. ETUDE DE CAS COMPTER LES VOYELLES

19 inc [rbx + r9 * 4]
20 inc [rbx + rl0 * 4]
21

22 cmp ecx, esi

23 jl .while_ur4

24 .end _while_ur4:

Il faut bien évidemment déplier la boucle principale par quatre puis gérer les
dernieres itérations.

Amélioration traduction en assembleur

Pour la version basée sur un tableau des occurrences de lettres traduite en
assembleur le test s’exécute en 5,6 secondes en moyenne (4,85 s pour le
temps minimum, voir encadré ci-apres). Le meilleur temps de calcul sur AMD
Ryzen 5 3600 est donné par la version dépliée par 4.

|
.

Attention

Sur les microprocesseurs Intel le temps de calcul sur 10 itérations est sensi-
blement le méme. Par contre sur un AMD Ryzen 5 3600, on observe environ
7 a 9 exécutions de I'ordre de 4,8 a 5 secondes et 1 a 3 exécutions entre 7,
8, voire 14 secondes! Ce bug est également présent sur un Ryzen 7 1700X,
mais semble réglé sur Ryzen 5 5600G. Le probleme vient de l'utilisation d’une

instruction inc qu'’il est préférable de remplacer par un add.
L J

15.4 Vectorisation avec SSE

Il est possible d’envisager une version utilisant les registres SSE car le corps du
Listing 15.2.3 est facilement vectorisable.

L’association variables / registres est présentée Table 15.2. Nous utilisons 11
registres généraux (12 si on considere également rax pour des calculs temporaires)
et 12 registres SSE.

Les registres xmm8 a xmm13 contiendront s[i:i+15] et seront modifiés par les
calculs. Les registres xmm2 a xmm7 contiennent des vecteurs composés de voyelles et
ne seront pas modifiés. On comparera en paralléle xmm8 avec xmm2, puis xmm9 avec
xmm3, etc.

La premiere partie du code consiste a sauvegarder les registres rbx, r13, r14
qui vont étre modifiés et qui par convention doivent étre préservés pour le sous-
programme appelant. On sauvegarde ces registres dans la red zone.

mov [rsp - 16], rbx ; sauvegarde des registres
mov [rsp - 24], rl2
mov [rsp - 32], rl3

o N o L b

O 0 N o Ll W N =

[
- o

15.4. VECTORISATION AVEC SSE

Variable

S

size

Type
u8 =*
u32/u64
u32 *
u32/u64
u64
u32/u64
u32/u64
u32/u64
u32/u64
u32/u64
u32/u64
ul28
ul28
ul28
ul28
ul28
ul28
ul28

Registre Description

rdi
rsi
rdx
rcx
rbx
r8
r9
rio
rii
ri2
ri3
xmm8
xmm2
xmm3
xmm4
xmm5
Xmmé
xmm7

&s[i]

size

&v[o]

i

résultat popcnt
compteur pour ’'a’
compteur pour e’
compteur pour 7’
compteur pour ’0’
compteur pour 'u’
compteur pour’y’
xmm13 a s[i:i+15]

[’a’,...,’a’]
['e’,...,’e’"]
[’i’,...,’1i’1]
[’0’,...,’0"]
’u’,...,’u’]
Uy’ , ...,y]

377

TABLE 15.2 — Associations variables C et registres pour compter les voyelles pour la version

SSE

Xor
Xor
Xor
Xor
Xor
Xor

r8,
r9,
rlo,
rll,
rl2,
rl3,

r8

r9
rl0
rll
rl2
rl3

|
O O O O O o

On remplit ensuite chacun des registres xmm2 a xmm7 avec respectivement des
’a’, des ’e’, etc.

mov
movd
pshufd

mov
movd
pshufd

mov
movd

eax,
xmm2,
xmm2,

eax,
xmm3,
xmm3,

eax,
xmm7,

0x61616161
eax

xmm2, O
0x65656565
eax

xmm3, O
0x79797979

eax

4

4

4

ASCII (a)

ASCII (e)

ASCII(y)

0x61

0x65

0x79

12

O O N AW N -

NONONON NN NN B s kR s s e e e
S 6 1 B B N =2 S v ® 9 o wn AW O = O

28

a1 AW N =

378 CHAPITRE 15. ETUDE DE CAS

pshufd xmm7, xmm7, O

On passe ensuite a la boucle

COMPTER LES VOYELLES

. On lit les 16 octets a partir de &s[i] et on les

place dans xmm8. On recopie ensuite xmm8 dans xmm9 a xmm13 (lignes 5 a 10), puis

on passe aux comparaisons.

.for:
cmp ecx, esi ; fin de
jge .end_for
movdqu xmm8, [rdi + recx] ; xXmm8 =
movdqu xmm9, xmm8 ; xmm9 =
movdqu xmml0, xmm8 8
movdqu xmmll, xmm8
movdqu xmml2, xmm8
movdqu xmml3, xmm8 ; xmml3
; 'al’ ; trouv
pcmpegb xmm8, xmm2 ; compar
pmovmskb ebx, xmm8 ; xmm8.b
popcnt ebx, ebx ; compte
add r8, rbx ; ajoute
i e’
pcmpegb xmm9, xmm3
pmovmskb ebx, xmm9
popcnt ebx, ebx
add r9, rbx
add ecx, 16 ; 16 prochains c
jmp .for

.end_ for:

boucle si i >= size

s[1:1+15]
xmm8

= xmm8

er s[i:i+15] a ['a',...,'a"']
[i] OXFF si s[i] =

r le nombre de 'a'

r au compteur de

er 'a'
[
— = '3

'a'

aracteres

On compare xmm8 qui contient s[i:i+15] a xmm2 qui contient 16 fois le carac-

tére ’a’. Si xmm8b[i] ==

xmm2b[i] alors xmm8b[i] prendra la valeur @xFF, sinon il

prendra la valeur 0x00. On utilise ensuite I'instruction pmovmskb pour remplir le
registre ebx avec soit 0, soit 1 en fonction de xmm8b[1i]. Il suffit ensuite de compter

le nombre de bits a 1 dans ebx qui correspond
On réitére 'opération pour les autres voyelles.

au nombre de ’a’ dans s[i:i+15].

Enfin on met a jour le tableau v avec les valeurs des registres r8 a r13 puis on
restaure les registres sauvegardés dans la red zone et on quitte le sous-programme.

mov [rdx], r8d ; v[0] =
mov [rdx + 4], r9d ; vI[1l] =
mov [rdx + 8], rl0d 8

mov [rdx + 12], rlld

mov [rdx + 16], rlad

mov [rdx + 20], rl3d ; r[5] =

= r8d
= r9d

r13d

AW N =

O N AW N =

T S ey
= S vV ® N O U A W N = O

15.5. VECTORISATION AVEC AVX2 379

mov rl2, [rsp - 32] ; restauration des registres
mov rl3, [rsp - 24]

mov rbx, [rsp - 16]

ret

Amélioration SSE

Pour la version SSE le test s’exécute en 1, 59 secondes.

15.5 Vectorisation avec AVX2

On suit le méme principe que pour le SSE mais on va traiter la chaine par
paquets de 32 caracteres.

Pour remplir les registres AVX ymm2 a ymm7 avec les voyelles, on peut utiliser
dans ce cas l'instruction vpbroadcastd, comme suit :

; remplir le vecteur ymm2 avec [a,a,a,a,...]

mov eax, 0x61616161 ; 4 fois le code ASCII de 'a'
movd xmm2, eax ; charger dans xmm2.d[0]
vpbroadcastd ymm2, xmm2 ; recopier dans ymm2.d[1l] a ymm2.d[7]
Le code de la boucle est pratiquement identique :
.for:
cmp ecx, esi ; fin de boucle si i1 >= size
jge .end_for

vmovdqu ymm8, [rdi + rcx]
vmovdga ymm9, ymm8
vmovdga ymml0O, ymm8
vmovdga ymmll, ymm8
vmovdga ymml2, ymm8
vmovdga ymml3, ymm8

; 'aV

vpcmpegb ymm8, ymm2 ; comparaison

vpmovmskb ebx, ymm8 ; extraction

popcnt eax, ebx ; compter les bits = compter les 'a'
add r8d, eax ; ajouter au compteur de 'a'

add ecx, 32 2 Al = 5

Jjmp .for

.end_for:

O O N O AW N =

e e e N e e
0 N o A W N = O

O N o 1 AW N =

e
w N = O

380 CHAPITRE 15. ETUDE DE CAS COMPTER LES VOYELLES

Amélioration AVX2

Que l'on utilise 'AVX, 'AVX2 ou que l'on ajoute un dépliage par deux, le
temps d’exécution est de 0, 79 secondes.

15.6 Vectorisation AVX2 avec intrinsics

Il est nécessaire d’aider le compilateur afin d’optimiser le code en lui fournissant
des informations quant a l'utilisation des pointeurs (restrict) et 'alignement des
données. En fonction du compilateur, nous devons utiliser des fonctions ou des
mots-clés différents :

#include <xmmintrin.h>
#include <immintrin.h> // AVX

#include <smmintrin.h>

#ifdef INTEL COMPILER

void cv_avx2_ intrinsics (u8 * restrict s, u32 size, u32 v[6]) ({
felse
void cv_avx2_ intrinsics (u8 = s, u32 size, u32 v[6]) {
#endif

u32 i = 0;

#ifdef _ INTEL_COMPILER
__assume_aligned (s, CPU_MEMORY ALIGNMENT) ;
(1%CPU_MEMORY ALIGNMENT==0) ;

#endif
#if _ GNUC__ > 3

s = (u8 %) _ builtin_assume_aligned (s, CPU_MEMORY_ALIGNMENT) ;
#endif

On déclare ensuite les registres AVX nécessaires au calculs :
e les registres y2 a y7 contiennent les voyelles
e les registres y8 a y13 sont la copie de s[i:i+15]

__m256i y2, y3, y4, y5, y6, y7;
y2 = _mm256_setl_epi32 (0x61616161) ;
y3 _mm256_setl epi32 (0x65656565) ;

y4 = mm256_setl epi32(0x69696969) ;

()
()
()

14

y5 _mm256_setl_epi32 (0x6F6F6F6F
y6 _mm256_setl_epi32 (0x75757575
y7 = _mm256_setl_epi32 (0x79797979

’

14

(; 1 < (size & (~31)); i += 32) {
__m256i y8, y9, yl0, yll, yl2, y13;

y8 = _mm256_loadu_si256((__ m256i) &s[i]);

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

O N o LW N =

N e
AW N = O

15.6. VECTORISATION AVX2 AVEC INTRINSICS

y9 = v8;
yl0 = y8;
yll = y8;
yl2 = y8;
yl3 = y8;
y8 mm256_cmpeq epi8(y8, y2);

vI[0] :: _mm_popcnt_u32(_mm256_movemask epi8(y8));

v9

mm256_cmpeq epi8(y9, y3);

vi[l] := _mm_popcnt_u32(_mm256_movemask_epi8(y9));

y10

v[2]

yll

vI[3]

yl2

v[4]

yl3

vI[5]

= _mm256_cmpeq epi8(yl0, y4);

+= _mm_popcnt_u32(_mm256_movemask_epi8 (y1l0)

= _mm256_cmpeq epi8(yll, y5);

+= _mm_popcnt_u32(_mm256_movemask _epi8 (yll)

= _mm256_cmpeq epi8(yl2, y6);

+= _mm_popcnt_u32(mm256_movemask epi8 (yl2)

= _mm256_cmpeq epi8(yl3, y7);

+= _mm_popcnt_u32(_mm256_movemask epi8 (yl1l3)

)i

) ;

)i

) ;

381

Enfin, il reste a traiter les éventuels derniers 31 octets qui peuvent résulter du
dépliage par 32 caracteres de la boucle :

u32 letters[26];
memset (letters, 0, 26xsizeof (u32));

// last iterations

for (; i<size; ++i) {
++letters|[s[i] - 'a'];

}

v[0] += letters['a'-'a'];

v[l] += letters['e'-'a'];

v[2] += letters['i'-'a'];

v[3] += letters['o'-'a'];

v[4] += letters|['u'-'a'];

v[5] += letters['y'-'a'l];

Cette fonction intrinsics est celle qui est en moyenne la plus performante a

Pexécution.

O 0 N o AW N =

W W W W W NN NN NNNNNN R e e e e
A W N = O OV ©® N O A W N =R O OV ® N A W N = O

382 CHAPITRE 15. ETUDE DE CAS COMPTER LES VOYELLES

15.7 Vectorisation avec AVX512

Avec ’AVX512 on est en mesure de traiter 64 octets en une seule fois en stockant
les données dans les registres zmm. Le code est assez conséquent. On commence par
déplier la boucle par 64 et on traite les données grace aux masques apres avoir
réalisé la comparaison entre registres grace a vpcmpeqb :

; £fill xmm2 vector with 'a,a,a,a,..."

mov eax, 0x61616161
movd xmml, eax
vpbroadcastd zmml, xmml ; AVX512

; unroll by 64

mov rldd, esi
shr rldd, 6
test rldd, rldd
jz .last_63
.for u64:
vmovdga32 zmm8, [rdi + recx]
add ecx, 64

vpcmpegb kl, zmml, zmm8
vpcmpegb k2, zmm2, zmm8
vpcmpegb k3, zmm3, zmm8
vpcmpegb k4, zmm4, zmm8
vpcmpegb k5, zmm5, zmm8
vpcmpegb k6, zmmé6, zmm8

e Tt
7 a

kmovqg rbx, kl
popcnt rbx, rbx
add r8d, ebx
dec rlid

jnz .for u64

Reste ensuite a traiter les 63 derniers octets potentiels. S’il y a plus de 32 octets
a traiter, on traitera les 32 premiers octets en utilisant les registres AVX, puis s’il
reste plus de 16 octets a traiter on utiliser les registres SSE. Enfin, pour les 15
derniers caracteres on utilise la méthode du tableau (voir Section 15.2).

15.8. RESULTATS 383

15.8 Résultats

Nous donnons Table 15.3 les résultats comparatifs des méthodes que nous
avons évoquées pour un Intel i7 4900MQ ainsi que 'amélioration par rapport a la
méthode de référence qui correspond a 'implantation avec le

if 13,22 1
switch 17,22 x ~0.8
tableau 2,79 X ~ 4.7
vectorisation SSE 1,59 X ~ 8.3
vectorisation AVX2 0,79 x ~ 16.7

TABLE 15.3 — Résultats comparatifs des méthodes pour compter les voyelles

15.8.1 Architectures anciennes (avant 2015)

Pour certaines de ces architectures, ’AVX n’est pas disponible on se contente
donc du SSE pour la vectorisation. Nous avons rapporter les temps d’exécution des
méthodes suivantes :

ah L=

10.
11.
12.

13.

implantation en langage C utilisant un

implantation en langage C utilisant un

implantation en langage C utilisant un tableau
implantation assembleur de la méthode avec tableau

implantation assembleur de la méthode avec tableau avec dépliage de la
boucle par 4, version 1, on charge chaque octet dans eax

implantation assembleur de la méthode avec tableau avec dépliage de la
boucle par 4, version 2, on charge quatre octets dans eax en une seule fois
puis on les répartit dans r8, r9, r10

dépliage par 8 de la version 5

dépliage par 8 de la version 6

dépliage par 8 de la version 5 mais en supprimant les dépendances sur eax
vectorisation en assembleur avec jeu d’instructions SSE2

vectorisation en assembleur avec jeu d’instructions AVX

vectorisation en assembleur avec jeu d’instructions AVX2 (version 1) avec
dépliage par 2 de la boucle principale

vectorisation en assembleur avec jeu d’instructions AVX2 (version 3) avec
élimintaion des dépendances

384 CHAPITRE 15. ETUDE DE CAS COMPTER LES VOYELLES

Méthode Intel Intel Intel AMD Intel
Pentium D Core 2 17 X6 i5

925 Q9300 860 1090T 3570K
2006 2008 2009 2010 2012

1 Cif 79.19 62.44 43.63 39.43 38.04 27.49
2 C switch 126.15 102.51 57.28 47.88 54.41 39.72
3 C tableau 12.57 14.80 2991 21.91 8.37 6.36
4 tableau asm 3295 16.02 26.16 18.35 8.37 6.59
5 tableau asm ur4 vl 37.17 17.54 29.89 21.92 8.53 6.69
6 tableau asm ur4 v2 19.26 19.78 13.16 8.51 11.55 8.93
7 tableau asm ur8 vl 3248 16.61 27.50 18.38 7.37 5.64
8 tableau asm ur8 v2 19.25 21.60 13.04 837 11.48 8.89
9 tableau asm ur8 v3 3249 16.64 27.40 18.44 7.34 5.65
10 SSE2 17.58 8.95 3.59 4.27 4.25 3.61
11 AVX - - - - - 1.82
12 AVX2 vl - - - - - 1.82
13 AVX2 v3 - - - - - 1.82
14 AVX2 v2 ur8 - - - - - 1.82
15 AVX2 intrinsics - - - - - 1.14

ratio (1 / 10) 4.50 6.97 12.15 9.23 8.95 7.61

ratio (1 / 15) - - - - - 2411

TABLE 15.4 — Architectures anciennes : temps d’exécution en secondes pour 100 000
itérations sur des chaines de 256_000 caracteres.

14. implantation en langage C et intrinsics AVX2

Concernant les architectures anciennes (voir Table 15.4), on note que I'utili-
sation du switch (méthode 2) est pénalisante car elle dégrade les performances
par rapport a la méthode de référence. L'utilisation d’un tableau pour compter les
lettres (méthode 3) permet de fortement diminuer le temps d’exécution.

La traduction en assembleur de la méthode utilisant un tableau suscite quelques
commentaires. On en donne deux versions : la premiere estampillée v1 traite chaque
octet dans eax et la seconde v2 commence par charger quatre octets consécutifs
dans eax puis les répartit dans r8, r9, r10 par décalage de eax, puis on effectue la
conversion et I'incrémentation du nombre d’occurrences de la lettre correspondante
en utilisant ces registres.

Pour les architectures anciennes c’est la méthode v2 qui est la plus performante
(Pentium D, Q9300, i7 860, X6 1090T), puis a partir des Intel i5 3570k et i7 4790,
c’est la méthode v1 qui prend le dessus. On note également que le dépliage par 4 ou

15.8. RESULTATS 385

par 8 de la boucle n’a que peu d’influence de maniere générale sur la performance.

Cependant, c’est I'utilisation du SSE (méthode 10) qui apporte une amélioration
conséquente ainsi que l'utilisation de ’AVX pour I'Intel i7 4790 (méthodes 11 a 15).
Le compilateur C est d’ailleurs en mesure de produire un code bien plus optimisé
que celui écrit en assembleur (méthode 9).

15.8.2 Architectures modernes (2015 a 2019)

Pour les architecture modernes (Table 15.5), la tendance observée pour les
achitectures anciennes se confirme. L’utilisation de 'AVX et notamment sous sa
forme intrinsics (méthode 15) produit généralement les meilleurs résultats.

On note que I'Intel i3 6100, I'i5 7400 et le Xeon Silver 4208 sont bien moins
performants que leurs concurrents pour la méthode 1. Autre fait notable, les
processeurs AMD sont bien moins performants que les processeurs Intel quand on
passe a l'utilisation du (méthode 2). Sur 'AMD Ryzen 7 1700X, on passe
de 31 s a 56 s soit une augmentation de 80 % proche des 84 % d’augmentation
du AMD Ryzen 5 3600. Elle est inférieure a 30 % pour les processeurs Intel. On
peut donc supposer que la prédiction de branchement est moins bonne sur les
processeurs AMD que sur les processeurs Intel.

Pour les méthodes 5 a 9, on observe le fait que la version 1 est plus performante
que la version 2 et que le dépliage n’apporte qu'une tres légere amélioration. On
observe cependant pour ’AMD Ryzen 7 1700X un comportement assez étrange.

La vectorisation avec SSE ou AVX est plus performante que sur les architectures
anciennes. Pour ’AVX on obtient un facteur moyen d’amélioration d’environ 31 sur
toutes les architectures. Par contre, I'utilisation du SSE est plus intéressante sur les
processeurs AMD de type Ryzen que sur les processeurs Intel.

Le cas du Xeon Silver est particulier car il fait partie d’'un cluster pour lequel on
ne dispose que de gcc 8.4. On peut donc légitimement se demander si le codage
assembleur réalisé par le compilateur gcc est aussi efficace que dans la version 10.
L'utilisation de ’AVX2 permet d’obtenir une amélioration d’un facteur de pres de
33 par rapport a la méthode de référence.

Amélioration AVX512

L’'utilisation de ’AVX512 (cf. Table 15.6) sous forme intrinsics (voir le code
du projet) permet alors d’atteindre un temps d’exécution de 0,76 secondes,
soit un facteur d’amélioration d’environ 60.

Différentes implantations AVX512 ont été réalisées et la plus efficace est la
version écrite en assembleur avec un dépliage de la boucle par 8. Elle permet

d’atteindre 0,62 secondes, soit un facteur d’amélioration de 73.
q J

386 CHAPITRE 15. ETUDE DE CAS COMPTER LES VOYELLES

Intel Intel
Core i5 Corei7

7400 8700

2017 2017
1 Cif 35.89 31.33 38.19 29.33 29.95 45.47
2 Cswitch 47.23 56.33 50.35 39.72 55.31 55.75
3 C tableau 6.12 4.26 6.51 5.46 494 7.83
4 tableau asm 7.06 11.26 7.52 5.78 593 8.84
5 tableau asm ur4 vl 6.11 16.91 6.51 5.05 5.03 7.55
6 tableau asm ur4 v2 10.28 6.76 10.98 8.34 5.05 12.44
7 tableau asm ur8 vl 5.96 4.18 6.32 4.72 4.84 7.26
8 tableau asm ur8 v2 10.20 4.44 10.87 8.28 4.58 12.44
9 tableau asm ur8 v3 5.87 4.21 6.23 4.76 492 7.19
10 SSE2 3.89 2.12 4.16 3.16 2.08 4.86
11 AVX 1.95 1.20 2.08 1.58 1.07 241
12 AVX2vl 1.95 1.19 2.09 1.58 1.08 2.43
13 AVX2v3 1.95 1.17 2.08 1.58 0.91 242
14 AVX2 v2 ur8 1.96 0.94 2.08 1.58 1.00 2.44
15 AVX2 intrinsics 1.13 0.98 1.20 0.91 1.08 1.36
ratio (1 / 10) 9.22 14.77 9.18 9.28 14.39 9.35
ratio (1 / 15) 31.76 31.96 31.82 32.23 29.95 33.43

TABLE 15.5 — Architectures modernes : temps d’exécution en secondes pour 100_000 itéra-
tions sur des chaines de 256_000 caracteres.

Méthode Temps (s)

AVX512 asm v1 2.56
AVX512 asm v2 1.45
AVX512 asm v2 (dépliage par 8) 1.22
AVX512 C intrinsics 1.56

TABLE 15.6 — Intel Xeon Silver 4208 et AVX512 : temps d’exécution en secondes pour
100_000 itérations sur des chalnes de 256_000 caracteres.

15.8. RESULTATS 387

15.8.3 Architectures récentes (2020 et apres)

Intel Intel

Core i7 Core i5

10850H 12400f

2020 2022

1 Cif 24.37 23.87 27.97
2 Cswitch 35.14 43.75 35.87
3 Ctableau 4.71 3.90 3.66
4 tableau asm 5.42 4.02 4.93
5 tableau asm ur4 vl 4.72 3.97 4.19
6 tableau asm ur4 v2 7.78 4.07 7.17
7 tableau asm ur8 vl 4.52 3.55 3.52
8 tableau asm ur8 v2 7.74 4.23 7.61
9 tableau asm ur8 v3 4.45 3.50 3.48
10 SSE2 2.97 1.81 1.64
11 AVX 1.52 0.90 1.64
12 AVX2vl 1.50 0.91 1.61
13 AVX2v3 1.53 0.90 0.85
14 AVX2 v2 ur8 1.55 0.89 0.85
15 AVX2 intrinsics 0.92 0.84 0.84
ratio (1 / 10) 8.20 13.18 17.05
ratio (1 / 15) 26.48 28.41 33.29

TABLE 15.7 — Architectures récentes : temps d’exécution en secondes pour 100_000 itérations
sur des chaines de 256_000 caracteres.

Pour les architectures récentes dont les résultats figurent Table 15.7, la méthode
15 (version AVX2 intrinsics) est la plus efficace. On observe que les méthodes 6 et 8
donnent de mauvais résultats sur les microprocesseurs Intel. C’est aussi le cas sur
les microprocesseurs AMD mais de maniere moins significative.

Si le traitement initial durait une heure (méthode 1), le fait de passer a une
version vectorisée (méthode 15) sur un AMD Ryzen 5 5600g, permettrait d’abaisser
le temps d’exécution a 3600/28,41 = 126, 71, soit un peu plus de deux minutes.
Cela représenterait une amélioration drastique.

15.8.4 Influence du nombre de voyelles

On notera également que le nombre de voyelles influe sur le temps d’exécution.
Nous avons réalisé une étude simple qui consiste a faire varier le pourcentage de

388 CHAPITRE 15. ETUDE DE CAS COMPTER LES VOYELLES

voyelles que contient la chaine pour laquelle on compte les voyelles. On fait alors
varier ce pourcentage de 10 a 100 par pas de 10. Les résultats obtenus sur un AMD
Ryzen 5 3600 sont présentés Table 15.8. On travaille toujours sur une chaine de
256_000 caracteres et on réalise ici 100_000 fois le calcul.

Pourcentage Méthode 1 Méthode 2 Méthode 3

10 43.83 83.65 9.41
20 57.17 110.53 9.46
30 70.17 127.40 9.51
40 83.74 140.92 9.52
50 95.87 154.01 9.45
60 108.27 162.11 9.39
70 121.03 167.08 9.44
80 133.43 169.29 9.68
90 137.77 169.07 10.01
100 134.95 165.68 10.43

TABLE 15.8 — Influence du pourcentage du nombre de voyelles sur le temps d’exécution :
AMD Ryzen 5 3600

Pour I'ensemble des méthodes, le temps d’exécution augmente a mesure que le
nombre de voyelles augmente. Cela parait normal car au début, avec par exemple
10 % de voyelles, le code le plus souvent exécuté est celui lié aux consonnes. A
mesure que 'on augmente le nombre de voyelles on exécute moins souvent ce code
et plus souvent le code lié aux différentes voyelles. On est face a un probleme lié a
la prédiction de branchement. Cependant, pour la méthode 3 qui utilise un tableau,
on ne devrait pas voir le temps augmenter

15.9 Conclusion

Comme le montre cette étude de cas, un traitement banal, peut étre, s’il est
mal implanté, source de grands ralentissments pour le reste d'un programme. La
vectorisation apporte un facteur d’amélioration important en raison, d’une part, du
traitement de plusieurs octets simultanément, et d’autre part, de I'élimination du

Cet exemple est tres emblématique car le compilateur est incapable de vectoriser
le code. Or, c’est la vectorisation qui donne un gain substantiel, la version intrinsics
n’étant que la retraduction en C de la version assembleur. Passer du SSE a 'AVX,
puis a 'AVX512 permet a chaque fois de diminuer le temps d’exécution.

Chapitre 16

Etude de cas
Suite de Fibonacci

16.1 Introduction

Ce chapitre traite de 'implantation de fonctions qui permettent de calculer
les termes de la suite de Fibonacci. Léonardo Fibonacci était un mathématicien
italien (1175 - 1250) qui a contribué notamment a démocratiser la numérotation
indo-arabe. Il semblerait que la suite ait été découverte par des mathématiciens
indiens (Gopala 1133, Hemachandra 1150, Fibonacci 1202) et qu’elle fut ensuite
attribuée a Fibonacci dans le monde occidental. La suite qui prend donc son nom
est une suite d’entiers naturels construite en calculant la somme des deux termes
précédents et est définie de maniere récursive comme suit :

FO — O
Fr =1
Fn = Fn—l +Fn—2

Les premiers termes de la suite sont donc: 0,1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, 233, 377, 610, 987, 1597, 2584, 4181.

La suite de Fibonacci posséde de nombreuses propriétés mathématiques singu-
lieres ainsi que des ramifications dans le domaine du vivant (choux romanesco,
pomme de pin), ou de la dynamique des populations. La suite de Fibonacci est éga-
lement liée au nombre d’or ¢ qui s’exprime par (1 + 1/5)/2 ~ 1,618033. Le nombre
d’or est qualifié de divine proportion car nombre de choses dans la nature sont liées
a cette valeur. A mesure que I'on calcule les termes de la suite de Fibonacci, le ratio
F,11/F, tend vers ¢.

389

390 CHAPITRE 16. ETUDE DE CAS SUITE DE FIBONACCI

16.1.1 Dynamique des populations

On considére des couples de lapins qui sont a maturité sexuelle, que 'on notera
S, et qui peuvent se reproduire pour générer un nouveau couple de lapins qui, lui,
n’est pas a maturité sexuelle et que 'on notera N. Les couples qui ne sont pas a
maturité sexuelle doivent attendre avant de parvenir a maturité et pourrons alors
se reproduire. L’évolution d’une population est donc la suivante :

e au temps ¢ = 0, il n’y a aucun couple
e autemps ¢ = 1, on a un couple qui n’est pas a maturité sexuelle
e au temps ¢ = 2, on a un couple parvenu a maturité sexuelle

e au temps t = 3, on a deux couples : un couple a maturité sexuelle, un couple
issu de la reproduction du couple a maturité et qui n’est donc pas a maturité
sexuelle

e au temps ¢t = 4, on a trois couples : deux couples a maturité sexuelle et un
couple non mature

e ctcC

On a reproduit I’évolution de la population Table 16.1.

Temps Couples Nbr. Couples

t=0 0 0
t=1 N 1
t=2 S 1
t=3 SN 2
t=4 SNS 3
t=5 SNSSN 5
t=6 SNSSNSNS 8

TABLE 16.1 — Evolution d’une population de lapins selon Fibonacci

Du point de vue de l'informatique, on peut voir cette évolution comme un
systeme de réécriture :

N — S
S — SN

Du point de vue de la biologie, la suite de Fibonacci est en rapport avec la
phyllotaxie des plantes, c’est a dire, 'organisation en spirale des organes autour
d’une tige. On remarque que pour un nombre important de plantes, estimé a 90%,
le nombre d’organes dans une spirale suit trés souvent une progression proche
des rapports de la séquence de Fibonacci. Il en résulte que ces organes émergent

N o AW =

16.2. RECURSIVITE 391

souvent a des angles de 137,5 degrés ce qui permet a chaque organe de recevoir
une quantité optimale de lumiére du soleil en évitant les chevauchements ce qui
conduit a favoriser la photosynthése.

Nous n’entrerons pas dans de plus amples considérations puisque ce qui nous
intéresse est I'implantation de cette fonction sous une forme particuliere. Pour
terminer, nous dirons que la suite de Fibonacci fait partie de I'encyclopédie en ligne
des suites de nombres entiers OEIS (On-Line Encyclopedia of Integer Sequences).
Elle est présente sous I'identifiant AOO0045. En informatique, la suite de Fibonacci
possede des applications liées a la génération des nombres aléatoires, aux arbres
AVL' (qui sont des arbres de recherche dits automatiquement équilibrés) ou aux
structures de données du méme nom (Fibonacci Heap).

16.2 Récursivité

Le code de la fonction de Fibonacci récursive est donné Listing 16.2.1.

u32 fib_rec(u32 n) {
(n<=1) {
n;
} {
fib_rec(n-1) + fib_rec(n-2);

Listing 16.2.1 — Fibonacci - fonction récursive

Si on réalise quelques tests de performance, on s’apercoit rapidement que le
nombre d’appels récursifs devient prohibitif (voir Table 16.2, ci-apres) et la fonction
devient de moins en moins efficace. Par exemple sur un AMD Ryzen 5 5600g dont
la fréquence de fonctionnement en mode boost est de 4440 MHz, Fyy, Fy5 et Fiyg
s’exécutent respectivement en 1.685, 2.559 et 4.365 secondes.

Comme on peut s’en rendre compte Table 16.2, colonne fib_rec, le nombre
d’appels récursifs est proportionnel a ¢, le nombre d’or. Il tend vers 1,447214 x ¢™
a mesure que n tend vers co. Notons que 1,447214 ~ 1 + 1//5.

Il existe cependant une autre implantation récursive mais qui se base sur les
propriétés suivantes. Elle permet de casser la complexité initiale du probleme. Le
code correspondant est donné Listing 16.2.2 :

P sin est pair, k=n/2, F,=2x Fy_1+ Fy) x Fy,
"\ sinestimpair, k= (n+1)/2, F,=(F},+F?)

1. Adelson-Velsky and Landis

O 0 N o 1AW N =

e N e
o v A W N = O

392 CHAPITRE 16. ETUDE DE CAS SUITE DE FIBONACCI

F; fib_rec fib_rec_improved
Fy 177 15
F 21891 31
Fos 242785 41
Fs 2692537 45
Fs5 29860703 55
Fy 331160281 63
Fy; 3672623805 75

TABLE 16.2 — Nombre d’appels des fonctions récursives de Fibonacci

A chaque étape on calcule k& = n/2, puis il faut évaluer Fj, et Fj,_;. On termine
la récursion dés que n vaut 0 ou 1.

u32 fib_rec_improved(u32 n) {
(n<=1) n;
(n%2==1){
int k = (n+1) >> 1;
int f1 = fib_rec_improved(k - 1);
int f2 = fib_rec_improved(k);
(f1 = f1 + f2 x f2);

int k = n >> 1;
int f1 = fib_rec_improved(k - 1);
int f2 = fib_rec_improved(k);

(2 x f1 + f2) * f2;

Listing 16.2.2 — Fibonacci - fonction récursive améliorée

Pour la version récursive améliorée, le nombre d’appels récursifs est nettement
plus petit et d'une complexité en O(n) comme on peut le constater Table 16.2,
colonne fib_rec_improved.

Nous donnons, Figure 16.1, un exemple du calcul de Fi3, en utilisant la formule
de réccurrence améliorée.

16.3 Formule avec nombres flottants

On peut calculer F,, en utilisant 'arrondi de I'expression suivante :

16.4. VERSION DE REFERENCE EN C 393

(13"2+8"2) (2x1+2)x2 (2x0+1)x1

F13 ;6 F2 FO,
233
! F1
1
(1r2+172) F3 F1 1
2
F2 FO 0
(272+312) (12+172) 1 F1
13 F7) F3 F1 1 1
F2 FO
1 0
(2x1+1)x1 F4 F1 FO Fl 1
3 1 0
F1
1F2 1

FIGURE 16.1 — Calcul de F3 avec la version récursive améliorée.

1

~ n —_

F, ~¢" x 7
Le temps de calcul du test que nous réaliserons et qui est décrit ci-apres est
de l'ordre de 22, 58 secondes. Nous ne nous intéresserons donc pas aux temps de
calculs obtenus grace a cette formule méme s’il sont parfois inférieurs a d’autres
implantations notamment la traduction directe (sans optimisation) en assembleur

de la fonction de référence qui s’exécute en plus de 50 secondes.

16.4 Version de référence en C

La version de référence a laquelle nous allons nous intéresser (voir Listing 16.4.1),
est une variante de la version récursive. Elle est a la fois récursive puisqu’elle s’ap-
pelle, mais également linéaire puisque seulement n appels seront réalisés.

Elle prend en parametres la valeur du nombre a calculer n ainsi que Fj et F}
représentés respectivement par fo et f1. L’appel est réalisé en prenant fo = 0 et
fi=1.

Cette fonction de référence est traduite par le compilateur g++ en utilisant les
options de compilation suivantes :

e -03 (Optimisation niveau 3)
e —funroll-loops (dépliage de boucle)

Le compilateur parvient a éliminer la récursivité et produit une version tres
performante. Il transforme la récursivité en une boucle avec un dépliage
par 8. De plus, il utilise esp plutot que ebp pour récupérer les parametres de la
fonction.

394 CHAPITRE 16. ETUDE DE CAS SUITE DE FIBONACCI

u32 fib_ref(u32 fo, u32 f1, u32 n) {
(n==0) {
fo,
3 {
fib_ref(f1, fo + f1, n - 1);

3

u32 r = fib_ref(@, 1, n);

Listing 16.4.1 — Fibonacci - fonction de référence

Temps de référence

Le test de référence consiste a réaliser 500_000_000 fois le calcul de F}3. Les
tests sont réalisés sur un AMD Ryzen 5 5600g. Pour I'implantation par le
compilateur g++, 'exécution dure environ 2, 853 secondes, ce qui représente
un temps d’exécution trés performant qui va se révéler difficile a battre, mais

a ceeur vaillant, rien d’impossible.
\ J

16.5 Versions assembleur de la fonction de référence

La traduction de la fonction de référence en assembleur est facile a réaliser. Un
rapide examen permet de déterminer qu’il est intéressant de charger f@ dans eax
puisque c’est la valeur qui sera retournée dans le cas ou la variable n est égale a 0.
On utilise également edx pour stocker f1 et ecx pour n (voir Listing 16.5.1). Ainsi,
nous n’utilisons que des registres modifiables d’apres les conventions d’appel en 32
bits.

On peut mettre en commentaire la ligne 19 qui remonte le sommet de pile en
libérant les parametres passés lors de I'appel récursif car la ligne 23 rétablit esp a
sa valeur d’origine.

Version assembleur de la fonction de référence

La version de référence implantée en assembleur (il s’agit d’'une traduction

directe) s’exécute en 50,630 secondes ce qui est énorme par rapport a la
version optimisée par le compilateur.

On peut donc se demander si c’est 'accés mémoire qui est la cause de ce
ralentissement (cf. partie résultats pour I'explication) .

O 0 N o AW N =

T
S © ® N o A W P = O

21
22
23

25

16.6. VERSIONS AXEES SUR LES TABLEAUX 395

fib_v1:
push ebp
mov ebp, esp
mov eax, [ebp + 8]
mov edx, [ebp + 12]
mov ecx, [ebp + 16]
test ecx, ecx
jz .endif
dec ecx
push ecx
add eax, edx
push eax
push edx
call fib_v1
; add esp 12
.endif:
mov esp, ebp
pop ebp
ret
Listing 16.5.1 —

; eax <- f0o
; edx <- f1
; ecx <- n

; eax <- fO+f1

; 1

Fibonacci - fonction de référence en assembleur

Versions axées sur les tableaux

Pour calculer les nombres de la suite de Fibonacci, on peut utiliser un tableau
de n + 1 entiers et on commence par remplir les deux premiers éléments par les
valeurs 0 et 1 qui correspondent a Fj et F;. Chaque élément d’indice i du tableau
correspond a la valeur de F;. On applique ensuite la formule de récurrence sur les
éléments du tableau. Le Listing 16.6.1 montre comment procéder.

Version tableau

La version basée sur un tableau dynamique alloué a chaque appel de la

fonction prend 13,790 secondes pour s’exécuter. Alors que si on utilise un
tableau statique le temps d’exécution passe a 6, 380 secondes.

La version avec tableau dynamique est moins performante car on fait de nom-
breux appels aux fonctions systeme malloc et free. Le temps est doublé par rapport
a la fonction avec tableau statique.

O 0 N o AW N =

e e
v A W N = O

O 0 N o 1 AW N =

396 CHAPITRE 16. ETUDE DE CAS SUITE DE FIBONACCI

u32 fib_array(u32 fo, u32 f1, u32 n) {

(n <=1) n;
datal[0] = fo;
data[1] = f1;

us2 i = 2;
(1<=n) {
datal[i] = data[i-1] + data[i-2];
++1;
}
datal i-1 1;
}
Listing 16.6.1 — Fibonacci - fonction itérative avec tableau

16.7 Versions itératives

Nous allons a présent nous concentrer sur des versions itératives et remplacer
I'appel récursif par une boucle mais nous allons nous passer de l'utilisation
d’un tableau pour stocker les calculs intermédiaires. Ces calculs seront réalisés
dans les registres eax et edx principalement. Le code C correspondant a cette
modification figure Listing 16.7.1.

u32 fib_iterative(u32 f@, u32 f1, u32 n) {
(n!=09) {
int tmp = f1;
f1 += fo;
fo = f1;
e

’

fo;

Listing 16.7.1 — Fibonacci - fonction itérative avec boucle while

Sin est égal a 0, on retourne 0, donc 0. Sinon on calcule Fj, puis F», jusqu’a
F,. La variable fo devient f1 et f1 devient f1 + f0, c’est a dire F,. Pour faire ce
transfert de valeurs il est nécessaire d’utiliser une variable temporaire tmp.

On peut traduire ce code directement en assembleur (voir Listing 16.7.2) en
utilisant le registre ebx pour stocker temporairement la valeur de f1. On se doit
alors de sauvegarder ebx dans la pile, puis de le restaurer par la suite.

Chaque itération de la boucle est alors composée de trois instructions
assembleur (lignes 14 a 16) du Listing 16.7.2.

16.7. VERSIONS ITERATIVES 397

1 fib_v3:
2 push ebp
3 mov ebp, esp
4 push ebx
5
6 mov eax, [ebp + 8] ; f0
7 mov edx, [ebp + 12] ; f1
8 mov ecx, [ebp + 16] ; n
9
10 test ecx, ecx
1 jz .end
12
13 .while:
14 mov ebx, edx ; tmp = f1
15 add edx, eax ; f1 =11+ fo = f2, f3, ...
16 mov eax, ebx ; TO0 = tmp = f1, f2,
17
18 dec ecx 2 ==
19 jnz .while
20 .endwhile:
21
22 .end:
23 pop ebx
24 mov esp, ebp
25 pop ebp
26 ret
Listing 16.7.2 - Fibonacci - fonction itérative avec while en assembleur

Version itérative avec while

La version itérative avec while ne prend alors plus que 6, 30 secondes pour
s’exécuter. Il s’agit d'une bonne amélioration mais qui reste encore loin de la
version traduite par le compilateur. On peut alors déplier la boucle par 2, 4
ou 8. On obtient les temps d’exécution suivants :

e dépliage par2:5,26 s
e dépliage par4:3,54 s
e dépliage par 8 : 3,47 s

Les dépliages par un facteur 4 ou 8 semblent donc les plus performants.
\ J

16.7.1 Astuce

On peut s’apercevoir que le corps de la boucle while peut étre optimisé. Au lieu
de coder :

398 CHAPITRE 16. ETUDE DE CAS SUITE DE FIBONACCI

mov ebx, edx
add edx, eax
mov eax, ebx

on peut utiliser les deux instructions suivantes :

add eax, edx ; eax = fO0 + f1, edx = fl
xchg eax, edx ; échange des registres

Initialement eax contient Fj et edx F}. La premiére addition revient a mettre
F, dans eax, puis on échange les valeurs contenues dans les registres. Au final eax
contient I} et edx contient F,.

On gagne alors une instruction et on n’est pas forcé d’utiliser un registre comme
ebx qui nécessitait d’étre préserve.

Version itérative avec while et astuce

Malheureusement, cette amélioration ne s’avere pas forcément tres bénéfique
pour notre traitement par rapport a la solution précédente puisqu’elle donne
a peu pres les mémes temps d’exécution, sauf pour le dépliage par 2.

e sans dépliage : 6,304 s
e dépliage par 2 : 3,608
e dépliage par 4 : 3,500
e dépliage par 8 : 3,497

16.7.2 Amélioration lors du dépliage

Lors du dépliage, on répete plusieurs fois le code du corps de la boucle ,
ce qui va représenter 4 instructions avec le code de base ou 2 instructions avec
I'astuce évoquée précédemment.

En fait, on peut trouver une amélioration qui consiste a écrire :

add eax, edx
add edx, eax

En effet, si on considére que eax contient F; et edx F; ; alors le résultat de la
premiere instruction d’addition est F;,, dans eax, puis F; 3 dans edx

a1 A W N =

16.7. VERSIONS ITERATIVES 399

Instruction / Registre eax edx

initialement F, Fi
add eax, edx Fio Fiy
add eax, edx Fio Fiis3

TABLE 16.3 — Astuce dépliage par 2

Version itérative avec while et amélioration du dépliage

En utilisant cette amélioration, on diminue le temps d’exécution :
e dépliage par 2 : 3,755
e dépliage par 4 : 3,544
e dépliage par 8 : 2,453

Le code correspondant est donné Listing 16.7.3 pour un dépliage par 8.

On commence par définir deux macro-instructions afin de ne pas réécrire le
code entierement. La premiere nommée swap_1 calcule F;,; alors que la seconde
swap_2 calcule F; .

On charge les parametres dans les registres (lignes 17 a 19), puis on teste si n
est égal a 0. Dans ce cas on sort de la fonction avec eax qui contient Fj.

On calcule ensuite le nombre d’itérations du dépliage par 8 (ligne 24). Si celui-ci
est égal a 0, c’est que la valeur de n est comprise entre 1 et 7. On se déplace donc
(ligne 25) vers une boucle qui traite ces dernieres itérations.

Apres la boucle de dépliage par 8 (Lignes 27 a 32), on recharge dans ecx la
valeur de n et on recalcule le nombre d’itérations restantes (lignes 35 et 36). Si
ce nombre est égal a 0, on sort de la fonction car eax contient F,,. Sinon on traite
comme indiqué précédemment les derniéres itérations.

16.7.3 Amélioration des derniéres itérations

Le dépliage par 8 semble étre le plus efficace, mais lors des dernieres itérations
qui peuvent varier entre 1 et 7, il est préférable d’utiliser un afin d’améliorer
I'efficacité de la fonction plutét que faire une boucle . La partie de code qui
différe est présentée ci-apres.

16
switch_ jumps table: dd ..Qcase_0, ..@case_1, ..Qcase_2
dd ..@case_3, ..@case_4, ..(Qcase_5
dd ..Qcase_6, ..Qcase_ 7

; code précédent

’

O O N o 1 AW N =

A A D D D DN BN WOW W W W W W W W WNNNNNNNN NN R R e e e
A L1 AW N O H O VO N A WN R O VO ®N R W R O VO N AW = O

400

%»macro swap_

add
xchg
%endmacro

%»macro swap_

add
add
%endmacro

fib_v13:
push
mov

mov
mov
mov

test
jz

shr
jz

.while_ur8:
swap_2
swap_2
swap_2
swap_2
loop

.last_7:
mov
and

jz

.while:
swap_1
loop

.end:
mov
pop
ret

10
eax,
eax,
20

eax,
edx,

ebp
ebp,

eax,
edx,

ecx,

ecx,
.end

ecx,

CHAPITRE 16. ETUDE DE CAS

e
e

e
e

e

L

[ebp + 12] ;
[ebp + 16] ;

e

3

dx
dx

dx
ax

sp

ebp +

CX

.last_7

’

’

eax=f0
eax=f2
eax=f4
eax=f6

; eax=f8

.while_urs8

ecx, [ebp + 16]

ecx, 7

.end

.while

esp, ebp

ebp

Listing 16.7.3 —

.while ur8
swap_2
swap_2

’

’

’

eax=f0
eax=f2=f0+f1
eax=f1

eax=f0
eax=fQ+f1=f2
edx=f2+f1=f3

; fo

f1

/ 8

edx=f1
edx=f3
edx=f5
edx=f7
edx=f9

edx=f1

edx=f2

edx=f1

SUITE DE FIBONACCI

Fibonacci - fonction itérative avec while et amélioration du dépliage

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

O N AW N =

- e e e
A W N = O

16.7. VERSIONS ITERATIVES 401

swap_2
swap_2
loop .while_ur8
.last_7:
mov ecx, [ebp + 16] ; n
and ecx, 7
jmp [switch_jumps_table + ecx *» 4]
align 16 ; switch
.@case_7: swap_1
.@case_6: swap_1
.@case_5: swap_1

.Qcase_4: swap_1
.@case_3: swap_1

.@case_2: swap_1
.@case_1: swap_1
.Qcase_0:

.end:

Il est nécessaire de définir une table d’adresses qui correspond aux différents
case (cf. Section 5.4.10).

Version itérative avec while, amélioration du dépliage et switch

En ajoutant un switch, on obtient un temps d’exécution de 2, 58 secondes
donc un peu moins performant que la version précédente.

16.7.4 Amélioration avec esp

Plut6t que d'utiliser ebp pour récupérer les arguments de la fonction, on utilise
directement esp. Le premier parametre f@ est donc en [esp+4] car [esp] contient
I'adresse de retour du sous-programme.

fib:

mov eax, [esp + 4] ; fO
mov edx, [esp + 8] ; fl
mov ecx, [esp + 12] ; n
test ecx, ecx

jz .end

shr ecx, 3 ; /8
jz .last_7

4

14

suite de la fonction

O N U AW N =

e e N
0w N o A W N = O

402 CHAPITRE 16. ETUDE DE CAS SUITE DE FIBONACCI

Version itérative avec while, amélioration du dépliage, switch, esp

En éliminant tout ce qui touche a ebp, notamment I'entrée et la sortie de la
fonction, on exécute la fonction en 2, 298 secondes.

16.7.5 Amélioration du dépliage par 8
Lors du dépliage par 8, lorsque 'on exécute 4 fois les instructions

add eax, edx
add edx, eax

on génere de nombreuses dépendances. On peut alors tenter de supprimer des
dépendances en utilisant I'instruction lea comme sur le code suivant :

.while urS8:

8 eax edx ebx

g X

i Y ?
add eax, edx ; X+y y
add edx, eax g Xty X+2y
lea ebx, [eax + edx] 8 X+y X+2y 2x+3y
lea eax, [ebx + edx] ; 3x+5y X+2y 2x+3y
lea edx, [eax + ebx] ; 3x+by 5x+8y 2x+3y
lea ebx, [eax + edx] ; 3x+5y 5x+8y 8x+13y
lea eax, [ebx + edx] ; 13x+21y 5x+8y 8x+13y
lea edx, [eax + ebx] ; 13x+21y 21x+34y 8x+13y

loop .while ur8

Version itérative avec while, amélioration du calcul interne, switch, esp

Le test d’efficacité ne met alors plus que 2,229 secondes pour s’exécuter.

Méme si on a encore des dépendances entre les registres, il se peut que
I'instruction lea soit plus performante que add.

16.8. VERSIONS VECTORIELLES 403

16.8 Versions vectorielles

16.8.1 Version SSE

On peut reprendre le méme principe que la boucle en utilisant les registres
vectoriels. On commence par charger dans le registre SSE xmm@ les premiéres valeurs
de la suite de Fibonacci et on fait de méme avec xmm1 avec un décalage d'un élement.
Il s’agit des tableaux de données sse_vect® et sse_vect1 du Listing 16.8.1. On
n’aura donc plus besoin des parametres 0 et f1.

Il est généralement préférable d’aligner ces données sur une adresse multiple de
16 octets, c’est a dire la taille d’un registre SSE. On peut alors utiliser movdqa pour
charger les données dans xmm@ et xmm1. On peut stocker ces données au niveau de
la section des données (.data) ou de la section de code (.text).

Puis pour effectuer un dépliage par 4, on réalise la série d’opérations des lignes
15 a 18 du Listing 16.8.1.

Instruction xmmO xmm1

initialement F3, F,, Fi, Fy F4, F3, F5, Fy
paddd xmm@, xmm1 F'5, Fy, Fs5, Fy F4, F3, Fy, F
paddd xmm1, xmm@ F5, Fy, Fs, I5 F6, I5, Fy, F;
paddd xmm@, xmml1 F7, Fg, Fs, Iy, F6, F5, Fy, F3
paddd xmm1, xmm@ F'7, Fy, Fs, Fy, F8, F%, Fg, F5

TABLE 16.4 — Evolution du contenu des registres vectoriels

Il est nécessaire de réserver de I'espace dans la pile (ligne 11) afin de stocker
le résultat final contenu dans xmm@. Les trois dernieres itérations potentielles sont
traitées a partir de la ligne 23. Ici, il n’est nul besoin de réaliser un puisque
le registre xmm@ contient F;, F;,1, Fj o, F; 3. On stocke donc au niveau de la pile le
contenu du registre et on récupere I'élément voulu en utilisant eax qui contient,
depuis la ligne 10, le nombre d’itérations restantes apres dépliage.

16.8.2 Version AVX

La version AVX consiste a faire un dépliage par 8 de la boucle car un
registre AVX stocke 8 entiers. Comme le montre le Listing 16.8.3, on utilise des
instructions AVX qui commencent par la lettre v. On aligne également les données
sur une adresse mémoire multiple de 32 octets.

O 0 N o AW N =

e
w N = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27

404

16
sse_vect0:
sse_vect1:

fib_sse:
mov
movdga
movdga
mov
and
sub
shr
jz

.while_ur4:
paddd
paddd
paddd
paddd

dec
jnz

.last_3:
vmovdqu
mov
add
ret

CHAPITRE 16. ETUDE DE CAS SUITE DE FIBONACCI

1, 2 ; Fo, F1, F2, F3
dd 1, 1, 2, 3 ; F1, F2, F3, F4

ecx, [esp+12]
xmmo, [sse_vectO]
xmm1, [sse_vectl]
eax, ecx
eax, 3
esp, 16 ; espace pour stockage du résultat
ecx, 2 ; /4
.last_3
; dépliage par 4
Xmmo, xmm1
xmm1, xmmo@
Xmm@, xmm1
xmm1, xmmo

ecx

.while_ur4

[esp], xmm@ ; stockage du résultat
eax, [esp + eax * 4]
esp, 16

Listing 16.8.1 - Fibonacci - fonction itérative vectorielle

Version vectorielle SSE

En utilisant les registres vectoriels on obtient les temps d’exécution suivants :
e version SSE intrinsics (méthode 26) : 2,393 s
e version SSE assembleur (méthode 27) : 2,008 s

e version SSE assembleur améliorée avec dépliage par 8 (méthode 30) :
1,961s

e version AVX intrinsics (méthode 32) : 2,471 s
e version AVX assembleur dépliage par 8 (méthode 33) : 1,982 s
e version AVX assembleur dépliage par 16 (méthode 34) : 1,973 s

16.9 Résultats

Le code qui correspond a ’ensemble des résultats produits dans cette section
comporte 34 implantations différentes. Voici résumé les caractéristiques des implan-

O 0 N oy 1AW N =

T
£ W N =B S VW ® N O A W N = O

16.9. RESULTATS

405

#tdefine ALIGN(x) __attribute__((aligned(x)))

u32 sse_v0O[4] ALIGN(16)
u32 sse_v1[4] ALIGN(16)

{eo, 1,1, 2}
{1, 1,2, 3}

u32 fib_iter_sse(u32 f@, u32 f1, u32 n) {

u32 v2[4] ALIGN(16);
vfo, vfi;

vfo = _mm_load_si128((
vfl = _mm_load_si128((

u32 r = n

/ 4;
(r) {

*) &sse_vO);
*) &sse_vl);

vfo = _mm_add_epi32(vfo, vfl);
vfl = _mm_add_epi32(vfo, vf1);
vfo = _mm_add_epi32(vfo, vf1l);
vfl = _mm_add_epi32(vfo, vfl);

--r;

b

_mm_store_si128((
v2[n & 3 1;

Listing 16.

*) &v2[0], vfo);

8.2 — Fibonacci - fonction vectorielle SSE

tations qui ont été gardées pour présentation et analyse :

e gcc (1) : fonction de référence optimisée par gcc, le compilateur GNU

e icc (2) : fonction de référence optimisée par icc, le compilateur Intel

e stat. array (4) : tableau statique

e dyna. array (5) : tableau dynamique

e n recursive (6)
référence

: implantation directe en assembleur de la fonction de

e while v1 (8) : version itérative avec un

e while v1 ur2 (9) : version itérative dépliée par 2

e while v1 ur4 (10):
e while v1 ur8 (11):

e while v3 ur8 (21) : version itérative dépliée par 8 avec calcul utilisant lea

et utilisation de esp

e while v6 ur8 (24) :

version itérative dépliée par 4

version itérative dépliée par 8

version itérative dépliée par 8 avec utilisation de I'astuce

de dépliage par 2 et utilisation de esp

e SSE intrin (26) : version vectorielle SSE intrinsics

O O N o AW N =

W W W W W W NN NN N NNNNN R e e
A W N = O WV 00NN W N = O VvV N BN W N = O

406

CHAPITRE 16. ETUDE DE CAS

32
avx_vectd: dd e, 1, 1, 2, 3, 5, 8, 13 ; Fo, F7
avx_vectl: dd 1, 1, 2, 3, 5, 8, 13, 21 ; F1, F8
16
fib_avx:
mov ecx, [esp+12]
vmovdga ymm@, [avx_vectO]
vmovdga ymm1, [avx_vect1]
sub esp, 32
mov eax, ecx
and eax, 7
shr ecx, 3 ; /8
jz .last_7
.while_ur8:
vpaddd ymm@, ymm1
vpaddd ymm1, ymm@
vpaddd ymm@, ymm1
vpaddd ymm1, ymmo
vpaddd ymm@, ymm1
vpaddd ymm1, ymm@
vpaddd ymm@, ymm1
vpaddd ymm1, ymm@
dec ecx
jnz .while_ur8
.last_7:
vmovdqu [esp], ymmo@
mov eax, [esp + eax * 4]
add esp, 32
ret

SUITE DE FIBONACCI

Listing 16.8.3 — Fibonacci - fonction vectorielle AVX

e SSE v4 ur8 (30) : version vectorielle SSE en assembleur dépliée par 8 et
utilisation de esp

e AVX intrin (32) : version vectorielle AVX intrinsics

e AVX ur8 (33) : version vectorielle AVX en assembleur dépliée par 8 et utilisa-
tion de esp

Chaque méthode est exécutée 10 fois si son temps d’exécution est inférieur
a 10 secondes. On prend alors ma moyenne des 10 exécutions. Par contre, si
le temps d’exécution est supérieur a 10 secondes on reporte simplement ce
temps.

16.9. RESULTATS 407

16.9.1 Architectures modernes (2015 a 2019)

L’analyse des résultats montre a peu de choses pres les mémes tendances pour
toutes les architectures.

La méthode 1 qui est la traduction optimisée par gcc du code de référence se
montre tres efficace par rapport aux autres méthodes. La méthode 2 qui est le code
optimisé par icc est par contre bien moins performant alors que généralement icc
produit un code plutét bien optimisé.

Les méthodes basées sur les tableaux ne sont pas tres performantes surtout la
méthode 5 basée sur une allocation du tableau a chaque itération. Les nombreux
appels systémes engendrent un doublement du temps d’exécution.

La méthode la plus problématique est la méthode 6 qui correspond a la tra-
duction directe de la méthode de référence. Son temps d’exécution est bien trop
important. Est-ce d{i aux acces répétés dans la pile des parametres ou aux appels de
sous-programmes ? En fait, le probleme vient du nombre d’instructions exécutées.
La méthode est appelée 500 millions de fois. On calcule Fy3 lors du test, la méthode
s’appelle donc 43 fois et comporte 16 instructions, cela fait un total de 344 milliards
d’instructions. En prenant en compte les instructions de la boucle qui réalise les 500
millions d’appels, cela représente, d’apres perf, environ 352 milliards d’instructions.
La méthode 1 par contre n’utilise que 45 milliards d’instructions. L’exécution du
test avec la méthode 33 nécessite seulement 34 milliards d’instructions .

La méthode 8 qui consiste a remplacer les appels récursifs par un se
montre plus intéressante mais le dépliage par 2 ou par 4 sur les architectures Intel
apparait contre-productif. Le dépliage par 8 est plus intéressant mais ne permet pas
de diminuer le temps d’exécution par rapport a la méthode non dépliée.

On observe par contre sur AMD Ryzen 1700X que le dépliage est intéressant
puisqu’il diminue significativement le temps d’exécution par rapport a la méthode
sans dépliage.

Le fait d’utiliser 'astuce mentionnée en section 16.7.5 permet de diminuer le
temps d’exécution (cf. méthode 21) sur les processeurs AMD et Intel, de méme pour
la méthode 24.

Mais c’est 'implantation vectorielle SSE ou AVX (méthodes 30 et 33) qui permet
de supplanter la version optimisée par le compilateur.

16.9.2 Architectures récentes (2020 et apres)

Pour les architectures récentes (voir Table 16.6), on observe globalement les
mémes phénomenes.

Cependant, pour I'Intel 10850H le temps d’exécution de la méthode 6 est 30 fois
plus lent que la méthode 1, ce qui est trés étrange. Cela est-il d(i a la mémoire qui
serait extrémement lente bien qu’étant de la DDR4-SDRAM fonctionnant a 3200

408 CHAPITRE 16. ETUDE DE CAS SUITE DE FIBONACCI

Marque Intel Intel Intel Intel
Gamme Core i3 Core i5 Corei7 Core i5

Modele 6100 7400 8700 8365U
2015 2017 2017 2019

1 gce 4,11 4,39 4,24 3,23 3,61
2 icc 7,97 11,31 8,56 6,49 7,39
4 stat. array 8,99 8,84 9,12 7,37 8,30
5 dyna. array 18,57 21,16 21,67 15,79 18,09
6 n recursive 63,39 82,48 67,71 51,53 112,24
8 while v1 7,52 11,47 8,99 5,78 7,44
9 while v1 ur2 18,45 5,48 22,26 15,01 18,88
10 whilevlurd 12,56 525 16,07 10,21 12,79
11 while v1 ur8 9,65 5,14 11,85 7,86 9,95
21 while v3 ur8 5,37 4,39 5,74 4,45 4,96
24 while v6 ur8 4,35 4,51 4,66 3,60 3,95
26 SSE intrin 4,11 4,27 4,36 3,17 3,66
30 SSE v4 ur8 3,48 3,22 3,36 2,57 2,95
32 AVXintrin v2 4,20 5,73 4,38 3,21 3,93
33 AVX asm ur8 3,21 5,60 3,34 2,57 3,06

ratio (1 / 30) 1,18 1,36 1,26 1,25 1,22
ratio (1 / 33) 1,28 0,78 1,26 1,25 1,17

TABLE 16.5 — Résultats comparatifs de fib_iter : architectures modernes

MHz?

Au final, la méthode qui semble la plus efficace est la méthode basée sur une
implantation assembleur avec AVX, une boucle dépliée par 8, utilisant esp pour
accéder a n (voir Listing 16.9.1).

16.9.3 Variation des fréquences de fonctionnement

J'ai créé un petit programme qui s’intitule frequency.cpp dont le but est d’en-
registrer la fréquence de fonctionnement du core 0 sur lequel est exécuté le pro-
gramme principal de test fib.exe. Ce programme permet de vérifier si la fréquence
de fonctionnement reste stable ou varie.

On note que pour les processeurs AMD la fréquence reste stable alors que pour
les processeurs Intel elle peut varier fortement. Cela se traduit par un écart type
important.

16.10. REMERCIEMENTS 409

Marque Intel Intel Intel Intel
Gamme Corei7 Corei7 Corei5 Core i5

Modele 10850H 1165G7 10400 12400F
2020 2020 2020 2022

1 gce 3,007 3,07 3,516 2,853 2,035
2 icc 5,365 5,81 5,610 3,990 4,489
4 stat. array 6,446 5,96 7,478 6,380 4,871
5 dyna. array 14,470 14,84 16,660 13,790 9,441
6 n recursive 93,390 59,53 108,570 50,630 55,870
8 while v1 6,038 11,94 7,322 6,304 5,570
9 while vl ur2 13,860 16,09 18,210 3,608 14,930
10 while v1 ur4 9,510 11,07 13,140 3,500 11,250
11 while v1 ur8 7,254 8,69 9,583 3,497 8,197
21 while v3 ur8 4121 5,02 4,823 2,229 4,795
24 while v6 ur8 3,286 3,41 3,832 2,271 2,807
26 SSE intrin 3,076 3,47 3,584 2,393 2,480
30 SSE v4 ur8 2,442 2,70 2,816 1,961 2,153
32 AVXintrin v2 3,235 3,71 3,837 2,471 2,566
33 AVX asm ur8 2,410 2,70 2,768 1,982 2,074

ratio (1/33) 1,247 1,137 1,270 1,439 0,981

TABLE 16.6 — Résultats comparatifs pour fib_iter : architectures récentes

16.10 Remerciements

Merci a Mohamed Sylla et Matéo Grimaud, étudiants a I'Université d’Angers,
pour les tests effectués respectivement sur Intel Core i7 1165G7 et Core i5 8365U.

O O N O AW N =

S e e
N o o~ w N = O

18
19
20
21
22
23
24
25
26
27
28
29
30

32
33
34
35
36

410

align 32
avx_vecto:
avx_vect1:

align 16
fib:
mov
vmovdga
vmovdga

sub
mov
and

shr
jz

.while_urs8:
vpaddd
vpaddd
vpaddd
vpaddd
vpaddd
vpaddd
vpaddd
vpaddd

dec
jnz

.last_7:
vmovdqu
mov
add
ret

CHAPITRE 16. ETUDE DE CAS

ecx, [esp+12]
ymm@, [avx_vect0]
ymm1, [avx_vect1l]

esp, 32

eax, ecx

eax, 7

ecx, 3 ; /8
.last_7

ymmo,
ymm1,
ymmo ,
ymm1,
ymmo,
ymm1,
ymmo,
ymm1

ymm1
ymmo
ymm1
ymmo
ymm1
ymmo
ymm1
ymmo

ecx
.while_urs8

[esp], ymm@
eax, [esp + eax * 4]
esp, 32

Listing 16.9.1 —

SUITE DE FIBONACCI

Fibonacci - fonction la plus performante

Marque Intel Intel

Gamme Corei7 Corei5

Modele 10850H 7400

2020 2017

Fréquence moyenne 4973,97 3475,01

Ecart type 24,20 13,84

Fréquence minimum 4945,02 3450,57
Fréquence maximum 5012,62 3499,39

4441,90 3492,71

0,00 0,12
4441,90 3492,07
4441,91 3493,04

TABLE 16.7 — Variation de la fréquence du microprocesseur lors des tests

Chapitre 17

Etude de cas
nombres auto-descriptifs

17.1 Introduction

Un nombre auto-descriptif se définit comme un entier naturel ayant pour pro-
priété que chacun de ses chiffres repéré par son rang indique combien de fois ce
rang apparait en tant que chiffre dans I'écriture de ce nombre. On parle aussi de
nombre autobiographique ou de nombre qui se décrit lui-méme. Le premier nombre
auto-descriptif est 1210. En effet :

e il contient 1 chiffre zéro
e il contient 2 chiffres un

e il contient 1 chiffre deux
e il contient O chiffre trois

Il en va de méme pour 2020, 21200. Ces nombres sont tres rares, on en compte
7 dont la liste figure Table 17.1 :

a(n)
1 210

n
1
2 2020
3 21200
4
5

3 211_000

42 101_000

6 521 001 000
7 6210 001_000

TABLE 17.1 — Nombres auto-descriptifs

Formalisons tout cela. On considére z un nombre entier positif de k chiffres de

411

412 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

la forme :

k=1
r=dyx 10"+ .+ dpq x 10° = Zdi % 10F—1-i
i=0

On définit pour ce nombre une suite de valeurs ¢, a ¢;_; ou chaque ¢; représente
le nombre d’occurrences du chiffre 7 dans z :

¢; = Card({d; tel que d; =4,Vj € [0,k — 1]})

On doit alors vérifier la contrainte suivante qui définit un nombre auto-descriptif :

VZG[O,]{?—]_], Ci:di

ou [0, k — 1] représente I'intervalle de valeurs entre 0 et £k — 1. De ces définitions
découlent les propriétés suivantes :

e propriété 1 : un nombre auto-descriptif ne peut pas commencer par O

propriété 2 : un nombre auto-descriptif contient au moins un 0

propriété 3 : la somme des ¢; est égale a k, et donc, la somme des d; est égale
ak

propriété 4 : un nombre auto-descriptif contient au moins un O en position
k—1

propriété 5 : un nombre auto-descriptif de k chiffres ne peut par avoir un
chiffre supérieur a k

Théoréme 17.1.1. Un nombre auto-descriptif ne peut pas commencer par 0.

Démonstration. En effet, si dy = 0 alors le nombre commence par 0 et par définition
n’est pas valide. O

Théoreme 17.1.2. Un nombre auto-descriptif contient au moins un 0.

Démonstration. En effet, si ¢ = 0 alors dy = 0 et le nombre commence par O et par

définition n’est pas valide d’apres le théoreme précédent. O
Théoréme 17.1.3.

k-1 k—1

da=> di=k

1=0 1=0

Démonstration. Si par définition les ¢; représentent le nombre d’occurrences de
chaque chiffre, leur somme doit donc étre égale a k. Etant donné que par définition
¢; = d;, on en déduit également que la somme des d; est égale a k. O

17.2. FONCTION DE REFERENCE 413

Théoréme 17.1.4. Un nombre auto-descriptif se termine par un 0.

Démonstration. Appelons S(k) = Zf;ol d; et raisonnons pas 'absurde pour montrer
qu’il n’est pas possible que d;_; soit différent de 0. Par définition S(k) = k et
donc S(k) = S(k — 1) + di_;. Supposons alors que = ne setermine pas par 0, alors
dr—1 > 0, et on en déduit que S(k —1) < k ou encore que S(k —1) <= k — 1. Le fait
qu’'un nombre auto-descriptif ne commence pas par un 0 mais contient au moins
un 0, implique que d, # 0 et donc qu’il existe au moins un 0 parmi les d; a dj_;.
En conséquence S(k) >= k — 1. Sachant que S(k) = S(k — 1) 4+ d;_1, on a donc
S(k) — S(k—1) = di_;. Mais comme S(k) >=k —1etque S(k—1) <=k —1,0n
en déduit que S(k) — S(k — 1) = 0 et donc que dj_; = 0. O

Théoréme 17.1.5. Un nombre auto-descriptif de & chiffres ne peut par avoir un
chiffre supérieur a k, i.e. d; < k,Vi € [0,k — 1]

Démonstration. Si x posseéde k chiffres alors dy a d;,_; sont définis. Si d; > k cela
implique que ¢; > k ce qui est en contradiction avec la définition du nombre. [

17.2 Fonction de référence

La fonction de référence a implanter est donnée Listing 17.2.1. Elle comporte un
parametre qui est le nombre entier non signé x pour lequel on veut déterminer s’il
est auto-descriptif ou non. Nous n’allons pas utiliser certaines propriétés énoncées
préalablement afin de garder un temps de calcul qui nous permettra de comparer
les différentes améliorations proposées. En effet, si on utilise le fait qu'un nombre
auto-descriptif se termine par 0, il suffit de calculer le premier reste de la division
par 10 pour trouver le premier chiffre et la recherche des nombres auto-descriptifs,
en utilisant cette propriété, s’exécute en moins de 2 secondes.

Nous allons donc nous focaliser sur les trois points suivants :

e conversion du parametre x en base 10, en d’autres termes : détermination
des d;

e détermination du nombre d’occurrences de chaque chiffre, soit la détermina-
tion des ¢;

e comparaison du nombre d’occurrences avec le i ieme chiffre, en fait, compa-
raison des d; avec les ¢;

Dans cette premiere version, on utilise les fonctionnalités du C++ pour trans-
former le nombre x en caractéres et déterminer les d;.

La variable counts représente le nombre d’occurrences de chaque chiffre, soit les
¢;. On comptabilise donc le nombre d’occurrences de chaque chiffre en parcourant
la chaine obtenue apres conversion de = de la base 2 vers la base 10. Finalement,

12

13

14

15

16

17

18

19

20

21

22

23

414 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

uint8_t u8;
int32_t i32;
uint32_t u32;

bool ad_cpp_32(u32 x) {
// nombre d'occurrences de chaque chiffre
u32 counts[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

// convertir le nombre en chaine de caractéres
string s = std::to_string(x);

// compter les occurrences de chaque chiffre
(u32 1 = 0; i < s.length(); ++i) {
++counts[(u32) (s[i] - '0') 1;

}

// comparer les occurrences aux chiffres
(u32 i = 0; i < s.length(); ++i) {

(<u32>(s[i] - 48) != counts[i 1) false;
}
true;
}
Listing 17.2.1 - Nombre auto-descriptif, fonction de référence

on compare le nombre d’occurrences de chaque chiffre aux chiffres du nombre
représenté sous forme de chaine.

Fonction de référence

Le temps d’exécution sur AMD Ryzen 5 5600¢ est de 7,34 secondes.

7
.

Attention

Attention cependant! Je me suis apercu que le compilateur gcc dans sa
version 10 générait une fonction dont le temps d’exécution est d’environ 18
secondes alors que le méme compilateur, dans sa version 12, génére du code
qui ne s’exécute plus qu’en 7,6 secondes, soit prés de deux fois plus rapide.
La différence d’exécution tient a la conversion de x en chaine. Nous utilisons

donc par la suite la version 12 de gcc quand cela est possible.
\ J

17.3. PREMIERE AMELIORATION 415

17.3 Premiere amélioration

Plutot que d’utiliser un tableau d’entiers pour compter les occurrences des
chiffres, on utilise un tableau d’octets. En effet, diminuer la taille des données
utilisées peut parfois apporter une amélioration.

Fonction de référence avec 8 bits

Le temps d’exécution sur AMD Ryzen 5 5600g est de 7,20 secondes en

utilisant des octets pour représenter le nombre d’occurrences de chaque
chiffre.

On en déduit donc qu’il vaut mieux travailler sur un tableau d’octets que sur un
tableau d’entiers en général (cf. Section 17.6) méme si 'amélioration est faible.

17.4 Convertir en chiffres et non en chaine

Plutét que de convertir x en chaine de caractéres, nous allons la convertir
directement en chiffres que I'on va stocker dans un tableau (d’entiers ou d’octets)
appelé digits en faisant des divisions par 10 afin d’obtenir chaque chiffre (lignes 7
a 12 du Listing 17.4.1). A chaque nouveau reste trouvé on incrémente le tableau
counts en conséquence et on stocke le reste dans le tableau digits.

Au final on obtient le remplissage des tableaux suivants :

Indice 0 1 2 3 4 5 6 7 8 9 10 15
counts 2 1 2 0 0 0 0O O OO O O O
digits 0 0 2 1 2 0 0 0 O O O O O

Fonction avec conversion 8 bits

C’est en fait cette version qui est la plus efficace lorsque traduite par le

compilateur car elle ne prend que 4,22 secondes pour s’exécuter et c’est elle
qu’il va falloir tenter de battre. La version utilisant des entiers prend quant a
elle 5,83 secondes.

La raison de l'efficacité est assez simple : la conversion est rapide car elle est
optimisée et la division par 10 est remplacée par une multiplication par un invariant,
puis le calcul du reste de la division est effectué par multiplication du dividende et
soustraction. En outre, la boucle de conversion est dépliée.

11

12

13

14

15

16

17

18

19

20

21

22

23

416 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

bool ad_chiffres(u32 x) {

u8 counts[10] ={ o0, 0, 0, 0, 0, 0, 0, 0, 0, O };
u8 digits[10 1;

// convertir x et compter les occurrences
i32 i = o;
x) {

u32 u = x % 10;

digits[it++] = u;

++counts[u 1;

X =x / 10;
3

// comparer le nombre d'occurrences avec les chiffres
i32 j;
(3 =0, —-i; i > 0; —-1, ++j) {
(digits[i] != counts[j 1) false;

true;

Listing 17.4.1 - Nombre auto-descriptif, fonction de conversion en chiffres

17.5 Versions assembleur

Etant données les différentes version précédentes, on peut se demander si la
traduction assembleur ne serait pas plus performante.

17.5.1 Version 1 - Traduction

Dans cette premiere version, on se contente de traduire la version C de I’'Algo-
rithme 17.4.1 en assembleur. On choisit de réaliser I'association variables / registres
de la Table 17.2 et on va garder le méme schéma de traduction pour les autres
fonctions.

Les registres ebx, esi et edi devront étre sauvegardés car ils ne doivent pas étre
modifiés pour le sous-programme appelant d’apres les conventions d’appel du C
en 32 bits et nous allons les utiliser. Le registre edx sera mis a 0 et ne contiendra
aucune donnée au début du sous-programme. Apres chaque division, edx contient
le reste de la division par 10, c’est a dire la variable u du Listing 17.4.1.

Les tableaux counts et digits sont stockés dans la pile en réservant (au moins)

O 0 N o Ll AW N =

10
11

17.5. VERSIONS ASSEMBLEUR 417

Cste/Param/Var

Type Parametre Registre Description

X

counts
digits

1

u32 [ebp+8] eax nombre x
us [J Pile esp occurences
us [J Pile esp conversion

u32 ecx indice

TABLE 17.2 — Association entre variables et registres pour les fonctions assembleur recher-
chant les nombres auto-descriptifs

ad_asm_v1:

push
mov
mov
sub
and
mov
mov
mov
vpxor

ebp

ebp, esp

eax, [ebp + 8]
esp, 44 ;
esp, ~31 ;
[esp+32], ebx ;
[esp+36], edi
[espt40], esi
ymmo, ymmo ;

vmovdqga [esp], ymmo

Listing 17.5.1 -

on réserve 1'espace pour stocker
counts, digits et les registres
ebx, esi, edi

on met counts et digits a 0

Fonction assembleur - version 1 - début

48 octets et en alignant ’'adresse du sommet de pile (esp) sur un segment de 32
octets (lignes 5 et 6 du Listing 17.5.1). Ces 44 octets se décomposent ainsi :

e 12 octets pour sauvegarder ebx, edi et esi

e 16 octets pour les d; pour aligner le tableau digits sur une adresse multiple

de 16

e 16 octets pour les ¢; pour aligner le tableau digits sur une adresse multiple

de 16

On sauvegarde ensuite les registres a préserver et on on accedera counts et
digits par I'intermédiaire de esp. En effet, on peut stocker counts de esp a esp+15
et digits de esp+16 a esp+26. Le tableau counts doit étre initialisé a 0, on utilise
ici le registre ymm@ pour faire cela qui va permettre d’initialiser en une seule fois les
32 octets qui stockent counts et digits .

Pour réaliser la conversion de x en base 10 (voir Listing 17.5.2), on réalise des
divisions successives par 10. En utilisant I'instruction div, on obtient le quotient
dans eax et le reste dans edx, ce qui est tres pratique.

A la différence du code C++, on va stocker les chiffres (restes de la division)
dans l'ordre décroissant du tableau digits en commencant a I'indice 9 qui sera
stocké dans ecx, puisque un entier non signé contient au maximum 10 chiffres.

O 0 N o 1 AW N =

I e e T T s e
S © ® N & v A W N P O

418 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

; ad_asm_v1 conversion

mov edi, 10 ; constante 10 pour division par 10
mov ecx, 9 ; 1 =9, indice pour tableau digits
cmp eax, 10 ; Si x < 10 alors aller en .x_1t_10
jl x_1t_10 ;

.while_x_ge_10: ; tantque x >= 10 faire
xor edx, edx
div edi : u, x =x % 10, x / 10
inc [esptedx] ; ++counts[u]
dec ecx ; digits[--i] = u
mov [esp+ecx+16],dl
cmp eax, 10
jge .while_x_ge_10 ; fin tantque
; Si x <10, il n'est pas nécessaire de diviser

x_1t_10:
cmp eax, O ; Si x == @ alors aller en .next
jz .next
inc [espteax] ; ++counts[x]
dec ecx ; digits[--i] = x
mov [esptecx+16], al

Listing 17.5.2 - Fonction assembleur - version 1 - conversion

Un fois x converti et les tableaux counts et digits remplis, il suffit de comparer
counts[j] a digits[i] en partant de ecx (voir Listing 17.5.3). En effet, pour
x = 21200, on obtient le remplissage suivant :

Indice 0 1 2 3 4 5 6 7 8 9 10 15
counts 2 1 2 0 0 0 0O 0O OO O O O
digits 0 0 0 0 0 2 1 2 0 0 O O O

On utilise alors edi pour connaitre le nombre de chiffres en calculant dans ce
registre la différence entre 9 et ecx. Le registre edi contient alors le fameux £,
défini dans I'introduction, qui correspond au nombre de chiffres de la traduction en
base 10. Puis, on stocke dans esi 'adresse de début du tableau digits a laquelle
on ajoute I'indice ecx. On n’a plus alors qu’'a effectuer une simple boucle et
comparer counts[i] soit esp+ecx a digits[j], soit esi+ecx.

Si les deux tableaux sont égaux, on sortira de la fonction avec la valeur 1 (true)
dans eax, ligne 15 du Listing 17.5.3.

Assembleur version 1 avec conversion 8 bits

Cette version assembleur s’exécute en 5,59 secondes.

O 0 N oy 1 AW N =

P T S S
N =~ & © ® N & 1 A W N = O

17.5. VERSIONS ASSEMBLEUR 419

; ad_asm_v1 comparaison et sortie de la fonction

.next:
xor eax, eax ; valeur de retour = faux
lea esi, [esptecx+16] ; esi = début de digits
mov edi, 9 ; longueur = nombre de chiffres
sub edi, ecx :
xor ecx, ecx ;1 =0
.while_eq: ; faire
movzx ebx, [espt+ecx] ; si counts[i] != digits[i] alors
cmp bl, [esitecx] ; retourner faux
jne .end
inc ecx ; ++i
sub edi, 1
jnz .while_eq ; tantque i < longueur
inc eax ; valeur de retour = vrai
.end:
mov ebx, [esp+32]
mov edi, [esp+36]
mov esi, [espt+40]
mov esp, ebp
pop ebp
ret
Listing 17.5.3 - Fonction assembleur - version 1 - comparaison et sortie

17.5.2 Version 2 - Remplacement de la division

Une premiere amélioration consiste a remplacer la division par une multipli-
cation. On le sait, la division est tres pénalisante par rapport a la multiplication.
Cela est possible ici car on divise par une constante (10), on peut donc remplacer
la division par une multiplication par invariant (cf. Sous-section 2.4.7).

On va donc modifier I'utilisation des registres en conséquence. On va multiplier
eax, en fait x, par ebx qui contiendra la constante CC_CC_CC_CD qui correspond a
0, 1. On obtient alors le résultat dans edx: eax. Cependant, c’est la partie haute du
résultat que I'on doit garder, donc edx que I'on décale alors de 3 rangs vers la droite
(cf. Section 2.4.7).

Le probleme que I'on rencontre est qu’on ne dispose pas du reste de la division.
Il va donc falloir le calculer en prenant le résultat de la division par 10, puis en le
multipliant par 10 et en le soustrayant de x. Plutot que de faire une multiplication
par 10, on va utiliser 'instruction lea pour calculer 5 x x, puis on multipliera par 2
on faisant un décalage de bits grace a I'instruction shl.

Malgré tout, il va nous manquer un registre pour calculer le reste de la di-
vision. On va en effet utiliser ebx pour calculer le reste de la division et éviter
les dépendances liées a l'utilisation de edx. On va donc utiliser edi pour stocker
temporairement la valeur de x. Cela est possible car au final on n’a besoin que d'un
seul registre pour accéder a counts et digits puisque counts débute en esi et que
digits débute en esi + 16.

420 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS
ad_asm_v2:

push ebp

mov ebp, esp

: . identique a ad_asm_v1

mov edi, @xCCCCCCCD ; 0.1 dans edi

mov ecx, 9

cmp eax, 10

jl x_1t_10

.while_x_ge_10:

mov ebx, eax ; sauvegarde de x dans ebx
mul edi ; edx:eax <- x *x 0.1
shr edx, 3 ; edx <- edx / 8 (éq. x/10)
lea esi, [edx+edxx4] ; esi = 5x(x/10)
shl esi, 1 ; esi = 2x5%x(x/10)
sub ebx, esi ; calcul du reste u de la division
dec ecx 5 ==1l
inc [esp+ebx] ; ++tcounts[u]
mov [espt+ecx+16],bl ; digitsf i J =u
mov eax, edx ; eax <- x/10
cmp eax, 10
jge .while_x_ge_10
x_1t_10:
; ... identique a ad_asm_v1
mov esp, ebp
pop ebp
ret

Listing 17.5.4 —
multiplication

Fonction assembleur - version 2 - remplacement de la division par une

Le code correspondant est donné Listing 17.5.4.

Assembleur version 2 : multiplication au lieu d’une division

Cette version assembleur demande plus d’opérations s’exécute en 5,69 se-
condes soit une tres légere dégradation par rapport a la version 1

17.5.3 Version 3 - Remplacement de la division et dépliage

On peut garder le remplacement de la division par une multiplication de la
fonction précédente et ajouter le dépliage de la boucle de conversion en base 10.

Assembleur version 3 : multiplication et dépliage

Cette version assembleur s’exécute en 4,32 secondes, le dépliage est donc ici
efficace et intéressant.

O N AW =

17.5. VERSIONS ASSEMBLEUR 421

17.5.4 Version 4 - Comparaison vectorielle

Plutot que de comparer les tableaux digits et counts élément par élément
grace a une boucle for, on peut le faire de maniere vectorielle en chargeant digits
dans un premier vecteur et counts dans un autre vecteur. Pour que cela fonctionne
il faut que I'espace donné a digits soit plus grand que 16 octets, on va donc
doubler la taille de digits et occuper 32 octets qui seront mis a 0.

Pour comparer les tableaux (voir ci-dessous), on charge counts dans xmm1 et
digits dans xmm2. On utilise I'instruction pcmpeqb, ici dans sa version AVX, qui
compare chacun des octets des deux registres et remplace les octets de xmm1 par
OxFF si les deux octets sont égaux ou par 0x00 s’ils sont différents. Si les deux
registres contiennent les mémes valeurs chaque octet du registre xmm1 aura la
valeur 0xFF. On utilise ensuite I'instruction pmovmskb tous les bits de poids fort de
chaque octet de xmm1, le résultat étant placé dans edx. Au final, on obtient dans
edx la valeur 0xFFFF si les deux registres vectoriels sont égaux. L’utilisation de
l'instruction sete permet de fixer eax a 0 si les registres vectoriels sont différents
ou a 1 s’ils sont égaux.

Xor eax, eax ; valeur de retour : false
vmovdga xmml, [esp] ; charger counts[0:15]
vmovdqu xmm2, [esp + ecx + 16] ; charger digits[0:15]
vpcmpegb xmml, xmm2 ; comparer octet par octet
vpmovmskb edx, xmml ; récupérer le masque issu

; de la comparaison
cmp edx, OxFFFF ; s'il est égale a OxXFFFF alors

; tous les octets sont identiques
sete al ; dans ce cas positionner eax a true

La version précédente est écrite en AVX. On peut également I’écrire en SSE.
Cependant, il n’est pas recommandé de mixer SSE et AVX notamment sur certains
processeurs Intel. Travailler en AVX, sur ymm@ par exemple, puis passer au SSE, et
travailler sur xmm@, pose un probleme relatif a la sauvegarde de la partie haute de
ymm@. En fait cela ne devrait poser aucun probleme puisque seule la partie basse
doit étre utilisée pour les calculs. Chez Intel, il est nécessaire de sauvegarder la
partie haute du registre ce qui peut prendre jusqu’a 70 cycles. La seule explication
plausible est probablement que le choix a été fait, chez Intel, de travailler sur le
registre en totalité méme lorsque I'on n’agit que sur le SSE. Des lors, si on veut
garder une certaine cohérence des valeurs contenues dans les registres, on se doit
de sauvegarder la partie haute, réaliser le calcul, puis restaurer la partie haute.

Assembleur version 4 : comparaison finale vectorielle

Cette version assembleur s’exécute en 4,31 secondes, la comparaison vec-
torielle apporte un gain faible en général mais plus important sur d’autres
architectures.

O N o 1 AW N =

LT N N S S i S
W N R S vV ® N O A W N = O

24
25
26
27
28
29

422 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

17.5.5 Versions 5 - Division par 100

Plutét que de réaliser des divisions par 10, il peut étre intéressant de réaliser
des divisions par 100, on aura alors deux fois moins de divisions. De plus, nous
allons remplacer la division par des multiplications par 0, 01.

mov edi, Ox51EB851F ; edi = 0.01

mov ecx, 9 ; indice dans digits

cmp eax, 10 ; Si x < 10 alors traduire

jl .x_1t_10 ; directement
.while_x_ge_10:

mov ebx, eax ; on sauvegarde x

mul edi ; on multiplie par 0.01

shr edx, 5 ; on décale edx de 5 rangs a droite

; on calcule ensuite le reste de la division

lea esi, [edx + edx *x 4]; esi = 5 * (x/100)

lea eax, [esi + esi x 4]; eax = 5 * (5 * (x/100))

shl eax, 2 ; eax = 4 x 25 x (x/100)

sub ebx, eax ; obtenir le reste

mov eax, edx ; eax = x/100

movzx edx, [values_100 + ebx * 2]

sub ecx, 2

mov [esp + ecx + 16], dx

movzx ebx, dh
xor dh, dh

inc [esp + ebx]

inc [esp + edx]

cmp eax, 10

jge .while_x_ge_10
x_1t_10:

cmp eax, 0

jz .next

inc [esp + eax]

dec ecx

mov [esp + ecx + 16], al
Listing 17.5.5 -~ Fonction assembleur - versions 5 - remplacement de la division par une
multiplication

Le code correspondant figure Listing 17.5.5. On calcule ¢ = /100 par multipli-
cation et décalage (lignes 7 et 8). Il faut ensuite calculer le reste de la division en
calculant x — 100 x ¢, sachant que q est le résultat d'une division entiere. On réalise
le calcul grace a deux instructions lea et un décalage qui permettent d’obtenir
4 x5 x5 x q (lignes 10 a 12) et on retranche cette quantité a x (ligne 13) pour
obtenir le reste u.

Une fois u obtenu, on utilise une table de conversion (values_100) qui permet
de récupérer deux octets sous forme d’un mot correspondant aux deux chiffres
décimaux du reste. Si u vaut 17, on récupere dabs edx (ligne 15) la valeur 0x0107.

On sépare ensuite chacun des chiffres en en plagant un dans edx et 'autre dans

17.5. VERSIONS ASSEMBLEUR 423

ebx (lignes 18 et 19 du Listing 17.5.5). On n’a plus qu’a stocker les chiffres dans
le tableau digits (lignes 16, 17) et incrémenter les éléments correspondants de
counts (lignes 20 et 21).

La derniere partie du code (lignes 25 a 29) consiste a stocker le dernier reste
éventuel qui sera inférieur a 10.

Assembleur version 4 : comparaison finale vectorielle

On a écrit trois versions différentes :

e version 100 (ou méthode 13 dans la section des résultats) : division par
100 (par multiplication par 0.01) : 3,62 secondes

e version 101, amélioration de la version 100 avec dépliage de la conver-
sion : 3,56 secondes

e version 102, amélioration de la version 101 avec comparaison vecto-
rielle AVX : 5,01 secondes

17.5.6 Versions 6 - Codage en BCD

Le Binary Coded Decimal ou Décimal Codé (en) Binaire est un ancien systeme
de codage qui remonte aux années 1960. Il consiste a coder un nombre en placant
deux chiffres décimaux par octet. Chaque quartet (ou nibble en anglais) représente
donc 1 ou 2 chiffres. On dispose en assembleur d’une vieille instruction fbstp
qui date du 8086 d’Intel. Elle permet de stocker au format BCD de 10 octets, un
nombre, stocké au niveau de la FPU.

Par exemple, la valeur -1234567890 sera stockée au format BCD sous la forme :

Octet 9 8 7 6 5 4 3 2 1 0
0x80 0x00 0x00 0x00 0x00 0x12 0x34 0x56 0x78 0x90

Le bit de poids fort indique ici le signe du nombre, s’il est a un, il s’agit d'un
nombre négatif. On peut, par exemple, charger et stocker la valeur suivante :
—123456789012345678. qui comprend 18 chiffres. Au dela, il se produit une erreur
liée a la précision.

On va donc charger x comme un entier au niveau de la FPU et stocker le résultat
au format BCD dans la pile. On aura donc besoin de 10 octets supplémentaires qui
correspondent au format de stockage BCD que I'on va étdendre a 16 octets afin de
garder l'alignement des données. Comme on ne traite que des entiers non signés
qui comportent au maximum 10 chiffres et qui sont positifs ou nul, seuls 5 octets
sont utilisés pour représenter le nombre.

424 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

fild [ebp + 8] ; chargement de x dans la FPU
fbstp [esp + 32] ; stockage en [esp+32] au format BCD

Il faut ensuite relire le nombre au format BCD pour compter le nombre d’occur-
rences de chaque chiffres. J’ai mis au point deux méthodes :

e une premiere méthode qui décompose le nombre en utilisant les instructions
assembleur classiques et qui fait appel également a des tables de conversion
pour déterminer la longueur du nombre en terme de chiffres

e une seconde méthode qui se base sur des instructions spécifiques comme pdep
et movbe afin d’extraire les chiffres BCD et stocker chacun dans un octet.

17.5.6.1 Décomposition avec les registres

Dans un premier temps, on détermine la longueur du nombre au format BCD :
on part du dernier chiffre et on revient vers le premier (voir Listing 17.5.6). Des
qu'on a trouvé un chiffre différent de 0, on peut déterminer la longueur.

La méthode est assez complexe puisqu’elle s’intéresse en premier au 5ieme octet
qui représente les nombres de 9 ou 10 chiffres. Si cet octet est a 0 alors le nombre
comporte 1 a 8 chiffres, le cas du 0 étant traité en amont, au tout début de la
fonction en renvoyant la valeur false. Pour traiter les huit chiffres potentiels qui sont
donc stockés sur 4 octets, on charge ce double mot dans eax, puis on calcule dans
ebx le bit de poids fort de ce double mot en utilisant I'instruction bsr. Le résultat
sera compris entre 0 et 31. On charge finalement a partir d’une table de 32 octets,
la taille correspondante. Par exemple si le bit de poids fort est a I'indice 8, 9, 10 ou
11, il s’agit d'un nombre de 3 chiffres.

En fois la longueur déterminée, on passe a la conversion du nombre (cf. Lis-
ting 17.5.7).

Pour cela, en fonction de la longueur, on va se diriger vers un chemin de
traduction spécifique. On définit a cet effet, une table d’adresses dont I'indice donne
I'adresse du code qui correspond a la traduction. Il faut notamment distinguer
les nombres dont le nombre de chiffres est pair de ceux qui ont un nombre de
chiffres impair. Dans ce dernier cas, il ne faut traiter que les premiers 4 bits de
I'octet que 'on aura chargé dans le registre eax. Les deux macro-instructions pour
la conversion sont données Listing 17.5.8.

La macro instruction cvt1 ne convertit qu'un chiffre en partie basse du registre
al. La macro instruction cvt2 convertit deux chiffres. Pour ce faire, on utilise une
table nommée bcd_table de 200 octets organisée de maniere a ce que deux octets
consécutifs correspondent a deux chiffres codés chacun sur un octet. On charge
donc ces deux octets dans dx (ligne 13) grace a I'instruction movzx qui complete
la partie haute de edx avec des 0. Puis on place le chiffre qui se trouve en dh dans
le registre ebx et on met ensuite d1 a 0. Les registres ebx et edx contiennent alors

O 0 N oy 1 AW N =

e e
w N = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

31
32
33
34
35

17.5. VERSIONS ASSEMBLEUR

; table des longueurs d'un nombre au format

; en fonction du bit de poids fort
bcd_tlengths:

db 1,1,1,1,2, 2, 2, 2,3, 3,
db 5,5 5, 5 6,6,6, 6,7, 17,

fild

fbstp [esp + 32] ; conversion
mov edi, 0

; détermination de la longueur

; on part du 10iéme quartet en on

; le premier quartet non égal a 0
.find_length:

xor ebx, ebx 5
mov ecx, 10 ;
movzx eax, [esp + 36] ;
test eax, eax ;
jz .length_1_to_8

test al, OxFo :
setz bl :
sub ecx, ebx ;
jmp [bcd_cv_jumps + ecx * 4];

.length_1_to_8:

mov eax, [esp + 32] :
bsr ebx, eax g
movzx ecx, [bcd_tlengths +
jmp [bcd_cv_jumps + ecx * 47];

Listing 17.5.6 —

425
BCD

3,
7

’ ’

[ebp + 8] ; chargement de x dans la FPU

au format BCD

descend pour trouver

ebx <- @ valeur qui sera
soutraite a ecx

taille initiale de 10

prendre le 5iéme octet

si il est a @ alors considérer
les 4 premiers octects

si le 10iéme chiffre est a @
alors mettre 1 dans bl
soustraire a ecx

puis convertir

mettre les 4 octets du nombre

; au format BCD dans eax

trouver le bit de poids fort
ebx] ; charger la longueur
convertir

BCD - version 1 - Détermination de la longueur du nombre

les indices dans le tableau counts qui doivent étre incrémentés. En dernier lieu, on
place les chiffres dans le tableau digits.

Enfin, la derniere étape, figurant Listing 17.5.9, consiste a comparer le nombre
d’occurrences de chaque chiffre et le nombre traduit au format un chiffre décimal
par octet, et ressemble a ce que I'on a pu déja faire.

O N o 1 AW N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

426

CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

bcd_cv_jumps:
dd ..@cvl, ..@cv1,
dd ..@cv5, ..@cv6,

..@cv10:
cvt2
..@cv8:
cvt2
..@cv6:
cvt2
..@cv4:
cvt2
..@cv2:
cvt2
jmp

..@Qcv9:
cvti
jmp

..@Qcv7:
cvti
jmp

..@Qcv5:
cvti
jmp

..@cv3:
cvti
jmp

..@Qcvl1:
cvti

36

35

34

33

32

.compare

36

..@cv8

35
..@cv6

34
..@cv4

33
..@cv2

32

..Qcv2,
..@cv7,

convertir

convertir

convertir

convertir

convertir

convertir

convertir

convertir

convertir

convertir

Listing 17.5.7 —

..@Qcv3, ..@cv4
..@cv8, ..@cv9, ..@cv10

10 chiffres

8 chiffres

6 chiffres

4 chiffres

2 chiffres

9 chiffres

7 chiffres

5 chiffres

3 chiffres

1 chiffres

BCD - version 1 - Conversion du nombre

O N AW N =

L T R e A <
= O WV ©® N O b~ W N = O

22

O N AW N =

10
11
12
13
14
15

17.5. VERSIONS ASSEMBLEUR

; convertir
; au format
%macro cvtl
movzx
mov
inc
add
%endmacro

; convertir

%macro cvt2
movzx
movzx

movzx
xor
inc
inc
mov
mov
add

%endmacro

Listing 17.5.8 —

.compare:
xor
xor

align 16

.do_while:
movzx
cmp
jne
inc
cmp
jl

.end_while:

mov

Listing 17.5.9 —

un octet qui ne contient qu'un chiffre

BCD en partie basse

1

eax, byte [esp + %1] ; eax <- charger la valeur
[esp + 16 + edi], al ; digitsf i] = u

byte [esp + eax] ; ++counts[u]

edi, 1 ; i

un octet qui contient deux chiffres
1
eax, byte [esp + %1] ;charge 2 chiffres
edx, word [bcd_table + eax * 2] ; conversion en deux
; chiffres sur 2 octets

ebx, dh ; dans edx

dh, dh ; et ebx

byte [esp + edx] ; ++counts[chiffrel]
byte [esp + ebx] ; ++counts[chiffre2]
[esp + 16 + edi], bl ; stockage de chiffre2
[esp + 17 + edi], dl ; stockage de chiffrel
edi, 2

ecx, ecx
eax, eax

edx, byte [esp + ecx]
dl, [esp + 16 + ecx]

.end

ecx

ecx, edi
.do_while
eax, 1

avec le nombre

BCD - version 1 - Macros instructions pour la conversion

427

BCD - version 1 - Comparaison du nombre d’occurrences des chiffres

428 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

17.5.6.2 Décomposition avec les instructions spécifiques

On utilise pour la conversion du nombre au format BCD deux instructions
spécifiques. La premiere appelée pdep (Parallel Bits Deposit) fait partie du jeu
d’instructions BMI2 (Bit Manipulation Instructions). Elle comporte trois opérandes
sous la forme de trois registres 32 ou 64 bits et permet de sélectionner et copier les
bits de la seconde opérande dans la premiere en utilisant un masque de sélection
placé dans le troisieme registre. Par exemple, le code suivant :

mov ebx, OxFEDC
mov ecx, OxOFOF
pdep eax, ebx, ecx

donnera le résultat 9xDOC dans eax comme le montre la Figure 17.1. Il permet
de sélectionner les deux premiers quartets de ebx et les transformer en octets dans
eax.

Donnée en entrée
ebx < < 1111 _1110_1101_1100

Masque de sélection

ecx < < 0000_1111 0000_1111
Résultat
eax < < 0000_1101_0000_1100

FIGURE 17.1 — Instruction PDEP

L’autre instruction utilisée est movbe, elle fait partie normalement du jeu d’ins-
tructions NNI (pour Nehalem New Instructions) et remonte a 2008, bien que je n’ai
pas trouvé d’informations exactes a ce sujet. L’instruction est également appelée
Move Data After Swapping Bytes. Elle inverse les octets d'un registre 16, 32 ou 64
bits. Elle possede une particularité qui tient a ses opérandes : I'une des opérandes
est un registre et 'autre est une adresse mémoire. On ne peut malheureusement
pas avoir deux opérandes de type registre comme c’est le cas de la plupart des
instructions. Ainsi, le code suivant :

O N LW N =

P T = T
v AW N = O

® N o A W N =

17.5. VERSIONS ASSEMBLEUR 429

mov eax, 0x01020304
movbe [x], eax
mov eax, [x]

permet de récupérer la valeur 0x04030201 dans eax.

La traduction du nombre au format BCD vers une représentation par octet est
donnée Listing 17.5.10.

; ex. eax = 1234567890
mov eax, [esp + 36] ; chargement des 2 derniers
; chiffres : 0x12
mov ecx, OxFOFOFOF
pdep ebx, eax, ecx ; décalage ebx = 0x0102
movbe [esp + 16], ebx ; stockage

mov eax, [esp + 32] ; chargement des chiffres 1 a 8
; eax = 34567890

pdep ebx, eax, ecx ; ebx = 0x07080900
movbe [esp + 24], ebx ; stockage 0x09080706
shr eax, 16 ; chiffres 5 a 8

pdep edx, eax, ecx ; edx = 0x03040506
movbe [esp + 20], edx ; stockage 0X06070809

Listing 17.5.10 - BCD - version 2 - Conversion

Pour trouver la longueur du nombre, il suffit de parcourir le tableau jusqu’a
trouver un chiffre non nul.

lea edi, [esp + 16]
.find_length:

movzx eax, [edil]
test al, al

jnz .end_find_length
add edi,1

jmp .find_length

.end_find_length:

Listing 17.5.11 - BCD - version 2 - Trouver la longueur du nombre

Assembleur avec codage BCD

Ces deux versions assembleur sont totalement inefficaces et prennent plus de
23 secondes pour s’exécuter sur AMD Ryzen 5 5600g.

O O N o AW N =

P T T N S e
K = & © ® 9 o0 ¢« & W N = O

L2 -

430

CHAPITRE 17. ETUDE DE CAS

NOMBRES AUTO-DESCRIPTIFS

17.5.7 Versions 7 - Division par 10000

Enfin, une derniere version consiste a diviser les nombres par 10_000 bien
évidemment quand ceux-ci sont supérieurs ou égaux a cette valeur. Cela nécessite
de créer une table de 10_000 entiers non signés sur 32 bits qui contiennent le reste
de la division par 10_000 comme on I’a fait pour la division par 100.

’

’

’

’

0.0001
sauvegarde eax
multiplie par 0.0001

eax = 10000+*(x/10000)

; reste dans ebx
; Ssauvegarde de x/10000
du reste sous forme de 4 octets

edx, [values_10000_inv + ebx * 4]

mov edi, OxD1B71759 ;
mov ebx, eax

mul edi

shr edx, 13

imul eax, edx, 10000 ;
sub ebx, eax

mov esi, edx

; chargement

mov

sub ecx, 4

mov [esp + ecx + 16], edx
; incrémentations de counts
movzx ebx, dh

movzx eax, dl

inc [esp + ebx]
inc [esp + eax]
shr edx, 16

movzx ebx, dh

movzx eax, dl

inc [esp + ebx]
inc [esp + eax]
mov eax, esi

Listing 17.5.12 - Division par 10000 - Conversion

Le code correspondant pour la conversion par 10_000 est présenté Listing 17.5.12.
On commence par multiplier eax par 0,0001 puis on calcule le reste. Ici, on uti-
lise l'instruction imul avec trois opérandes au lieu d’'un code n’utilisant que des
additions et des décalages comme par exemple :

lea
lea
lea
lea
shl
sub

esi,
eax,
esi,
eax,
eax,
ebx,

[edx
[esi
[eax
[esi
4

eax

+ + + +

edx * 4] 8 5 % (x/10000)
esi x 4] ; 25 % (x/10000)
eax * 4] ; 125 % (x/10000)
esi * 4] ; 625 * (x/10000)

; 10000 *« (x/10000)

qui prend plus de temps a 'exécution.

17.6. TESTS DE PERFORMANCE 431

17.6 Tests de performance

Afin de tester les différentes versions que nous avons écrites sur différentes
architectures, nous allons examiner les résultats obtenus pour les méthodes sui-
vantes :

e 1 : version C++ avec conversion de x grace a std::to_string et tableaux
d’entiers

e 2 : version C++ avec conversion de x grace a std: :to_string et tableaux
d’octets

e 3 :version C++ avec conversion par divisions successives et tableaux d’entiers
e 4 :version C++ avec conversion par divisions successives et tableaux d’octets
e 6 : version assembleur traduction de la méthode 4

e 7 : amélioration de la méthode 6 avec remplacement de la division par une
multiplication

e 8 : amélioration de la méthode 7 avec dépliage

e 9 : amélioration de la méthode 8 avec comparaison vectorielle

e 10 : méthode 9 avec mélange d’instructions SSE et AVX

e 11 : méthode 9 avec uniquement des instructions SSE

e 12 : méthode 9 avec uniquement des instructions AVX

e 13 : division par 100 mais pratiquée avec multiplication et table de valeurs
e 14 : amélioration de la méthode 13 avec dépliage de la conversion

e 15 : amélioration de la méthode 14 avec comparaison vectorielle

e 16 : utilisation du format BCD, instructions assembleur classiques

e 17 : utilisation du format BCD, instructions pdep et movbe

e 23 : division par 10000, version 4

Etant donné que nous travaillons avec des entiers non signés, nous ne pouvons
trouver que les six premiers nombres auto-descriptifs, le septieme nécessitant une
représentation sur 64 bits.

Nous avons testé les fonctions sur différents matériels, cependant avec gcc 10
sur certaines machines et gcc 12 sur d’autres ce qui implique des temps de calculs
supérieurs avec gcc 10 pour les méthodes 1 a 4. C’est le cas pour le Ryzen 7 1700X
pour lequel on utilise gcc 10. On a donc fait figurer la version de gcc utilisée dans
les tables D.1 et D.2 qui recensent les résultats d’exécution des méthodes pour les
processeurs Intel et AMD respectivement.

L’analyse des résultats montre que la méthode 4, traduite par le compilateur
est généralement performante. Cependant les méthodes 13 et 14 qui utilisent des
divisions par 100 plut6t que par 10 se révelent bien plus performantes. Visiblement

432 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

Marque Intel Intel Intel Intel Intel Intel

Gamme Pentium Corei7 Corei5 Corei3 Corei5 Corei7
Modele D 860 3570k 6100 7400 4790

1 cpp 32 bits 42.74 20.40 19.03 15.91 16.83 10.38
2 cpp 8 bits 40.36 19.39 15.04 11.58 13.52 11.06
3 tabs 32 bits 29.86 14.68 12.69 10.92 11.54 7.77
4 tabs 8 bits 26.44 14.22 10.60 7.08 7.53 7.95
6 asm v1 9546 29.58 23.28 19.03 19.78 20.40
7 asm v2 95.20 29.57 22.82 18.61 19.47 20.18
8 asm v3 24.02 12.02 9.63 6.87 7.28 7.47
9 asm v4 — — — 6.71 7.10 7.33
10 asm v5 SSE/AVX — — — 8.64 9.37 31.74
11 asm v6 SSE 37.36 12.09 10.23 8.64 9.40 8.35
12 asm v7 AVX — — — 8.41 9.22 8.14
13 asm v100 21.79 9.94 7.86 6.01 6.50 6.36
14 asm v101 21.55 10.19 7.85 6.02 6.38 6.35
15 asm v102 — — 9.01 7.32 7.96 7.23
16 asm bcd v1 108.34 48.10 47.30 44.65 4793 4244
17 asm bcd v2 — — — 44.53 47.59 43.46
23 asm v10004 20.56 7.94 6.81 4.85 5.20 5.63

ratio (1 / 23) 2.07 2.56 2.79 3.28 3.23 1.84

ratio (4 / 23) 1.28 1.79 1.13 1.45 1.44 1.41

TABLE 17.3 — Résultats comparatifs des méthodes pour la recherche des nombres auto-
descriptifs pour les architectures anciennes Intel

la méthode 13 est la plus performante chez Intel alors que la méthode 14 l'est chez
AMD.

Mais c’est la méthode des divisions par 10000 qui est au final la plus intéressante.

On notera que pour 'Intel i5 12400F, utiliser a la fois le SSE et 'AVX cause
probleme avec un temps d’exécution de plus de 50 secondes. Alors que pour les
autres architectures ce probleme n’existe pas.

17.6. TESTS DE PERFORMANCE 433

Marque Intel Intel Intel Intel

Gamme Corei7 Corei5 Corei7 Corei5

Modele 8700 10400f 10850h 12400
1 cpp 32 bits 13.35 14.98 8.88 6.25
2 cpp 8 bits 9.50 11.15 8.44 5.91
3 tabs 32 bits 9.90 10.22 5.47 3.82
4 tabs 8 bits 5.78 6.87 5.20 3.88
6 asm v1 15.83 18.74 14.30 5.93
7
8
9
1

asm v2 15.39 17.69 14.03 5.77
asm v3 5.73 6.56 5.29 3.51
asm v4 5.58 6.35 5.04 3.39
O asm v5 SSE/AVX 7.06 8.22 6.49 58.40

11 asm v6 SSE 7.05 8.34 6.50 5.17
12 asm v7 AVX 6.87 8.07 6.29 5.17
13 asm v100 4.97 5.87 4.57 2.82
14 asm v101 4.86 5.76 4.60 2.87
15 asm v102 6.18 7.01 5.51 4.64
16 asm bcd v1 36.89 42.69 33.55 35.14
17 asm bcd v2 38.07 43.27 33.37 35.81
23 asm v10004 4.00 4.56 3.96 2.43

ratio (1 / 23) 3.33 3.28 2.24 2.57
ratio (4 / 23) 1.44 1.50 1.31 1.59

TABLE 17.4 — Résultats comparatifs des méthodes pour la recherche des nombres auto-
descriptifs pour les architectures récentes Intel

434 CHAPITRE 17. ETUDE DE CAS NOMBRES AUTO-DESCRIPTIFS

Marque AMD AMD AMD AMD
Gamme Phenom Athlon Ryzen 7 Ryzen 5

Modele 1090T 200 GE 1700X 5600g
2009 2018 2017 2020

gce 10 10 10 12

1 cpp 32 bits 22.33 17.20 15.30 12.34
2 cpp 8 bits 21.45 15.90 13.15 8.01
3 tabs 32 bits 15.54 11.24 10.05 9.19
4 tabs 8 bits 12.52 8.75 7.87 5.09
6 asm v1 39.17 26.04 23.83 5.81
7 asm v2 39.29 26.03 23.70 5.80
8 asm v3 12.01 9.24 8.36 4.44
9 asm v4 — 9.29 8.36 4.40
10 asm v5 SSE/AVX — 11.89 10.71 5.52
11 asm v6 SSE 12.53 11.84 10.73 6.10
12 asm v7 AVX — 11.90 10.71 5.48
13 asm v100 9.78 7.96 7.25 3.67
14 asm v101 9.75 7.55 6.29 3.66
15 asm v102 — 9.64 8.71 5.08
16 asm bcd v1 35.83 33.12 29.67 23.53
17 asm bcd v2 — 67.41 61.35 24.56
23 asm v10004 8.77 5.63 5.57 3.12

ratio (1 / 23) 2.54 3.05 2.74 3.95

ratio (4 / 23) 1.42 1.55 1.41 1.63

TABLE 17.5 — Résultats comparatifs des méthodes pour la recherche des nombres auto-
descriptifs pour les architectures AMD

Annexe A

Conventions d’appel Linux

Nous récapitulons Table A.1 les conventions d’appel sous Linux en 32 et 64 bits.

Pour une vision exhaustive des conventions d’appel on pourra se référer a [1].

I'appelé si modifiés

Catégorie Linux 32 bits Linux 64 bits
Registres EAX, ECX, EDX, RAX, RCX, RDX, RSI, RDI
modifiables STO-ST7, R8-R11, STO-ST7

par appelé XMMO-XMM7 XMMO-XMM15

Registres EBX, EBP, RBX, RBP

a préserver dans ESI, EDI R12-R15

Parameétres

Pile [ebp+8], [ebp+12], ...

RDI, RSI, RDX, RCX,
R8, R9, (entiers)
XMMO-7 (flottants)

Valeur de retour

- entier EAX, EDX :EAX RAX, RDX :RAX

- flottant STO XMMo

Appel rapide ECX, EDX mode par défaut
(fast call)

TABLE A.1 — Conventions d’appel Linux 32 et 64 bits

Note : en architecture 64 bits si le sous-programme appelé possede plus de
six parametres entiers ou plus de huits parametres flottants alors les parameétres

restants seront placés dans la pile.

435

436 ANNEXE A. CONVENTIONS D’APPEL LINUX

Annexe B

Le GNU Débogueur

GDB le GNU débogueur est un logiciel qui permet de déboguer, c’est a dire de
trouver des bogues (ou bugs en anglais) dans un programme. La plupart des pro-
blémes que 'on rencontre lors de la phase de débogage d’un programme concerne
les pointeurs ou le débordement de pile losrque I'on appelle de maniére récursive
une fonction.

Pour analyser son programme il suffit de compiler les sources avec les options
de débogage :

e pour nasm il s’agit de -g -F dwarf sous Linux

e pour les compilateurs C/C++, on utilise 'option -g ou -ggdb

Une fois 'exécutable obtenu, on lance gdb ou I'un des programmes basés sur gdb
et qui dispose d’une interface graphique comme xxgdb ou ddd, le Data Display De-
bugger. Cependant, certaines commandes de gdb sont intéressantes a connaitre pour

étre utilisées dans ces interfaces graphiques qui sont parfois un peu rudimentaires
ou capricieuses lors de I'affichage.

B.1 Programme de démonstration

Le programme sur lequel nous allons travailler est celui du Listing B.1.1.

On notera deux bogues dans ce programme :

e en lignes 25 et 29, alors qu'on a déclaré un tableau de 10 entiers, on utilise
une onzieme valeur

e en ligne 34, 'appel récursif de la fonction va provoquer une saturation de la
pile

437

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

438 ANNEXE B. LE GNU DEBOGUEUR

#include <iostream>
#include <string>

std;
int *table;
Person {
string nom, prenom, adresse;
int t;
} Person;

int function(int n, Person p) {
(n ==0) {
p-t;

1 + function(n-1, p);

int main() {

table = int [10 1;
(int 1 = 0; i < 11; ++i) {
table[i] = i;
}
(int 1 = 0; i < 11; ++i) {
cout << table[i J << " ";
}

Person person;
person.t = 1;
cout << function(1000000, person);

EXIT_SUCCESS;

Listing B.1.1 - Programme comportant quelques bogues

B.2 Compilation et exécution

On commence par compiler le programme avec 'option -ggdb et sans options
d’optimisation car celles-ci pourraient par exemple dérécursiver la fonction qui
posera probleme par la suite.

B.2. COMPILATION ET EXECUTION 439

10

11

12

13

14

15

16

17

18

19

10

‘g++ -0 test_gdb.exe test_gdb.cpp -Wall -std=c++11 -ggdb

Puis, on lance gdb sur 'exécutable :

gdb ./test_gdb.exe

For help, type "help”.

(gdb)

GNU gdb (Ubuntu 9.2-0ubuntul~20.04.1) 9.2

Copyright (C) 2020 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying” and "show warranty” for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration” for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

Type "apropos word” to search for commands related to "word”...
Reading symbols from ./test_gdb.exe...

A partir du prompt de gdb, on tape la commande run afin de lancer 'exécution
du programme :

(gdb) run

failed.

Starting program: test_gdb.exe

test_gdb.exe: malloc.c:2379: sysmalloc: Assertion ~(old_top ==

initial_top (av) && old_size == @) || ((unsigned long) (old_size) >= MINSIZE
&& prev_inuse (old_top) && ((unsigned long) old_end & (pagesize - 1)) == 0)'

Program received signal SIGABRT, Aborted.
__GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50
50 ../sysdeps/unix/sysv/linux/raise.c: Aucun fichier ou dossier de ce type.

On lance ensuite la commande backtrace (bt en abrégé) afin de visualiser les
appels de fonctions. Celle-ci affiche des frames, c’est a dire les différents appels de
sous-programmes qui sont réalisés.

(gdb) bt

#0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50

#1 0x00007ffff7bcc859 in
#2 0x00007ffff7c3f30a in

_GI_abort () at abort.c:79
_malloc_assert (...) at malloc.c:298

440 ANNEXE B. LE GNU DEBOGUEUR

s |#3 0x00007ffff7c4196f in sysmalloc (nb=nb@entry=1040, av=av@entry=0x7ffff7d96b80
6 |<main_arena>) at malloc.c:2379

7 |#4 0x00007ffff7c427c3 in _int_malloc (av=av@entry=0x7ffff7d96b80@ <main_arena>,
s |bytes=bytes@entry=1024) at malloc.c:4141

9 |#5 0x00007ffff7c44184 in __GI___libc_malloc (bytes=1024) at malloc.c:3058

10 |#6 0x00007ffff7c2bd34 in __GI__IO_file_doallocate (...) at filedoalloc.c:101

1 |#7 0x00007ffff7c3bfe0 in __GI__IO_doallocbuf (...) at libioP.h:948

12 |#8 0x00007ffff7c3af6@ in _IO_new_file_overflow (...) at fileops.c:745

13 |#9 0x00007ffff7c396e5 in _IO_new_file_xsputn (...) at libioP.h:948

14 |[#10 _IO_new_file_xsputn (...) at fileops.c:1197

15 |#11 0x00007ffff7c2d3f1 in __GI__IO_fwrite (...) at libioP.h:948

16 |#12 0x00007ffff7edc4a8 in ... from /1lib/x86_64-1linux-gnu/libstdc++.s0.6

17 |#13 0x00007ffff7eead5f in std::ostream& std::ostream::_M_insert<long>(long) ()
18 | from /1ib/x86_64-1linux-gnu/libstdc++.s0.6

19 |#14 0x000055555555535¢c in main () at test_gdb.cpp:29

20 | (gdb)

Dans le cas présent c’est la derniere frame (la frame 14) qui nous indique qu’a
partir de la ligne 29 de notre programme, dans la fonction main, une série d’appels
a provoquer lerreur.

On se redirige donc vers le code source de I'erreur en tapant :

1 | (gdb) frame 14
2 |[#14 0x000055555555535¢c in main () at test_gdb.cpp:29
3 |29 cout << table[i] << " ";

4 | (gdb)

C’est donc I'instruction d’affichage qui a mené a l'erreur.

B.3 Afficher les données

On peut donc se demander ce que contient le tableau d’entiers table. Pour
lafficher on utilise la commande x/ suivie du nombre d’éléments a afficher, ainsi
que le format d’affichage et le type de données a afficher. On peut se référer a la
Table B.1 pour connaitre la maniére d’afficher les données.

On affiche par exemple les 20 double mots a partir du tableau table :

1 | (gdb) x/20@d table

2 | @x55555556aebh0: 0 1 2 3
3 | @x55555556aec0: 4 5 6 7
4 | 0@x55555556aed0: 8 9 10 0
s | @x55555556aee0: 0 0 0 0
6 |0x55555556aef0: 0 0 0 0

B.4. ELECTRIC FENCE 441

Format Type
d (décimal) b (octet - 8 bits)
u (décimal non signé) h (mot - 16 bits)
t (binaire) w (double mot - 32 bits)
o (octal) g (giant - 64 bits)
x (hexadécimal)

f (float)

a (address)

i (instruction)
¢ (char)

s (string)

TABLE B.1 — Format et type d’affichage de gdb

On peut également afficher la variable i de deux manieres différentes :

1| (gdb) x/1d &i

2 |OxX7fffffffdboc: 0
3 | (gdb) print i

4 |\$1 =0

Néanmoins, on comprend mal pourquoi le programme aurait provoqué une
erreur lors de I'affichage de la premiére valeur. En fait, la génération de cette erreur
provient de la boucle précédente et de l'affectation de la onziéme valeur a la ligne
25 du programme.

B.4 Electric Fence

Pour détecter cette erreur il existe un utilitaire appelé Electric Fence dont le but
est de se concentrer sur deux types d’erreurs :

e l'acceés en dehors d’'un espace mémoire alloué dynamiquement

e l'acces a une zone mémoire désallouée par free()

Pour installer Electric Fence, il suffit d’installer le paquet du méme nom :

1 |sudo apt install electric-fence
2 |dpkg -L electric-fence

3 | /.

4 |/usr

5

/usr/1lib

442 ANNEXE B. LE GNU DEBOGUEUR

10

/usr/lib/libefence.a
/usr/lib/libefence.s0.0.0

/usr/lib/libefence.so
/usr/lib/libefence.so.0@

On voit que les librairies sont installées dans /usr/1ib. On lance alors gdb, puis

dans la console de gdb, on saisit la ligne suivante avant de lancer 'exécution du
programme ce qui permet de charger la librairie :

10

11

12

13

14

15

(gdb) set environment LD_PRELOAD=/usr/lib/libefence.so
(gdb) run
Starting program: test_gdb.exe

Electric Fence 2.2 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/1ib/x86_64-1linux-gnu/libthread_db.so.1".

Electric Fence 2.2 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

Program received signal SIGSEGV, Segmentation fault.
0x0000555555555317 in main () at test_gdb.cpp:25

25 table[i 1 = i;
(gdb) print i
\$1 = 10

Electric Fence indique que l'erreur se situe sur la ligne 25, on affiche alors i qui

vaut 10. Or le tableau est de 10 entiers et on ne peut donc manipuler que les indices
0 a 9 du tableau. On corrige alors les erreurs dans les deux boucles en lignes 24
et 28 en remplacant 11 par 10.

B.5 Erreur liée au débordement de pile

Apres correction des erreurs, on recompile le programme et on relance gdb :

(gdb) run
Starting program: test_gdb.exe

Program received signal SIGSEGV, Segmentation fault.
0x000055555555547d in Person::Person (this=<error reading variable:
Cannot access memory at address Ox7fffff7feff8>) at test_gdb.cpp:7
7 typedef struct Person {

L’erreur n’est pas facile a comprendre car elle masque la saturation de la pile.

Dans ce cas il faut utiliser la commande backtrace avec un argument de —1 afin
de connaitre le nombre total de frames :

B.5. ERREUR LIEE AU DEBORDEMENT DE PILE 443

1 | (gdb) bt -1
2 |#52396 0x0000555555555398 in main () at test_gdb.cpp:34

Il existe donc 52396 appels de sous-programmes dans la pile. Il suffit alors de
relancer la commande backtrace sans argument :

1 |#0 0x000055555555547d in Person::Person (this=<error reading variable:
2 |Cannot access memory at address Ox7fffff7feff8>) at test_gdb.cpp:7

3 |#1 @x000055555555523d in function (n=947606, p=...) at test_gdb.cpp:16
4 |#2 0x0000555555555254 in function (n=947607, p=...) at test_gdb.cpp:16
s |#3 @x0000555555555254 in function (n=947608, p=...) at test_gdb.cpp:16

7 |#52394 0x0000555555555254 in function (n=999999, p=...) at test_gdb.cpp:16
s |#52395 0x0000555555555254 in function (n=1000000, p=...) at test_gdb.cpp:16
9 |#52396 0x0000555555555398 in main () at test_gdb.cpp:34

On voit qu’il existe 52395 appels récursifs au sous-programme appelé fonction.

On peut obtenir la valeur du sommet de pile grace a la commande info registers rsp
en se placant dans la frame 0 et la frame 52396 :

1 | (gdb) frame @

2 |[#0 0x000055555555547d in Person::Person (this=<error reading
3 |variable: Cannot access memory at address Ox7fffff7feff8>)

4 |at test_gdb.cpp:7

s |7 typedef struct Person {
6 |(gdb) info registers rsp
7 | rsp ox7fffff7feffo Ox7fffff7feffo

s | (gdb) frame 52396
9 |#52396 0x0000555555555398 in main () at test_gdb.cpp:34

10 |34 cout << function(1000000, person);
11 | (gdb) info registers rsp
12 |rsp ox7fffffffdboo ox7fffffffdboe

On a donc une différence entre la frame 0 et la frame 52396 de ffdb00,5 —
7feff0, = 7feb104, soit 8 383 248 octets. Sachant que la pile posséde une taille de
8 Mo = 8 388 608 octets, on a saturé la pile car lors du lancement du programme
on a utilisé une partie de la pile.

Deux possibilités s’offrent a nous :

e soit modifier la taille de la pile en utilisant la command ulimit dans un
terminal, mais cela n’est généralement pas recommandé

e soit revoir notre programme en dérécursivant le sous-programme

444

B.6 Autres commandes

B.6.1 Afficher le programme

11

12

13

14

15

16

17

18

19

20

21

22

ANNEXE B. LE GNU DEBOGUEUR

Il s’agit de la commande list éventuellement suivie de la ligne du programme :

(gdb) list

6
7
8
9
10
11
12
13
14
15

typedef struct Person {

string nom, prenom, adresse;

int t;
} Person;

int function(int n, Person p) {

if (n==0) {

return p.t;

} else {

(gdb) list 24

19
20
21
22
23
24
25
26
27
28

int main() {

table = new int [10 J;

for (int i = 0; i < 10; ++i) {
table[i] = i;

3

for (int 1 =0; i < 10; ++i) {

B.7 Afficher le contenu des registres

On utilise la commande info registers qui peut étre suivie du nom du registre
ou alors de la commande print :

(gdb) info registers

rax
rbx
rcx
rdx
rsi
rdi
rbp
rsp
r8

0x555555558040
©x555555555590
0x20
Ox7ffff7f903d0
©0x555555556005
Ox7ffff7d987e0
ox7fffffffdc70
ox7fffffffdb70
ox1

93824992247872
93824992236944
32
140737353679824
93824992239621
140737351616480
ox7fffffffdc70
ox7fffffffdb70
1

B.8. AFFICHER LE CONTENU DES VARIABLES 445

11 r9 ox0 0

12 [r10 ox7ffff7de7cbc 140737351941308

13 |r1l Ox7ffff7eea690 140737353000592

14 |[r12 0x5555555550e0 93824992235744

15 [r13 Ox7fffffffddeo 140737488346464

16 |[r14 0x0 0

17 |r15 ox0 4]

18| rip 0x555555555319 0x555555555319 <main()+122>

19 |eflags 0x293 [CF AF SF IF]

20 |CS 0x33 51

21 |SS 0x2b 43

2 |ds ox0 0

23 |es 0x0 0

24 |fs 0x0 4]

25 | gS 0x0 0

2 | (gdb) info registers xmm@

27 | Xmm@ {v4_float = {0x0, 0x0, 0x0Q, 0x0}, v2_double = {0x0, 0x0},
28 v16_int8 = {0x0 <repeats 16 times>}, v8_intl16 = {@0x0, 0x0, 0x0, 0x0,
29 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0Q, 0x0}, v2_int64 = {0x0, 0x0},
30 uint128 = 0x0}

31 | (gdb) print $xmm@.v8_int16

2 |$4 = {0, 0, 0, 0, 0, 0, 0, O}

33 | (gdb) print $eax

34 | $5 = 1431666752

B.8 Afficher le contenu des variables

Pour afficher le contenu d’une variable on utilise print :

1 | (gdb) print i

2 [$1 =2

3 | (gdb) print table[i]
4 |$2 =2

s | (gdb) print table[0]
6 |$3 =10

B.9 Modifier le contenu des registres ou des variables

Quand on désire modifier le contenu d’une variable ou d’un registre on utiliser
set :

446 ANNEXE B. LE GNU DEBOGUEUR

1 | (gdb) set variable i=4
2 | (gdb) set $eax=1

3 | (gdb) print $eax

4 %4 =1

B.10 Points d’arrét

Les points d’arrét (ou breakpoints en anglais) permettent d’arréter 'exécution
du programme sur une instruction particuliere. Il faut pour cela spécifier le nom du
fichier et/ou la ligne :

1 | (gdb) break 24

2 |Breakpoint 1 at 0x12cb: file test_gdb.cpp, line 24.

3 | (gdb) break test_gdb.cpp:25

4 |Breakpoint 3 at @x5555555552fa: file test_gdb.cpp, line 25.

I est également possible de déclencher un point d’arrét si une condition est
réalisée. Par exemple, on veut arréter I'exécution du programme dans une boucle,
si la variable de boucle a pour valeur 5 :

1 | (gdb) break test_gdb.exe:29 if (i==5)

2 |Breakpoint 1 at 0x1319: file test_gdb.cpp, line 29.
3 [(gdb) run

4 |Starting program: test_gdb.exe

6 |Breakpoint 1, main () at test_gdb.cpp:29

7 |29 cout << table[i] << " ",
s | (gdb) print i
9 [$1 =5

B.11 Surveiller un changement de valeur

Une autre fonctionnalité intéressante est le watchpoint qui permet de stopper
I'exécution du programme des lors qu'une valeur change. On peut définir des points
de surveillance lors de la lecture ou de I'écriture d’une variable (watch, rwatch,
awatch) :

1 | (gdb) rwatch table

2 |Hardware read watchpoint 1: table
3 | (gdb) run

4 |Starting program: test_gdb.exe

B.11. SURVEILLER UN CHANGEMENT DE VALEUR 447

6 |Hardware read watchpoint 1: table

s |Value = (int *) 0x55555556aeb@
9 |@x0000555555555301 in main () at test_gdb.cpp:25
10 |25 table[i 1 = i;

Il existe beaucoup d’autres commandes a utiliser avec gdb comme les com-
mandes de base :

e continue (abrégé en c) pour continuer I'exécution du programme jusqu’a ce
qu’il se termine ou qu'un point d’arrét ou de surveillance soit déclenché

e next (abrégé en n) qui exécute la prochaine instruction et passe a la suivante

e step (abrégé en s) qui exécute la prochaine instruction mais s’il s’agit d’'un
appel de fonction on s’arrétera a I'intérieur de la fonction

On pourra également se référer au Wiki de gdb : https://sourceware.org/gdb/
wiki/.

https://sourceware.org/gdb/wiki/
https://sourceware.org/gdb/wiki/

448 ANNEXE B. LE GNU DEBOGUEUR

Annexe C

Travail sur bsr

C.1 Introduction

Dans cette annexe nous investiguons de maniere plus détaillée les résultats liés a
l'utilisation de I'instruction assembleur bsr et de son implantation en comparaison
également avec l'instruction 1zcnt.

Nous rappelons que 'instruction bsr (Bit Scan Reverse) recherche le bit le plus
significatif (le plus a gauche) d’'une opérande 16, 32 ou 64 bits et stocke le résultat
dans un registre de méme taille. Cependant si 'opérande source contient la valeur
0, le résultat de I'opération n’est pas défini et dans ce cas le bit ZF du registre
eflags est positionné a 1, sinon il sera positionné a 0.

L’instruction 1zcnt, quant a elle, compte le nombre de O significatifs. Elle
est donc proche de bsr mais elle nécessite de soustraire a la taille de son
opérande, le résultat qu’elle produit afin d’obtenir la méme valeur que bsr.
Contrairement a bsr, 1zcnt produit toujours un résultat. Si 'opérande source

est égale a 0, alors elle retournera la valeur 32!
\ J

On notera que :

e linstruction 1zcnt fait normalement partie du jeu d’instruction ABM pour AMD
et BMI1 pour Intel.

e pour les microprocesseurs qui ne supportent pas I'instruction 1zcnt, cette
derniere est remplacée par l'instruction bsr ce qui risque de fausser les
résultats. Par exemple I'Intel Q6600 ne supporte pas l'instruction 1zcnt.

Pour résumer :

449

BwW N =

450 ANNEXE C. TRAVAIL SUR BSR

mov ebx, 129
bsr eax, ebx

et le code suivant

mov ebx, 129
mov eax, 31

lzcnt ebx, ebx
sub eax, ebx

donneront le méme réslultat, soit 7 dans le registre eax.

C.2 Comparaison bsr et lzcent

Un premier test préalable consiste a comparer deux implantations basiques
afin de comparer l'efficacité des instructions assembleur bsr et 1zcnt. Les résultats
figurent Table C.1 : on donne trois valeurs.

Intel Intel Intel Intel
Core i3 Corei5 Corei7 Xeon

6100 7400 8700 4208

bsr 10,51 10.35 15.01 13.50 10.62 10.35
lzent 2.63 2.59 15.00 18.93 10.58 10.16
ratio 3.99 3.99 1.00 0.71 1.00 1.00

TABLE C.1 — Nombre moyen de milliards de cycles sur 10 exécutions pour une boucle de 3
milliards d’appels a bsr ou 31-1zcnt.

La premiere correspond au nombre de milliards de cycles processeur pour 1'éxé-
cution d’'une boucle qui réalise 3 milliards d’appels de I'instruction bsr appliquée
sur un registre 32 bits. La seconde fait la méme chose mais en calculant 31 moins le
résultat de 1zcnt. Enfin, la troisiéme valeur (ratio) est le rapport des deux valeurs
précédentes.

On s’apercoit que 1zcnt est plus rapide que bsr sur certaines architectures, cela
correspond au cas ou la valeur ratio est plus grande que 1.

C.3 Code a traduire

Le code a traduire est le suivant :

N o LW N =

O 0 N o Ll AW N =

[T T S e S e T T
0w N o 1AW N = O

C.3. CODE A TRADUIRE 451

u32 method (u32 xt,
u32 sum = 0;
(u32 i = 0; i < size; ++i) {
sum += function bsr (t[i]);

u32 size) {

sum;

Il consiste a réaliser la somme des résultats de la fonction function_bsr ap-
pliquée sur chacun des éléments d’un tableau de valeurs entieres. La fonction
function_bsr peut alors étre implantée de différentes manieres :

e soit sous la forme d’une fonction C qui reproduit le comportement de l'ins-
truction assembleur bsr dans le cas ol on ne pourrait avoir acces a bsr grace
au compilateur

e soit par un appel direct a bsr, si le compilateur le permet, c’est le cas de gcc

e soit par un appel a la fonction _builtin_clz du compilateur gcc, qui va
généralement remplacer bsr par lzcnt

On codera également en assembleur le sous-programme method en utilisant bsr
ou lzcnt et en applicant un dépliage de boucle ou en essayant de supprimer les
dépendances lors des calculs.

Enfin, il existe une instruction vectorielle du jeu AVX512 appelée vplzcntd qui
permet donc de vectoriser le code et elle se révele trés efficace comme le montre
les résultats ci-apres. Voici un apercu du code vectorisé en utilisant des registres de
128 bits :

mov eax, 31
movd xmm7, eax
pshufd xmm7, xmm7, O ; xmm7 = [31,31,31,31]
pxor xmmO, xmmO ; xmmO = [0,0,0,0]
; boucle dépliée par 4
.for:
movdga xmml, xmm7 xmml = [31,31,31,31]
vplzcntd =xmm2, [ebx + ecx * 4] xmm2 = lzcnt (t[i:1i+3])
psubd xmml, xmm2
paddd xmmO, xmml
add ecx, 4
cmp ecx, edx
jne .for
phaddd xmm0O, xmmO calcul du résultat final
phaddd xmmO, xmmO
movd eax, xmmO

Le registre xmm@ représente la variable sum. Le registre xmm7 stocke quatre fois la
valeur 31 et sera placé a chaque itération de la boucle dans xmm1. On soustraira a

452 ANNEXE C. TRAVAIL SUR BSR

xmm1 le résultat de vplzcntd qui sera placé dans xmm2.

C.4 Résultats

Nous présentons Table C.2 les résultats obtenus lors de tests sur différentes
machines. Les différentes implantation sont les suivantes :

Code C avec appel d’'une fontion bsr écrite en C
Code C avec appel de la fonction __builtin_clz
Code C avec appel de I'instruction assembleur bsr
Code assembleur avec boucle simple utilisant bsr

Code assembleur avec boucle dépliée par 4 utilisant bsr

A o

Code assembleur avec boucle dépliée par 4 utilisant bsr et élimination des
dépendances entre registres

N

Code assembleur avec boucle simple utilisant de 31 -1zcnt

8. Code assembleur avec boucle dépliée par 4 utilisant 31 -1zcnt et élimination
des dépendances entre registres

9. vectorisation en AVX512, seulement disponible sur Xeon Silver 4208

Méthode Intel Intel Intel

Core i3 Corei5 Corei7
6100 7400 8700

1 C function bsr 10.12 8.79 13.80 14.59 10.79 12.80
2 C builtin clz 1.38 1.19 1.05 1.15 0.86 0.10
3 Chbsr 1.13 0.95 0.29 0.31 0.23 0.53
4 asm bsr 1.08 0.95 0.56 0.60 0.45 0.73
5 asm bsr ur4 1.08 0.96 0.30 0.31 0.23 0.39
6 asm bsr ur4 nodep 1.06 0.96 0.28 0.31 0.23 0.36
7 asm lzent 0.50 0.44 0.59 0.62 0.47 0.73
8 asm lzent ur4 nodep 0.49 0.44 0.59 0.63 0.47 0.79
9 asm avx512 vplzent N/A N/A N.A N/A N/A 0.00

TABLE C.2 — Résultats comparatifs d’implantation de la fonction bsr

Concernant 'AVX512, le temps d’exécution est tres faible et donc n’affiche que
0 secondes, en fait il s’agit d’environ 45 x secondes.

w0 NN AW N =

O N L AW N =

Annexe D

Implantation de la fonction signe

D.1 Introduction

On désire implanter de la maniere la plus efficace possible, la fonction signe
(sign en anglais) d’un entier signé, qui donne le signe de ce dernier :

i32 sign(i32 x) {
(x < 0)
_1;
(x > 1)
1;

0;

Une traduction intelligente de cette fonction en assembleur x86 32 bits est la
suivante :

10
11
12
13

sign:
push ebp
mov ebp, esp
mov eax, [ebp + 8]
cmp eax, O ; on sort avec 0 si x = 0
jz .end
mov eax, 1
jg .end
mov eax, -1
.end:
mov esp, ebp
pop ebp
ret

Elle consiste a charger la valeur de la variable x dans eax puis a la comparer
a la constante 0. Si le résultat de la comparaison indique 0 on se rend a la fin de
la fonction et on sort avec la valeur 0. Sinon on met la valeur 1 dans eax et si la

453

O o N AW -

454 ANNEXE D. IMPLANTATION DE LA FONCTION SIGNE

comparaison précédente avec 0 nous indique que eax était supérieur a 0, on sort
de la fonction. Finalement, si x n’est pas égal a 0 ou supérieur a 0, c’est qu’il est
inférieur a 0 et on met la valeur —1 dans eax, qui sera la valeur de retour de la
fonction. Dans cette implantation, on utilise donc deux sauts conditionnels ce qui
n’est pas forcément une bonne chose.

Il est donc nécessaire de trouver une implantation plus performante de la
fonction.

D.2 Amélioration sans passer par ebp

La premiere amélioration a réaliser consiste a ne pas passer par ebp pour
récupérer x mais a passer par esp :

sign:
mov eax, [esp + 4]
cmp eax, O ; on sort avec 0 si x = 0
jz .end
mov eax, 1
jg .end
mov eax, -1
.end:
ret

On pourrait également réaliser un appel de type fastcall ce qui implique que x
serait placée dans ecx, mais nous allons nous cantonner a une récupération de la
valeur de x par I'intermédiaire de esp.

D.3 Amélioration avec suppression d’un saut

Il est possible de commencer par supprimer un saut en utilisant I'instruction
setCC. Plutot que de mettre x dans eax, on le place dans edx. On traite le cas pour
lequel x est positif en fixant les flags grace a I'instruction test, puis les deux autres
cas (négatif ou nul) grace a setnz qui mettra la valeur 1 dans eax si x est non nulle
et 0 si x est nulle. Il ne reste plus qu’a prendre le complémentaire de eax pour
obtenir une valeur négative.

jmr3:
mov edx, [esp + 4]
mov eax, 1 ; valeur de retour 1
test edx, edx ; si x > 0 sortir avec true
jg L1
setnz al ; si x != 0 al=1 sinon al=0
neg eax

16

10

O 0 N oy Ll AW N =

e
=]

D.4. AMELIORATIONS SANS SAUT 455

.L1:
ret

D.4 Ameéliorations sans saut

Une amélioration qui devrait étre plus performante consiste a supprimer les deux
sauts en combinant plusieurs séquences d’instructions de maniere bien particuliere.
Voici dans ce qui suit, trois exemples de suppression des sauts conditionnels.

D.4.1 Conversion et négation

La premiere version sans saut combine trois instructions dans l'ordre suivant :
cdq, neg, adc.

jmr4:

mov eax, [esp + 4]

cdg ; edx:eax = x
; si eax < 0, edx = -1 (OxXFF_FF_FF_FF)
; si1 eax >= 0, edx = 0

neg eax ; si eax = 0 CF=0
; sinon CF = 1

adc edx, edx ; 81 eax = 0, edx = 0
; sinon eax = 1

mov eax, edx

ret

L’instruction cdq convertit la valeur contenue dans eax dans edx: eax en étendant
le signe. Si eax contient une valeur positive ou nulle, edx sera égal a 0. Sinon, si
eax contient une valeur négative (bit de poids fort a 1), edx contiendra —1, soit au
format hexadécimal : FF* FF FF _FF.

On calcule ensuite le complémentaire (du point de vue de la notation binaire en
complément a deux) de eax. Ici la valeur résultante ne sera pas utilisée mais ce qui
est intéressant c’est que I'instruction neg fixe le Carry flag a 1 si eax est différent de
0, et a 0 si eax vaut 0.

Des lors, il suffit d’appliquer adc, I'addition avec prise en compte de la rete-
nue sur edx pour obtenir la valeur a retourner et la placer dans eax. On a donc
I’évoluation du calcul suivant :

Instruction / cas ear <0 eax =0 eaxr >0
cdq (edx:eax) -1:x 0:0 0:x
neg eax CF=1 CF=0 CF=1
adc edx, edx —1+-14+1 04+0+0 0+0-+1

Résultat -1 0 +1

456 ANNEXE D. IMPLANTATION DE LA FONCTION SIGNE

D.4.2 Propagation du signe

Une autre possibilité consiste a utiliser le bit de signe en le recopiant grace a
l'instruction sar.

jmré:
mov eax, [esp + 4] ; eax = x
mov edx, eax ; edx = x
sar eax, 31 ; propagation du bit de signe
lea eax, [eax x 2 + 1]
add edx, edx
cmovz eax, edx
ret

On obtient dans dans eax la valeur —1 si la valeur de x est négative ou alors la
valeur 0 dans le cas contraire. L'utilisation de 1lea permet d’otenir dans eax la valeur
—1 si x est négative ou la valeur 1 dans les autres cas. Il faut ensuite distinguer le
cas ou x est égale a 0, ce qui réalisé par les deux instructions qui suivent.

Instruction / cas ear <0 ear=0 eax >0
sar eax,31 -1 0

lea eax, [eax * 2 + 1] -1 1 1
add edx, edx —2x 0 2x
cmovz eax, edx -1 0 1

D.4.3 Déplacements conditionnels

Enfin, la derniére possibilité que nous allons étudier est l'utilisation de deux
cmov. On place 1 dans edx et -1 dans ecx. Puis on compare eax a 0. Si c’est la cas,
on ne procédera a aucun changement et on sortira de la fonction avec la valeur 0.
Par contre, si x est positive I'instruction cmovg va déplacer la valeur de edx dans
eax, donc 1, ou alors si x est négative I'instruction cmovl va déplacer la valeur de
ecx dans eax, donc —1 :

jmr9:
mov edx, -1
mov eax, [esp + 4] ; eax = x
mov ecx, 1
cmp eax, 0
cmovg eax, ecx

cmovl eax, edx
ret

D.5. TESTS DE PERFORMANCE 457

D.5 Tests de performance

Il existe d’autres variantes de ces fonctions mais nous allons nous cantonner a
celles exposées ci-avant.

Afin de tester les différentes versions que nous avons écrites sur différentes
architectures, nous allons examiner les résultats obtenus pour les méthodes sui-
vantes :

: version de base

: version de base améliorée avec utilisation de esp

: version avec suppression d’un saut

: version sans saut avec cdq neg et adc

: version sans saut cdq xchg neg adc variante de la version 4

: version sans sans avec lea sar

[]
N O U WODN =

: version avec deux cmov

Marque Intel Intel Intel Intel Intel Intel
Gamme Corei7 Corei3 Corei5 Corei7 Corei7 Core i5

Modele 860 6100 7400 4790 10850H 12400F
2009 2015 2017 2014 2020 2021

jmr1 450 .040 15.994
jmr2 450 .040 16.736
jmr3 450 .040 18.456
jmr4 450 .040 13.944
jmrs 450 .040 13.742
jmr6 450 .040 10.052
jmr7 450 .040 10.052

NO U WN -

TABLE D.1 — Résultats comparatifs des méthodes pour la recherche des nombres auto-
descriptifs pour les architectures Intel

458 ANNEXE D. IMPLANTATION DE LA FONCTION SIGNE

AMD AMD
Phenom Ryzen 7

1090T 1700X

2009 2017
1 jmr1 450 .040 11.668
2 jmr2 450 .040 11.650
3 jmr3 450 .040 11.636
4 jmr4 450 .040 10.048
5 jmr5 450 .040 10.046
6 jmré 450 .040 10.052
7 jmr7 450 .040 10.052

TABLE D.2 — Résultats comparatifs des méthodes pour la recherche des nombres auto-
descriptifs pour les architectures AMD

Annexe E

Code ASCII de 0 a 127

Bin. Hex. Dec. ASCII Symbol Description
0000000 0 0 NUL NULL character
0000001 1 1 SOH Start of Heading
0000010 2 2 STX Start of TeXt
0000011 3 3 ETX End of TeXt
0000100 4 4 EOT End Of Transmission
0000101 5 5 ENQ Enquiry
0000110 6 6 ACK Acknowledge
0000111 7 7 BEL Bell
0001000 8 8 BS Backspace
0001001 9 9 TAB Horizontal Tab
0001010 A 10 LF Line Feed
0001011 B 11 VT Vertical Tab
0001100 C 12 FF Form Feed
0001101 D 13 CR Carriage Return
0001110 E 14 SO Shift Out
0001111 F 15 SI Shift In
0010000 10 16 DLE Data Link Escape
0010001 11 17 DC1 Device Control
0010010 12 18 DC2 Device Control
0010011 13 19 DC3 Device Control
0010100 14 20 DC4 Device Control
0010101 15 21 NAK Negative Acknowledge
0010110 16 22 SYN Synchronous Idle
0010111 17 23 ETB End of Transmission Block
0011000 18 24 CAN Cancel
0011001 19 25 EM End of Medium
0011010 1A 26 SUB Substitute

459

460 ANNEXE E. CODE ASCIIDE 0 A 127

0011011 1B 27 ESC Escape
0011100 1C 28 ES File Separator
0011101 1D 29 GS Group Separator
0011110 1E 30 RS Record Separator
0011111 1F 31 usS Unit Separator
0100000 20 32 SP Space
0100001 21 33 ! Exclamation mark
0100010 22 34 Only quotes above
0100011 23 35 # Pound sign
0100100 24 36 $ Dollar sign
0100101 25 37 % Percentage sign
0100110 26 38 & Commericial and
0100111 27 39 " Apostrophe
0101000 28 40 (Left bracket
0101001 29 41) Right bracket
0101010 2A 42 Asterisk
0101011 2B 43 + Plus symbol
0101100 2C 44 , Comma
0101101 2D 45 - Dash
0101110 2E 46 . Full stop
0101111 2F 47 / Forward slash
0110000 30 48 0

0110001 31 49 1

0110010 32 50 2

0110011 33 51 3

0110100 34 52 4

0110101 35 53 5

0110110 36 54 6

0110111 37 55 7

0111000 38 56 8

0111001 39 57 9

0111010 3A 58 : Colon
0111011 3B 59 ; Semicolon
0111100 3C 60 < Smaller than
0111101 3D 61 = Equals sign
0111110 3E 62 > Bigger than
0111111 3F 63 ? Question mark
1000000 40 64 @ At symbol
1000001 41 65 A

1000010 42 66 B

1000011 43 67 C

1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111
1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100

44
45
46
47
48
49
4A
4B
4c
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

— N XS<CCHLWIOYWOZEr R ~ITOTMUI

—_— K —e =50 00 O T oW

Left square bracket
Inverse/backward slash
Right square bracket
Circumflex
Underscore
Gravis (backtick)

461

462

1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

~— AN X S <2 v Rr0T OB 8

DEL

ANNEXE E. CODE ASCIIDE 0 A 127

Left curly bracket
Vertical line
Right curly brackets
Tilde
Deletes a character

Glossaire des Instructions

adc Addition de registres généraux en prenant en compte la retenue éventuelle du
CArTy FLAZ .« . vee et et et e et et et et e 153

add Addition de registres EnérauXvvueeirenreeirenreneaieaieaaaans 153

addps, addpd Additions entre deux registres vectoriels considérés comme 4 floats
ou2double.. ... 233

addss, addsd Additions entre deux registres vectoriels considérés comme conte-
nant un float ou un double en partie basse des registres....................

183
and Et binaire entre registres généraux ou un registre général et un emplacement
10 T<] 00101 PR 158

blendps Permet de remplacer les valeurs du registre vectroriel SSE de destination
par des valeurs du registre vectoriel source en utilisant un masque sous forme
d’une constante d'UN OCtetvutieintin i i eneanennns 239

call Appel de SOUS PrOgramIevvuutttet it eneeie it enteneaneennans 162

cdq Conversion de eax en edx:eax, si eax contient une valeur négative alors edx
CONtIENAra -1 .ottt e e 156

cmovCC Conditional MOVe, déplacement conditionnel de la valeur source vers la
valeur cible, en général deux registres généraux si la condition CC est vérifiée
180

cmp Comparaison entre registres généraux ou un registre général et un emplace-
ment mémoire, les flags du registre eflags sont positionnés en conséquence
160

cvtss2sd, cvtps2pd, cvtss2si, cvtsi2sd Conversions de données contenu dans des
registres vectoriels SSE : de float en double ou de float en entier, d’entier en
3 (0 1 237

dec Décrémentation d’un registre général, correspond a une soustraction de 1 153

div Division de registres généraux, ne prend qu'une opérande : le diviseur.. 155,
157

fadd, faddp Floating point ADD, addition de nombres en virgule flottante, le p en
suffixe indique que la valeur est dépilée de la pile de registres de la FPU 217

463

464 Glossaire des Instructions

fcomi, fcomip, fcomu, fcomup Comparaison de nombres en virgule flottante, le
p en suffixe indique que la valeur est dépilée de la pile de registres de la FPU
221

fcos, fsin, fsincos, fptan, fpatan Calcul du cosinus, sinus, sinus et cosinus, tan-
gente partielle, arctangente partielle de nombres en virgule flottante........
218

fdiv, fdivp, fdivr, fprem Division, division inverse, reste de la division de nombres
en virgule flottante, le p en suffixe indique que la valeur est dépilée de la pile

deregistresde la FPUt e 217
fild Floating point Integer LoaD, chargement d’'un nombre entier qui sera converti
en virgule flottante dans st@......... ..o 215

fld Floating point LoaD, chargement d'un nombre en virgule flottante dans st@ 215

fmul, fmulp Floating point MULtiplication, multiplication de nombres en virgule
flottante, le p en suffixe indique que la valeur est dépilée de la pile de registres
de la FPU . ..o e 217

fst, fstp Floating point STore, stockage d’'un nombre en virgule flottante vers la
mémoire, le p en suffixe indique que la valeur est dépilée de la pile de registres

de la FPU . ..o e 216
fsub Soustraction de nombres en virgule flottante, le p en suffixe indique que la
valeur est dépilée de la pile de registresde laFPU..................... 217

haddps Addition horizontale de 4 float dans un registre vectoriel SSE : cette
instruction permet en étant exécutée deux fois sur le méme registre de
calculer la somme des 4 float contenu dans le registre vectoriel ... 236, 242

idiv Division d’un registre général considéré comme un entier signé : méme format

QUE AV ettt e e et 9,157
imul Multiplication d’un registre général considéré comme un entier signé : elle
possede 3 formats différents............ .o 9, 157

inc Incrémentation d’un registre général, correspond a une addition de 1... 153

JE JUMP ON EQUAL. ..o\ e et e e 162
JE JUMP ON Greater.v vttt e ettt ettt 162
jge Jump on Greater or EQUAL.ouuneiieei i iaiaiannannnn 162
JLIUMP O LESS . oot et et e et ettt eaieeans 162
jle Jump on Less or EQUAL.o.oenuen et 162
jne Jump on NOt EQUALoononn ittt 162
JNZ JUMP ONINOE ZET0 .« v v ettt e et e et ettt et eieeanns 162
JZ JUMP OML ZETO . o oottt ettt e et e et ettt 162

lea Load Effective Address, calcule le résultat de son opérande définie sous forme
A adrESSE . ottt e 157

Glossaire des Instructions 465

loop Décrémente le registre ecx et se branche a I'adresse indiquée par 'opérande

sicelui-cinest pas €gal a 0........cvuiniiininn i, 161
mov Chargement et stockage de registres généraux...............c.cvuen... 152
movaps, movups Chargement et stockage d’un registre vectoriel SSE avec des
nombres en virgule flottante ...t 235
movbe Inverse les octets d’'un registre général 32 bits....................... 424
movdqga, movdqu Chargement et stockage d’un registre vectoriel SSE avec des
dONNEES ENTICTES . . .o vttt ettt ettt 234
movss, movsd Chargement et stockage de la partie basse d’un registre vectoriel
SSE avec un nombre a virgule flottante.................cooiiiiiiia... 235
movsx Chargement et stockage de registres généraux avec extension du signe
d’une valeur 8 ou 16 bits vers une valeur 16, 32 ou 64 bits 153
movzx Chargement et stockage de registres généraux avec extension et remplissage
avec 0 d’une valeur 8 ou 16 bits vers une valeur 16, 32 ou 64 bits...... 153
mul Multiplication de registres généraux, ne prend qu'une opérande : le multipli-
(622 Y] o
155
neg Complément a deux : converti 1 en -1 et inversement.................. 157
not Complémente chaque bit d'une opérande....................coii.... 159

or Ou binaire entre registres généraux ou un registre général et un emplacement
007300 0} 1 ¢ <SP 158

paddb, paddw, paddd Additions entre deux registres vectoriels considérés comme

contenant 16 octets, 8 mots ou 4 doublemots......................... 233
pand, por, pxor Réalise un et-binaire, un ou-binaire ou bien un ou-exclusif binaire
entre deux registres vectoriels SSE o i i 237
pdep Parallel bits Deposit, agit sur des registres généraux et permet de sélectionner
des bits d'Un registreot e 424
pshufd Réorganise les 4 entiers contenus dans un registre vectoriel SSE 238
ret Retour de sous-programme, voircall.............. ..o, 162

sar SHift Arithmetic Right, permet de réaliser une division par une puissance de 2
tout en préservant le signe de la valeur divisée 160

setCC Set Byte on Condition, met a O ou 1 un registre 8 bits ou un emplacement
mémoire 8 bits en fonction des valeurs des bits CF, SF, OF, ZF et PF du
registre eflags : on remplacera CC par les lettres qui correcpondent aux sauts
conditionnels, par exemple nz pour Not Zeroccoveevuieennn.. 180

shl SHift Left, décalage a gauche d’un registre de n bits, correspond également a
une multiplication par 2"t e 159

466 Glossaire des Instructions

shr SHift Right, décalage a droite d’un registre de n bits, correspond également a

une diviSiOn Par 27ttt e 159
shufps Réorganise les 4 float contenus dans un registre vectoriel SSE....... 238
sub Soustraction de registres g€nératuX..........vvevirinniiiiinnennenienn. 153

test Comparaison de valeurs en réalisant un and entre les deux opérandes .. 161

xor Ou eXclusif binaire entre registres généraux ou un registre général et un
emplacement MEMOITE.ttt ea et eitneneeneennans 159

Bibliographie

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

AGNER, Fog : Calling conventions for different C++ compilers and operating
systems, 2018

AGNER, Fog : The microarchitecture of Intel, AMD and VIA CPUs : An optimiza-
tion guide for assembly programmers and compiler makers, 2018

CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronald L.; STEIN,
Clifford : Introduction to Algorithms. 3rd. MIT Press, 2009. — ISBN 978-0-
262-03384-8

HEINEMAN, George T.; POLLICE, Gary; SELKOW, Stanley : Algorithms in a
nutshell, A Desktop Quick Reference. O’Reilly, 2008. — ISBN 978059651624-6

HENNESSY, John L. ; PATTERSON, David A. : Computer Architecture : A Quanti-
tative Approach. 5. Amsterdam : Morgan Kaufmann, 2012. — ISBN 978-0-12—
383872-8

HENTENRYCK, Pascal V. ; DEVILLE, Yves : The Cardinality Operator : A New
Logical Connective for Constraint Logic Programming. In : BENHAMOU,
Frédéric (Hrsg.) ; COLMERAUER, Alain (Hrsg.) : Constraint Logic Programming,
Selected Research. WCLP 1991, Marseilles, France, MIT Press, 1991, S. 283-403

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume 1 :
Basic architecture, January 2019. — Order Number : 253665-069US

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume 2A :
Instruction set reference, A-L, January 2019. — Order Number : 253666-069US

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume 2B :
Instruction set reference, M-U, January 2019. — Order Number : 253667-069US

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume 2C :
Instruction set reference, V-Z, January 2019. — Order Number : 326018-069US

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume
2D : Instruction set reference, January 2019. — Order Number : 334569-069US

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume
3A : System programming guide, part 1, January 2019. — Order Number :
253668-069US

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume
3B : System programming guide, part 2, January 2019. — Order Number :
253669-069US

467

468

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

BIBLIOGRAPHIE

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume
3C : System programming guide, part 3, January 2019. — Order Number :
326019-069US

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume
3D : System programming guide, part 3, January 2019. — Order Number :
332831-069US

INTEL : Intel 64 and IA-32 architectures software developer’s manual volume 4 :
Model-specific registers, January 2019. — Order Number : 335592-069US

JACQUES, Baudé : Le mariage du sciecle : éducation et informatique. In :
1024 - Bulletin de la société informatique de France 13 (2019), avril, S. 71-78

KNUTH, Donald E. : An empirical study of FORTRAN programs. In : Software :
Practice and Experience 1 (1971), Nr. 2, 105-133. http://dx.doi.org/10.
1002/spe.4380010203. — DOI 10.1002/spe.4380010203

LEITERMAN, James : 32/64bitt 80x86 Assembly Language Architecture. Plano,
TX, USA : Wordware Publishing Inc., 2005. — ISBN 1598220020

McCUNE, W W. : OTTER (Organized Techniques for Theorem-proving and
Effective Research) 2. 0 users guide. (1990), 3

MICHEL, Benoit : Le livre du 64. 3. Banneux, Belgique : BCM, 1986. — ISBN
2-87111001-80

R., Patterson D. A.and P. : Assessing RISC’s in a High-Level Language Support.
In : IEEE Micro 2 (1982), Now.

RICHER, Jean-Michel : Une approche de résolution de probléemes en logique des
prédicats fondée sur des techniques de satisfaction de contraintes, Université de
Bourgogne, Dijjon, Diss., 1999. http://www.info.univ-angers.fr/~richer/
pub/these.pdf

ROBINSON, J. A. : A Machine-Oriented Logic Based on the Resolution Principle.
In:J. ACM 12 (1965), Januar, Nr. 1, 23-41. http://dx.doi.org/10.1145/
321250.321253. — DOI 10.1145/321250.321253. — ISSN 0004-5411

SPERANZA, René : Guide Silicium des micro-ordinateurs anciens. COREP, 2006.
— ISBN 9782951747241

STALLINGS, W. : Organisation et architecture de Uordinateur. Pearson Edu-
cation, 2003 https://books.google.fr/books?id=mF3IPAAACAAJ. — ISBN
9782744070075

STOKES, Jon : Inside the Machine : An Illustrated Introduction to Microprocessors
and Computer Architecture. San Francisco, CA, USA : No Starch Press, 2006. —
ISBN 1593271042

http://dx.doi.org/10.1002/spe.4380010203
http://dx.doi.org/10.1002/spe.4380010203
http://www.info.univ-angers.fr/~richer/pub/these.pdf
http://www.info.univ-angers.fr/~richer/pub/these.pdf
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1145/321250.321253
https://books.google.fr/books?id=mF3IPAAACAAJ

Apprendre a développer en assembleur x86

Grace a cet ouvrage vous apprendrez les notions essentielles

nécessaires pour programmer en assembleur x86. Les diffé-

rents points abordés sont les suivants :

- représentation des entiers, des réels

- registres généraux 32 et 64 bits

- registres vectoriels et programmation vectorielle

- coprocesseur et calculs avec les réels

- appel de sous-programmes

- édition, compilation, édition de liens

- techniques de programmation : alignement mémoire,
dépliage de boucle

La mise en application est réalisée au travers de plusieurs

études de cas qui visent a améliorer le codage d'une
fonction de base écrite en C.

A propos de l'auteur

'auteur est maitre de conférences en informatique a l'Université
d'Angers. Il enseigne la programmation assembleur depuis
'année 2000 en Licence Informatique.

	page_de_couverture
	page_blanche
	Informatique, informaticien et assembleur
	Pourquoi apprendre l'assembleur
	Matériel et logiciel

	Le métier d'informaticien
	Qu'est ce qu'un ordinateur ?
	Qu'est ce que l'informatique ?
	Qu'est ce qu'un informaticien ?
	En quoi consiste son travail ?

	Savoir programmer et savoir réfléchir
	Nombres premiers
	Tri
	Recherche de doublons

	Le Génie (du) logiciel
	Conclusion
	Exercices

	Représentation de l'information
	Introduction
	Représentation des entiers
	Le binaire
	L'octal
	L'hexadécimal
	Les entiers naturels
	Méthode des divisions successives
	Méthode des intervalles de puissances
	Méthode par complémentation
	Intervalles de représentation
	Débordement

	Les entiers relatifs
	Débordement

	Calculs en binaire avec des entiers
	Addition
	Multiplication
	Soustraction
	Soustraire 1

	Division

	Représentation des réels
	Codage
	Partie décimale
	Remarques
	Erreurs de précision
	Intervalle et simple précision
	Valeur absolue
	Division entière non signée par un invariant

	Représentation des chaînes de caractères
	L'ASCII
	l'Unicode

	Little et big endian
	Conclusion
	Que retenir ?
	Compétences à acquérir

	Exercices

	Le Fonctionnement du Microprocesseur
	Introduction
	La mémoire centrale
	Alignement des données en mémoire
	Double canal
	Mémoire cache
	Niveaux de cache
	Organisation des mémoires caches entre elles
	Cache associatifs par groupe
	Ajouter une adresse dans le cache
	Vérifier si une adresse est dans le cache

	Le microprocesseur
	Fréquence de fonctionnement
	Architectures RISC et CISC
	Architecture x86
	Les lois de Moore

	Les Registres
	Adressage mémoire

	Amélioration des microprocesseurs
	Traitement des instructions
	Pipeline d'instructions
	Frontal : chargement et décodage
	Chargement et prédiction de branchement
	Décodage d'instructions

	Exécution des instructions
	Exécution dans le désordre
	Microprocesseur super scalaire
	Ecriture du résultat
	Amélioration en longueur et en largeur
	Multi-coeur et SMT

	Apprendre à connaître son ordinateur sous Linux
	Le microprocesseur
	inxi
	lstopo

	La carte mère
	La mémoire
	CPU-X

	Outils de tests
	Phoronix
	Sysbench
	Geekbench

	Comparaison de microprocesseurs
	Conclusion
	Que retenir ?
	Compétence à acquérir

	Questions
	Exercices

	Outils pour la Programmation Assembleur
	Introduction
	Les éditeurs
	jEdit
	gedit
	kate
	emacs
	Autres éditeurs

	L'assembleur nasm
	Compilation

	Edition de lien avec gcc/g++
	Edition de liens avec un seul fichier assembleur
	Edition de liens avec plusieurs fichiers
	Obtenir le code assembleur d'un fichier C
	utiliser gcc -S
	utiliser objdump

	Le débogueur ddd
	Logiciels annexes

	Traitements de base
	Introduction
	Registres
	Registres 8 et 16 bits
	Architecture et registres 32 bits
	Architecture et registres 64 bits
	Architecture 128 bits

	Instructions élémentaires
	ttcolormov : chargement et stockage
	Instructions arithmétiques
	Instructions ttcoloradd, ttcolorsub, ttcolorinc et ttcolordec
	L'instruction ttcolormul
	L'instruction ttcolordiv et le modulo
	L'instruction ttcolorimul
	L'instruction ttcoloridiv
	L'instruction ttcolorneg
	L'instruction ttcolorlea

	Instructions logiques
	Instructions ttcolorand et ttcoloror
	L'instruction ttcolorxor
	L'instruction ttcolornot

	Instructions de décalage
	Instructions ttcolorshl, ttcolorshr
	L'instruction ttcolorsar

	Comparaison
	L'instruction ttcolorcmp
	L'instruction ttcolortest

	Instructions de branchement
	Instructions de branchement conditionnel
	Loop
	Autres instructions de branchement

	Instructions complexes
	Lecture d'un tableau
	Ecriture d'un tableau
	Déplacement d'un tableau
	rep ret

	Traitements de base
	Langage de GoTo
	Association variable registre
	Notion de label
	Si alors
	Si C1 et C2 et ... et Cn alors
	Si C1 ou C2 ou ... ou Cn alors
	Si alors sinon
	Tant que
	Pour i de 1 à n
	Selon cas
	Techniques d'amélioration liées aux boucles for
	Dépliage de boucle
	Tuilage
	Perte d'efficacité : if à l'intérieur d'un for

	Instructions pour l'élimination des if
	Débit et latence des instructions

	Conclusion
	Que retenir ?
	Compétences à acquérir

	Exercices

	Appel de sous-programme
	Introduction
	Appel de sous-programme en 32 bits
	Rôle de la pile
	Push pour empiler ou sauvegarder des données
	Pop pour dépiler ou restaurer des données
	pusha, pushad, pushf

	Réalisation d'un appel de sous-programme
	Registres non modifiables
	Valeur de retour de sous-programme en 32 bits
	Exemple d'appel en 32 bits
	Appel du sous-programme
	Le sous-programme appelé
	Suppression des paramètres

	Enter et leave
	Appel rapide (fast call)

	Appel de sous-programme en 64 bits
	Entrée et sortie de la fonction
	Red zone
	Adresses
	Exemple de traduction 64 bits
	Spécificités du mode 64 bits
	With Respect To (WRT)
	Position Independent Code
	Alignement de la pile
	Entrée et sortie de sous-programme en 64 bits

	Code en 32 ou 64 bits
	Conclusion
	Que retenir ?
	Compétence à acquérir

	Exercices

	Coprocesseur arithmétique
	Introduction
	Organisation de la FPU
	Manipulation des données et de la FPU
	Chargement avec fld
	Stockage avec fst

	Opérations
	Opérations de base
	Opérations trigonométriques
	Manipulation de la pile de la FPU

	Erreurs liées à la FPU
	Comparaison
	Comparaison en architecture 32 bits
	Comparaison en architecture 64 bits

	Traduction des expressions réelles
	Affichage d'une valeur flottante
	Architecture 32 bits
	Architecture 64 bits

	Conclusion
	Que retenir ?
	Compétences à acquérir

	Exercices

	Unités vectorielles
	Introduction
	SSE
	Chargement et stockage des données
	Instructions arithmétiques
	Fonctions trigonométriques, logarithme, exponentielle
	Instructions binaires
	Instructions de conversion
	Instructions de réarrangement

	AVX, AVX2
	Spécificités
	Partie haute
	Instructions singulières

	Affichage d'un registre
	Architecture 32 bits
	Architecture 64 bits

	Intrinsics
	Types et format des instructions
	Travailler avec les flottants
	Chargement et initialisation
	Stocker des flottants en mémoire

	Travailler avec les entiers
	Exemple de programme

	AVX 512
	Spécificités
	Manipulation des masques
	Données vectorielles

	AVX 10
	Conclusion
	Que retenir ?
	Compétences à acquérir

	Exercices

	Algèbre de Boole
	Introduction
	Définition
	Fonction booléenne, table de vérité
	Fonctions de deux variables
	La fonction and(x,y) (ET logique)
	La fonction or(x,y) (OU Logique)
	La fonction xor(x,y) (OU Exclusif Logique)
	Lois de De Morgan

	Simplification des fonctions booléennes
	Règles de simplification algèbriques
	Méthode des tableaux de Karnaugh
	Création et remplissage du tableau de Karnaugh
	Simplification du tableau de Karnaugh
	Exemple simple de simplification par tableau de Karnaugh
	Exemple plus problématique

	Représentation des portes logiques
	Universalité des portes NAND et NOR

	Algèbre de Boole et circuits
	Le demi-additionneur
	L'additionneur
	Le soustracteur

	Algèbre de Boole et arithmétique
	Algèbre de Boole et logique
	Définition du problème
	Modélisation du problème en logique
	Résolution du problème en logique
	Modélisation sous forme de contraintes de cardinalité
	Contraintes #(1,1) et #(0,1)
	Résolution avec des contraintes de cardinalité
	Solveur

	Conclusion
	Exercices

	Etudes de cas
	Introduction
	Organisation des sources et binaires
	Cibles make
	Scripts shell et PHP
	Fichiers sources

	Redéfinition des types et constantes
	Tests et matériels
	Matériels
	Tests
	Quantités mesurées
	Comment mesurer

	Tests du Chapitre 2

	Etude de cas produit de matrices
	Introduction
	Stockage des matrices
	Fonction de référence
	Analyse des premiers résultats
	Analyse du cache avec perf
	Amélioration avec inversion des boucles j et k
	Version SSE de l'inversion de la boucle j, k
	Tuilage
	Tuilage 4 4 avec SSE
	Tuilage b b de manière générale

	Tests de performance
	Architectures anciennes (avant 2015)
	Architectures modernes (2015 à 2019)
	Architectures récentes (2020 et après)
	Analyse des versions liées au tuilage

	Conclusion
	Exercices

	Etude de cas POPCNT
	Introduction
	Améliorations simples
	Table de conversion
	Compter les bits
	Utilisation de l'instruction popcnt

	Traitements par 32 bits
	Vectorisation SSE et AVX
	Implantations
	Résultats
	Architectures anciennes (avant 2015)
	Architectures modernes (2015 à 2019)
	Architectures récentes (2020 et après)

	Conclusion

	Etude de cas Variante de SAXPY
	Introduction
	Fonction de référence
	Version FPU
	Version FPU dépliée par 4
	Version SSE
	Version AVX
	Version FMA
	Résultats
	Un mot sur l'interface ez_ii
	Architectures anciennes (avant 2015)
	Architectures modernes (2015 à 2019)
	Architectures récentes (2020 et après)

	Conclusion
	Exercices

	Etude de cas Maximum de Parcimonie
	Introduction
	Fonction de référence
	Implantation en assembleur
	Amélioration de la fonction de référence
	Optimisation de la version sans if
	Version SSE
	Association variables registres

	Version SSE 4.1
	Version AVX / AVX2
	Fonction de référence et compilateur
	Version intrinsics
	Version AVX512
	Tests de performance
	Architectures anciennes (avant 2015)
	Architectures modernes (2015 à 2019)
	Architectures récentes (2020 et après)

	Conclusion
	Exercices

	Etude de cas Compter les voyelles
	Introduction
	Fonctions de référence
	Traduction de la méthode du tableau en assembleur
	Initialisation du tableau
	Initialisation par registre général
	Initialisation rep stosq
	Initialisation par registre vectoriel AVX

	Boucle principale
	Sortie de fonction
	Dépliage par 4

	Vectorisation avec SSE
	Vectorisation avec AVX2
	Vectorisation AVX2 avec intrinsics
	Vectorisation avec AVX512
	Résultats
	Architectures anciennes (avant 2015)
	Architectures modernes (2015 à 2019)
	Architectures récentes (2020 et après)
	Influence du nombre de voyelles

	Conclusion

	Etude de cas Suite de Fibonacci
	Introduction
	Dynamique des populations

	Récursivité
	Formule avec nombres flottants
	Version de référence en C
	Versions assembleur de la fonction de référence
	Versions axées sur les tableaux
	Versions itératives
	Astuce
	Amélioration lors du dépliage
	Amélioration des dernières itérations
	Amélioration avec regcoloresp
	Amélioration du dépliage par 8

	Versions vectorielles
	Version SSE
	Version AVX

	Résultats
	Architectures modernes (2015 à 2019)
	Architectures récentes (2020 et après)
	Variation des fréquences de fonctionnement

	Remerciements

	Etude de cas nombres auto-descriptifs
	Introduction
	Fonction de référence
	Première amélioration
	Convertir en chiffres et non en chaîne
	Versions assembleur
	Version 1 - Traduction
	Version 2 - Remplacement de la division
	Version 3 - Remplacement de la division et dépliage
	Version 4 - Comparaison vectorielle
	Versions 5 - Division par 100
	Versions 6 - Codage en BCD
	Décomposition avec les registres
	Décomposition avec les instructions spécifiques

	Versions 7 - Division par 10000

	Tests de performance

	Conventions d'appel Linux
	Le GNU Débogueur
	Programme de démonstration
	Compilation et exécution
	Afficher les données
	Electric Fence
	Erreur liée au débordement de pile
	Autres commandes
	Afficher le programme

	Afficher le contenu des registres
	Afficher le contenu des variables
	Modifier le contenu des registres ou des variables
	Points d'arrêt
	Surveiller un changement de valeur

	Travail sur bsr
	Introduction
	Comparaison bsr et lzcnt
	Code à traduire
	Résultats

	Implantation de la fonction signe
	Introduction
	Amélioration sans passer par regcolorebp
	Amélioration avec suppression d'un saut
	Améliorations sans saut
	Conversion et négation
	Propagation du signe
	Déplacements conditionnels

	Tests de performance

	Code ASCII de 0 à 127
	Glossaire des Instructions
	page_de_fermeture_et_isbn

